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Are “Higher-Order” and “Layer-wise Zig-Zag” Plate &
Shell Theories Necessary for Functionally Graded

Materials and Structures?
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Abstract: Similar to the very vast prior literature on analyzing laminated com-
posite structures, “higher-order” and “layer-wise higher-order” plate and shell the-
ories for functionally-graded (FG) materials and structures are also widely popular-
ized in the literature of the past two decades. However, such higher-order theories
involve (1) postulating very complex assumptions for plate/shell kinematics in the
thickness direction, (2) defining generalized variables of displacements, strains,
and stresses, and (3) developing very complex governing equilibrium, compatibili-
ty, and constitutive equations in terms of newly-defined generalized kinematic and
generalized kinetic variables. Their industrial applications are thus hindered by
their inherent complexity, and the fact that it is difficult for end-users (front-line
structural engineers) to completely understand all the newly-defined generalized
DOFs for FEM in the higher-order and layer-wise theories. In an entirely differ-
ent way, very simple 20-node and 27-node 3-D continuum solid-shell elements are
developed in this paper, based on the simple theory of 3D solid mechanics, for
static and dynamic analyses of functionally-graded plates and shells. A simple
Over-Integration (a 4-point Gauss integration in the thickness direction) is used to
evaluate the stiffness matrices of each element, while only a single element is used
in the thickness direction without increasing the number of degrees of freedom. A
stress-recovery approach is used to compute the distribution of transverse stress-
es by considering the equations of 3D elasticity in Cartesian as well as cylindrical
polar coordinates. Comprehensive numerical results are presented for static and
dynamic analyses of FG plates and shells, which agree well, either with the exist-
ing solutions in the published literature, or with the computationally very expen-
sive solutions obtained by using simple 3D isoparametric elements (with standard
Gauss Quadrature) available in NASTRAN (wherein many 3D elements are used
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in the thickness direction to capture the varying material properties). The effects
of the material gradient index, the span-to-thickness ratio, the aspect ratio and the
boundary conditions are also studied in the solutions of FG structures. Because the
proposed methodology merely involves: (2) standard displacement DOFs at each
node, (2) involves a simple 4-point Gaussian over-integration in the thickness direc-
tion, (3) relies only on the simple theory of solid mechanics, and (4) is capable of
accurately and efficiently predicting the static and dynamical behavior of FG struc-
tures in a very simple and cost-effective manner, it is thus believed by the authors
that the painstaking and cumbersome development of “higher-order” or “layer-wise
higher-order” theories is not entirely necessary for the analyses of FG plates and
shells.

Keywords: functionally graded plates and shells, 20-node hexahedral element,
27-node hexahedral element, over-integration, higher order theory, layer-wise the-
ory.

1 Introduction

Functionally graded materials (FGM) were proposed as heat-shielding structural
materials by Japanese material scientists in 1984 [Koizumi (1997)]. Typically,
FGMs are mixtures of ceramics and metals with material properties varying s-
moothly from one structural surface to another. In this way, thermal-stress con-
centrations developed at material interfaces of conventional structural components
can be avoided. This excellent feature has promising applications for aircrafts, s-
pace vehicles, automobiles and other engineering structures. Thus, it is important
to develop a simple and accurate tool for analyzing static and dynamic behaviors
of FGM structures.

Similar to the very vast literature on laminated composite structures, specialized
plate and shell theories for functionally-graded (FG) materials and structures were
also extensively studied in the literature of the past two decades. These theories in-
volve expanding the displacements using first-order, or higher-order power-series,
or other types of functions, in the thickness direction of plates/shells. For exam-
ple, the Kirchhoff and Reissner (or Mindlin) theories are the most widely-used
plate/shell theories, see [Timoshenko and Woinowsky (1959), Reissner (1945) and
Mindlin (1951)], which are embedded in almost every standard FEM packages
such as Ansys, Abaqus, Nastran, etc. These and other first-order theories are al-
so applied for static and dynamic analyses of FGM plates/shells, see [Zenkour
(2006); Cheng and Batra (2000); Batra and Jin (2005)]. However, for relatively
thick FGM structures, Kirchhoff and Reissner assumptions usually underestimate
the deflections and overestimates natural frequencies, as transverse shear strains are
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neglected (Kirchhoff) or assumed to be constant (Reissner) in such theories.

To overcome the aforementioned limitations, many higher-order shear deformation
theories (HSDT) were later proposed, see [Lo, Christensen and Wu (1977); Reddy
(1984); Reddy and Robbins (1994)], wherein the variations of in-plane displace-
ments in the thickness direction are mostly approximated using third-order poly-
nomials. These and other higher-order theories were used to analyze FGM plates
and shells also, see [Reddy (2000); Qian, Batra and Chen (2004); Ferreira, Ba-
tra, Roque, Qian and Martins (2005)]. In [Carrera, Brischetto, Cinefra and Soave
(2011)], it is also concluded that the normal deflection should also be expanded
in the thickness direction to include the effects of thickness-stretching. Moreover,
layer-wise theories, which expand displacements in each of many artificial layers
of FGM plates/shells, were also used to improve the accuracy of the solution, see
[Ramirez, Heyliger and Pan (2006); Carrera, Brischetto and Robaldo (2008)].

In order to derive higher-order or layer-wise theories of plates and shells, kinematic
assumptions are substituted into the principle of potential energy of 3D elasticity.
By exploring the stationarity conditions, very complex governing differential equa-
tions in terms of newly defined generalized displacements, strains and stresses can
be derived, see [Reddy (2004)] for example. However, such complex differential e-
quations cannot be directly solved. One usually goes back to derive the weak-forms
of these governing differential equations, and thus develop the corresponding the
finite element models to solve the problem numerically. In this sense, defining the
many generalized displacements, strains, stresses, and deriving the complex higher-
order or layer-wise theories and differential equations seems unnecessary. One can
directly use the variational principle of 3D elasticity to develop finite elements for
the modeling of plates and shells. Moreover, it is difficult for end-users to com-
pletely understand all the newly-defined generalized DOFs in higher-order theories
(or their FEM counterparts), which have ambiguous physical meanings. Further-
more, it becomes very problematic when boundary conditions have to be enforced
correctly for these generalized degrees of freedom, by the end-users.

In an entirely different way, [Dong, El-Gizawy, Juhany, Atluri (2014a,b)] directly
developed 2D quadrilateral 4-node elements (for beam-type structures) , and 3D
hexahedral 8-node finite elements (for plate and shell structures), for FG as well as
laminated structures, based on the simple theories of 2D and 3D solid mechanic-
s, respectively. Because the traditional displacement-based lowest order elements
suffer from shear locking, a technique of locking-alleviation was used in Dong,
El-Gizawy, Juhany, Atluri (2014a,b), by independently assuming locking-free ele-
ment strains. Without using mixed variational principles, and thereby bypassing the
troublesome LBB conditions of stability, a simple collocation method was used to
satisfy the compatibility between the independently assumed strains and those de-
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rived from the independently assumed displacement fields, at carefully selected re-
quired number of points inside the elements. Over-integration was also used in the
thickness direction to accurately evaluate the stiffness matrix of FG and laminated
elements. However, for very thick laminated structures with only a few layers, the
computational accuracy is slightly compromised if only a single lowest-order finite
element is used in the thickness direction. Therefore displacement-based higher-
order solid (continuum) elements were also developed in [Fan, Zhang, Dong, Li,
Atluri (2015)] for analyzing very thick laminates. Similarly, for FGM plates and
shells, if the span-to-thickness ratio is very large, or if the material properties are
varying in the thickness direction with very large gradients, it will be beneficial to
have very simple higher-order displacements-based solid elements, with the stan-
dard displacement degrees of freedom, to improve the accuracy of solutions.

In this study, standard displacement-based 3D hexahedral 20-node element (DPH20)
and a 3D 27-node element (DPH27), with over-integration in the thickness direc-
tion, are developed to carry out static and dynamic analyses of functionally graded
plates and shells. Comprehensive numerical results are presented, which agree
very well with existing solutions in the published literature, or with the compu-
tationally very-expensive solutions obtained by using standard 3D isoparametric
element methodologies (with standard Gauss quadrature) available in commercial
FEM codes. Because the proposed methodology: (1) merely involves the stan-
dard displacement DOFs at each node, (2) relies only on the simple theory of 3D
solid mechanics, (3) simple 4-point Gauss quadrature in the thickness direction,
and (4) is capable of accurately and efficiently predicting the static and dynamical
behavior of FGM structures in a very simple and cost-effective manner, it is thus
believed by the authors that the painstaking development of specialized “higher-
order” or “layer-wise” theories is not entirely necessary for the analyses of FGM
plates and shells. In the following sections, details of the proposed methodology
are described and many numerical examples of various laminated plates/shells with
different loads and boundary conditions are provided.

2 Formulation

2.1 Primal FEM with over-integration

As illustrated in Fig. 1, nodal shape functions of the 20-node and 27-node hexahe-
dral elements can be defined in terms of local isoperimetric coordinates. We firstly
define the following function for node i :

Gi = G(ξi,ηi,ζi) = g(ξi,ξ )g(ηi,η)g(ζi,ζ ) (1)
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Figure 1: Numbering of nodes for 20-node/27-node hexahedral elements in
ξ ,η ,ζ coordinates.

where ξi, ηi and ζi are the natural coordinates of node i, and g(ξi,ξ ), g(ηi,η) and
g(ζi,ζ ) are defined as:

g(ξi,ξ ) =
1
2(1+ξiξ ) if ξi =±1

g(ηi,η) = 1
2(1+ηiη) if ηi =±1

g(ζi,ζ ) =
1
2(1+ζiζ ) if ζi =±1

(2)


g(ξi,ξ ) = (1−ξ 2) if ξi = 0
g(ηi,η) = (1−η2) if ηi = 0
g(ζi,ζ ) = (1−ζ 2) if ζi = 0

(3)

Shape functions are therefore defined as follows.

For vertex nodes i = 1, 2, . . . , 8:

Ni = Gi −
Ge

2
(4)

where Ge for each vertex node is the sum of the Gi values of nodes on the three
adjacent edges.

For mid-edge nodes i = 9, 10, . . . , 20:

Ni = Gi (5)

Nodal shape functions for the 27-node hexagonal element is slightly different,
which can be found in most books of finite elements [Atluri (2005), Zienkiewicz
and Taylor (1997)].
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Thus the displacement fields within the element are interpolated by using nodal
shape functions:

ui = ∑
I

N(I)ũ(I)i (6)

or in equivalent matrix-vector notations:

u = Nũe (7)

where ũe represents nodal displacements of the element.

Strain fields within the element are obtained by differentiating Eq. (7) with respect
to Cartesian coordinates:

εεε = Lu = LNũe= Bũe (8)

where L is a linear differential operator.

By using the Galerkin Weak-Form or equivalent variational principles [Atluri (2005);
Dong, Alotaibi, Mohiuddine and Atluri (2014c)], the element stiffness matrix and
mass matrix are computed by:

ke =
∫

ΩΩΩ
e
BTDBdΩΩΩ

me =
∫

ΩΩΩ
e
NTρNdΩΩΩ.

(9)

As discussed in [Dong, EI-Gizawy, Juhany and Atluri (2014b,c)], a scheme of over-
integration in the thickness direction is used to evaluate the element stiffness and
mass matrices for FGM. We know that for homogeneous materials, a 3×3×3 Gauss
integration is mostly used for evaluating Eq. (9). However, for FGM materials, the
material properties are varying in the thickness direction, therefore the conventional
3×3×3 Gauss integration will be insufficient. Thus, an increased-order integration,
which is a 4-point Gauss integration in the thickness direction, is used to capture to
varying material properties in the thickness direction.

The transverse normal and shear stresses are computed by using a stress-recovery
approach considering the equilibrium equations of 3D linear elasticity. For the lam-
inated plates, the distribution of transverse stresses can be obtained by numerically
evaluating:

σzx =−
∫ z

z0

(σxx,x +σxy,y)dz

σzy =−
∫ z

z0

(σyy,y +σxy,x)dz

σzz =−
∫ z

z0

(σzx,x +σzy,y)dz

(10)
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where z = z0 denote the lower surface of the plate.

For cylindrical shells, the distribution of transverse stresses can also be evaluated,
by numerically solving the following 3 differential equations:

∂σrθ

∂ r
+2

σrθ

r
=−1

r
∂σθθ

∂θ
− ∂σθz

∂ z
∂σrz

∂ r
+

σrz

r
=−∂σzz

∂ z
− 1

r
∂σθz

∂θ

∂σrr

∂ r
+

σrr

r
=

σθθ

r
− 1

r
∂σrθ

∂θ
− ∂σrz

∂ z

(11)

In Eq. (11), the left hand-side involves stress components to be recovered, and the
right-hand side are directly evaluated from the solutions of DPH20 or DPH27. Each
equation is a first-order single-variable ODE, which can be solved with a variety
of computational methods, see [Dong, Alotaibi, Mohiuddine and Atluri (2014c)].
In this study, simple collocation of Eq. (11) is implemented at a variety of points
along the thickness direction. Combined with the traction free condition at the inner
surface of the cylindrical shell, stress components σrθ ,σrz,σrr can be efficiently
recovered from the computed in-plane normal and shear stresses.

2.2 Functionally graded material properties

Figure 2: Geometry and the reference coordinate system for the FG plate.

We firstly consider a FG plate of length a, width b, and thickness h, as shown in Fig.
2. The x-, y-, and z-coordinates are along the length, width, and height directions
of the plate, respectively. z = 0 is placed at the mid-surface of the plate.

The FG plate is mostly made by a mixture of two material phases, for example,
a metal and a ceramic. The material properties of the FG plate, such as Young’s
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modulus E, mass density ρ and Poisson’s ratio µ , are assumed to be varying con-
tinuously throughout the thickness of plate according to the power law distribution
of volume fraction of constituents. According to the rule of mixtures, the effective
material properties can be expressed as:

P = PmVm +PcVc = Pm (1−Vc)+PcVc (12)

where Pm, Pc, Vm and Vc are defined as the material properties and volume fractions
of metal and ceramic, respectively.

In this paper, the volume fraction of ceramic is assumed to be subjected to the
following power-law distribution along the thickness direction:

Vc = (
z
h
+

1
2
)p (13)

where p is the material gradient index which should only be positive. Then the
effective material properties of the FG plate can be expressed as:

E(z) = (Ec −Em)
(2z+h

2h

)p
+Em

µ(z) = (µc −µm)
(2z+h

2h

)p
+µm

ρ(z) = (ρc −ρm)
(2z+h

2h

)p
+ρm

(14)

where the subscripts c and m represent ceramic and metal, respectively. The mate-
rial properties of metals and ceramics used in this study are listed in Table 1.

Table 1: Material properties of metals and ceramics used in this study.

Material
Properties

E(GPa) µ ρ (kg/m3)

Aluminum (Al) 70 0.3 2702
Alumina (Al2O3) 380 0.3 3800
Zirconia (ZrO2) 200 0.3 5700

Silicon Nitride (Si3N4) 322.2715 0.24 2370
Stainless Steel (SUS304) 207.7877 0.31776 8166

As an example, the variation of Young’s modulus E in the thickness direction of a
FG Al/Al2O3 plate with various values of gradient index p is shown Fig.3. For p= 0
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and p = ∞, the FG plate is purely ceramic (Al2O3) or metallic (Al), respectively.
For other positive values of p, the material properties vary smoothly from metal-
rich-surface to ceramic-rich surface with different gradients.

For functionally graded shells, material properties also vary smoothly from one
surface to the other in the thickness direction, which is similar to the FGM plate.

Figure 3: Variation of Young’s modulus E through the dimensionless thickness
(z/h) of Al/ Al2O3 plate.

3 Numerical Examples and Results

3.1 Static analysis

3.1.1 A simply-supported Al/Al2O3 FG plate subjected to a uniformly distributed
lateral load

The first example studies a simply-supported thick-section Al/Al2O3 FG square
plate subjected to a uniformly distributed lateral load: q = 1GPa. The plate is
square with a = b = 100 mm, and the plate thickness is h = 10mm. Material pa-
rameters used for the FG plate are listed in Table 1. Three different gradient indexes
(p = 0.2, 2, 10) are used.

We solve these problems using a uniform 10×10 mesh with DPH20 and DPH27
elements respectively, as well as using NASTRAN. We can see the difference of
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Figure 4: Finite element model for the FG plate (a/h = 10) by (a) NASTRAN and (b) the 

present DPH20/ DPH27 elements. 

We solve these problems using a uniform 10×10 mesh with DPH20 and DPH27 elements 

respectively, as well as using NASTRAN. We can see the difference of meshes between 

NASTRAN and the present DPH20/ DPH27 model in Fig 4. When modeled by Nastran, 

it takes about half an hour to obtain the numerical results using 250,000 elements. In 

contrast, the present DPH20/ DPH27 model requires only 100 elements and about 15 

seconds of computational time on a regular PC with i7 CPU. Computed in-plane and 

transverse shear stress are shown in Figs. 5-10, from which we can see that NASTRAN 

and the present method give similar results, though the computation time differs by two 

orders of magnitudes. Moreover, the DPH20 solution takes slightly less computational 

time than the DPH27 solution, as it contains a smaller number of DOFs. In fact, in all the 

following numerical examples, DPH20 always gives almost the same computational 

results as compared to DPH27, thus only results for DPH20 are demonstrated in the 

following subsections. 
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Figure 4: Finite element model for the FG plate (a/h = 10) by (a) NASTRAN and
(b) the present DPH20/ DPH27 elements.

meshes between NASTRAN and the present DPH20/ DPH27 model in Fig. 4.
When modeled by Nastran, it takes about half an hour to obtain the numerical
results using 250,000 elements. In contrast, the present DPH20/ DPH27 model re-
quires only 100 elements and about 15 seconds of computational time on a regular
PC with i7 CPU. Computed in-plane and transverse shear stress are shown in Figs.
5-10, from which we can see that NASTRAN and the present method give similar
results, though the computation time differs by two orders of magnitudes. More-
over, the DPH20 solution takes slightly less computational time than the DPH27
solution, as it contains a smaller number of DOFs. In fact, in all the following nu-
merical examples, DPH20 always gives almost the same computational results as
compared to DPH27, thus only results for DPH20 are demonstrated in the follow-
ing subsections.
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Figure 5: Computed in-plane normal stress σxx a tx = y = 50mm for the thick-
section Al/Al2O3 FG plate with gradient index p = 0.2.

Figure 6: Computed transverse shear stress σxz at x = y = 10mm for the thick-
section Al/Al2O3 FG plate with gradient index p = 0.2.
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Figure 7: Computed in-plane normal stress σxx at x = y = 50mm for the thick-
section Al/Al2O3 FG plate with gradient index p = 2.

Figure 8: Computed transverse shear stress σxz at x = y = 10mm for the thick-
section Al/Al2O3 FG plate with gradient index p = 2.
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Figure 9: Computed in-plane normal stress σxx at x = y = 50mm for the thick-
section Al/Al2O3 FG plate with gradient index p = 10.

Figure 10: Computed transverse shear stress σxz at x = y = 10mm for the thick-
section Al/Al2O3 FG plate with gradient index p = 10.
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3.1.2 A simply-supported Al/Al2O3 FG plate subjected to a uniform distributed
lateral load

Figure 11: Geometry and coordinate system of a FG plate.

In this subsection, we consider a simply-supported thick-section Al/Al2O3 FG shell
subjected to a uniformly distributed outer-pressure: q= 1GPa. Material parameters
used in the FG plate are listed in Table 1. The inner radius and outer radius of
the cylindrical shell are rin = 10mm and rout = 11mm respectively. The spans of
the cylindrical shell in z direction and in θ direction are l = 10mm and ϕ = π

respectively. The FG shell is simply supported at θ = 0,π and z = 0,10.

We solve this problem using a uniform 60×20 mesh with DPH20 elements, as well
as using NASTRAN (with 1.2 million DOFs), as shown in Fig. 12. Computed
distributions of stresses are shown in Fig. 13. It can be clearly seen that the results
by the present DPH20 elements agree well with those by NASTRAN even though
DPH20 requires significantly less DOFs and computational time.

Figure 14: Mode shapes of simply-supported Al/Al2O3 square FG plates with a/h
= 5 and p=1.

3.2 Free vibration analysis

3.2.1 Modal analysis of functionally graded plates

Simply-supported Al/Al2O3 square FG plates with various gradient indexes are
analyzed in this subsection. Material parameters used in the FG plates are listed
in Table 1. The span-to-thickness ratio a/h = 10 is adopted in the example. The
non-dimensional frequency parameters ωn = ωna2/h

√
ρc/Ec are used to compare
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(a)

(b)
Figure 12: Finite element model for the FG shell by (a) NASTRAN and (b) the
present DPH20 elements.

results obtained in this paper to the results in the literatures. We solve this problem
using a uniform 20×20 mesh with DPH20 elements. The present results are shown
in Table 2 along with the exact solution by [Jin, Su, Shi, Ye and Gao (2014)] and
the solution by a variational Ritz method [Huang, McGee and Wang (2013)]. It is
seen that the DPH20 solution agrees well with the exact solution of 3D elasticity to
a satisfactory precision.

We then consider extremely thick simply-supported Al/Al2O3 square FG plates
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(a)

(b)
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(c)
Figure 13: Computed σθθ ,σrr,σzz at θ = 61

120 π,z = 5mm for the thick-section
Al/Al2O3 FG plate.

with span-to-thickness ratio a/h = 5. Two different kinds of meshes with 20×20×1
and 20×20×2 DPH20 elements (one or two layers of elements in the thickness
direction) are used. The first five non-dimensional frequency parameters ωn =
ωna2/h

√
ρc/Ec are presented in Table 3. Although both models give acceptable so-

lutions, more accurate results are obtained by using two layers of elements (3.33%
and 0.12% maximum errors for 20×20×1 and 20×20×2 meshes respectively).
Therefore, a uniform 20×20×2 mesh with DPH20 elements will be used if the FG
plate is extremely thick (i.e. a/h ≤ 5) in the following numerical examples.

Simply-supported Al/Al2O3 square FG plates with span-to-thickness ratio varied
from 5 to 20 and gradient index varied from 0 to 10 are analyzed to verify the
accuracy and ef?cient of the present method. The non-dimensional frequency pa-
rameters ωn =ωn/h

√
ρc/Ec obtained using the DPH20 element are compared with

HSDT solutions [Thai, Park and Choi (2013); Hosseini-Hashemi, Fadaee and Ata-
shipour (2011a); Matsunaga (2008)], FSDT solutions [Hosseini-Hashemi, Fadaee
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Table 2: The non-dimensional frequency parameters ωn = ωna2/h
√

ρc/Ec of the
simply-supported Al/Al2O3 square FG plates with a/h=10.

p Method
ωn

1 2 3 4 5

0
Jin et al. (2014) 5.779 13.810 13.810 19.480 19.480

Huang et al. (2013) 5.777 13.810 13.810 19.480 19.480
DPH20 5.795 13.898 13.898 19.483 19.483

1
Jin et al. (2014) 4.428 10.630 10.630 16.200 16.200

Huang et al. (2013) 4.426 10.630 10.630 16.200 16.200
DPH20 4.434 10.668 10.668 16.202 16.202

5
Jin et al. (2014) 3.774 8.931 8.931 12.640 12.640

Huang et al. (2013) 3.772 8.927 8.927 12.640 12.640
DPH20 3.795 9.047 9.047 12.642 12.642

Table 3: The non-dimensional frequency parameters ωn = ωna2/h
√

ρc/Ec of
simply-supported Al/Al2O3 square FG plates with a/h=5.

p Method
ωn

1 2 3 4 5

0

Jin et al. (2014) 5.304 9.742 9.742 11.650 11.650
Huang et al. (2013) 5.304 9.742 9.742 11.650 11.650
20×20×1 elements 5.356 9.742 9.742 11.849 11.849
20×20×2 elements 5.307 9.742 9.742 11.664 11.664

1

Jin et al. (2014) 4.100 8.089 8.089 9.108 9.108
Huang et al. (2013) 4.099 8.089 8.089 9.107 9.107
20×20×1 elements 4.123 8.090 8.090 9.201 9.201
20×20×2 elements 4.101 8.089 8.089 9.118 9.118

5

Jin et al. (2014) 3.405 6.296 6.296 7.344 7.344
Huang et al. (2013) 3.405 6.296 6.296 7.343 7.343
20×20×1 elements 3.470 6.304 6.304 7.589 7.589
20×20×2 elements 3.406 6.296 6.296 7.352 7.352
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and Atashipour (2011b); Zuo, Yang, Chen, Xie and Zhang (2014)] and CPT so-
lutions [Thai, Park and Choi (2013)] in Table 4. Obviously, the solutions given
by the proposed DPH20 element are in excellent agreement with the HSDT so-
lutions [Thai, Park and Choi (2013); Hosseini-Hashemi, Fadaee and Atashipour
(2011a); Matsunaga (2008)] and FSDT solutions [Hosseini-Hashemi, Fadaee and
Atashipour (2011b); Zuo, Yang, Chen, Xie and Zhang (2014)]. The results also
indicate that the CPT over-predicts the natural frequency of FG plates, especially
for the thick plate at higher modes of vibration. Moreover, it is found that the non-
dimensional frequency parameter decreases as the gradient index increases. This
is because larger gradient index leads to decrease of stiffness. The mode shapes of
simply-supported Al/Al2O3 square FG plates with a/h = 5 and 10 are depicted in
Figs. 14 and 15, respectively.
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In Table 5, the non-dimensional fundamental frequency parameters ω =ω/h
√

ρm/Em

of Al/ZrO2 rectangular FG plates with different boundary conditions are presented.
There are five different sets of boundary conditions, namely, SSSS (simply support-
ed at all edges), SCSC (clamped at x = 0,a and simply supported at y = 0,b), SCSF
(clamped at x = 0, simply supported at y = 0,b and free at x = a), SSSC (clamped



20 Copyright © 2016 Tech Science Press CMES, vol.112, no.1, pp.1-32, 2016

Table
4:T

he
non-dim

ensionalfrequency
param

eters
ω

n
=

ω
n /h √

ρ
c /E

c
ofsim

ply-supported
A

l/A
l2O

3
square

FG
plates.

a
/h

M
ode

no.(m
,n)

M
ethod

p
0

0.5
1

4
10

5

(1,1)

H
osseini-H

ashem
ietal.(2011a)

0.2113
0.1807

0.1631
0.1378

0.1301
T

haietal.(2013)
0.2113

0.1807
0.1631

0.1378
0.1301

M
atsunaga

(2008)
0.2121

0.1819
0.1640

0.1383
0.1306

H
osseini-H

ashem
ietal.(2011b)

0.2112
0.1805

0.1631
0.1397

0.1324
Z

uo
etal.(2014)

0.2112
0.1802

0.1625
0.1384

0.1315
C

PT
0.2314

0.1959
0.1762

0.1524
0.1467

present
0.2123

0.1818
0.1640

0.1383
0.1307

(1,2)

H
osseini-H

ashem
ietal.(2011a)

0.4623
0.3989

0.3607
0.2980

0.2771
T

haietal.(2013)
0.4623

0.3989
0.3607

0.2980
0.2771

M
atsunaga

(2008)
0.4658

0.4040
0.3644

0.3000
0.2790

H
osseini-H

ashem
ietal.(2011b)

0.4618
0.3978

0.3604
0.3049

0.2856
Z

uo
etal.(2014)

0.4618
0.3986

0.3625
0.3107

0.2865
C

PT
0.5535

0.4681
0.4198

0.3603
0.3481

present
0.4665

0.4033
0.3647

0.3002
0.2796

(2,2)

H
osseini-H

ashem
ietal.(2011a)

0.6688
0.5803

0.5254
0.4284

0.3948
T

haietal.(2013)
0.6688

0.5803
0.5254

0.4284
0.3948

M
atsunaga

(2008)
0.6753

0.5891
0.5444

0.4362
0.3981

H
osseini-H

ashem
ietal.(2011b)

0.6676
0.5779

0.5245
0.4405

0.4097
Z

uo
etal.(2014)

0.6676
0.5779

0.5248
0.4401

0.4090
C

PT
0.8504

0.7184
0.6425

0.5478
0.5306

present
0.6767

0.5885
0.5333

0.4329
0.3994



Functionally Graded Materials and Structures 21

10

(1
,1

)

H
os

se
in

i-
H

as
he

m
ie

ta
l.

(2
01

1a
)

0.
05

77
0.

04
90

0.
04

42
0.

03
81

0.
03

64
T

ha
ie

ta
l.

(2
01

3)
0.

05
77

0.
04

90
0.

04
42

0.
03

81
0.

03
64

M
at

su
na

ga
(2

00
8)

0.
05

78
0.

04
92

0.
04

43
0.

03
81

0.
03

64
H

os
se

in
i-

H
as

he
m

ie
ta

l.
(2

01
1b

)
0.

05
77

0.
04

90
0.

04
42

0.
03

82
0.

03
66

Z
uo

et
al

.(
20

14
)

0.
05

77
0.

04
91

0.
04

43
0.

03
84

0.
03

67
C

PT
0.

05
92

0.
05

02
0.

04
52

0.
03

92
0.

03
77

pr
es

en
t

0.
05

79
0.

04
93

0.
04

43
0.

03
83

0.
03

65

(1
,2

)

H
os

se
in

i-
H

as
he

m
ie

ta
l.

(2
01

1a
)

0.
13

77
0.

11
74

0.
10

59
0.

09
03

0.
08

56
T

ha
ie

ta
l.

(2
01

3)
0.

13
77

0.
11

74
0.

10
59

0.
09

03
0.

08
56

M
at

su
na

ga
(2

00
8)

0.
13

81
0.

11
80

0.
10

63
0.

09
04

0.
08

59
H

os
se

in
i-

H
as

he
m

ie
ta

l.
(2

01
1b

)
0.

13
76

0.
11

73
0.

10
59

0.
09

11
0.

08
67

Z
uo

et
al

.(
20

14
)

0.
13

76
0.

11
71

0.
10

55
0.

09
03

0.
08

64
C

PT
0.

14
64

0.
12

39
0.

11
15

0.
09

66
0.

09
30

pr
es

en
t

0.
13

90
0.

11
87

0.
10

67
0.

09
14

0.
08

69

(2
,2

)

H
os

se
in

i-
H

as
he

m
ie

ta
l.

(2
01

1a
)

0.
21

13
0.

18
07

0.
16

31
0.

13
78

0.
13

01
T

ha
ie

ta
l.

(2
01

3)
0.

21
13

0.
18

07
0.

16
31

0.
13

78
0.

13
01

M
at

su
na

ga
(2

00
8)

0.
21

21
0.

18
19

0.
16

40
0.

13
83

0.
13

06
H

os
se

in
i-

H
as

he
m

ie
ta

l.
(2

01
1b

)
0.

21
12

0.
18

05
0.

16
31

0.
13

97
0.

13
24

Z
uo

et
al

.(
20

14
)

0.
21

12
0.

18
08

0.
16

38
0.

14
05

0.
13

27
C

PT
0.

23
14

0.
19

59
0.

17
62

0.
15

24
0.

14
67

pr
es

en
t

0.
21

41
0.

18
32

0.
16

48
0.

14
04

0.
13

31

20
(1

,1
)

H
os

se
in

i-
H

as
he

m
ie

ta
l.

(2
01

1a
)

0.
01

48
0.

01
25

0.
01

13
0.

00
98

0.
00

94
T

ha
ie

ta
l.

(2
01

3)
0.

01
48

0.
01

25
0.

01
13

0.
00

98
0.

00
94

H
os

se
in

i-
H

as
he

m
ie

ta
l.

(2
01

1b
)

0.
01

48
0.

01
25

0.
01

13
0.

00
98

0.
00

94
Z

uo
et

al
.(

20
14

)
0.

01
48

0.
01

26
0.

01
14

0.
00

99
0.

00
95

C
PT

0.
01

49
0.

01
26

0.
01

14
0.

00
99

0.
00

95
pr

es
en

t
0.

01
48

0.
01

25
0.

01
13

0.
00

98
0.

00
94



22 Copyright © 2016 Tech Science Press CMES, vol.112, no.1, pp.1-32, 2016

   

(a) 1st mode              (b) 2nd mode              (c) 3rd mode 

   

(d) 4th mode              (e) 5th mode              (f) 6th mode 

Figure 16: First six mode shapes of a SSSS Al/ZrO2 square FG plates with a/h = 10 and p=1. 

   

(a) 1st mode              (b) 2nd mode              (c) 3rd mode 

   

(d) 4th mode              (e) 5th mode              (f) 6th mode 

Figure 17: First six mode shapes of a SCSC Al/ZrO2 square FG plates with a/h = 10 and p=1. 
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(a) 1st mode              (b) 2nd mode              (c) 3rd mode 

   

(d) 4th mode              (e) 5th mode              (f) 6th mode 

Figure 18: First six mode shapes of a SCSF Al/ZrO2 square FG plates with a/h = 10 and p=1. 

3.2.2 Modal analysis of functionally graded shells 

In this subsection, a clamped FG cylindrical shell is studied with geometric parameters a/h = 

10, a/R = 0.1, a = b and with different gradient indexes from 0 to ∞. The constituents of the 

FG shell considered in this example are Si3N4 and SUS304, whose material properties are 

given in Table 1. The non-dimensional frequency parameter adopted for comparison is 

/n n m ma h D   2
 in which 

3 2/12(1 )m m mD E h v  . We solve these problems using a 

uniform 20×20×1 mesh with DPH20 elements. The first four non-dimensional frequency 

parameters are presented in Table 6 along with HSDT solutions [Neves, Ferreira, Carrera, 

Cinefra, Roque, Jorge and Soares (2013); Pradyumna and Bandyopadhyay (2008); Yang and 

Shen (2003)]. From Table 6, it is found that the solutions given by the proposed DPH20 

element are in excellent agreement with the HSDT solutions. 

Table 6: The non-dimensional frequency parameter /n n m ma h D   2
 of clamped FG 

cylindrical shells. 

Mode Method p = 0  p = 0.2 p = 2 p = 10 p = ∞ 

1 Pradyumna et al. (2008) 72.9613  60.0269  39.1457  33.3666  32.0274  

Yang et al. (2003) 74.5180  57.4790  40.7500  35.8520  32.7610  

Neves et al. (2013)a 74.2634  60.0061  40.5259  35.1663  32.6108  

Neves et al. (2013)b 74.5821  60.3431  40.8262  35.4229  32.8593  

present 75.5192  61.7080  41.3946  35.8943  33.4029  

2 Pradyumna et al. (2008) 138.5552  113.8806  74.2915  63.2869  60.5546  

Yang et al. (2003) 144.6630  111.7170  78.8170  69.0750  63.3140  

Neves et al. (2013)
a
 141.6779  114.3788  76.9725  66.6482  61.9329  

Neves et al. (2013)b 142.4281  115.2134  77.6639  67.1883  62.4886  

present 144.9942  118.3963  79.1736  68.5137  63.8204  

3 Pradyumna et al. (2008) 138.5552  114.0266  74.3868  63.3668  60.6302  

Figure 18: First six mode shapes of a SCSF Al/ZrO2 square FG plates with a/h =
10 and p=1.

at x = 0 and simply supported at x = a,y = 0,b) and SSSF (simply supported at
x = 0,y = 0,b and free at x = a). The results obtained by the present method with
various values of aspect ratio (b/a = 1 and 2 ), span-to-thickness ratio (a/h = 5
and 10) and gradient index (p = 0, 1, 2 and 5) are compared with exact solutions
reported in [Jin, Su, Shi, Ye and Gao (2014)]. Very good agreement is observed
for all the computations, and the difference of the frequency parameters does not
exceed 0.91% for the worst case. The first six 3D mode shapes of SSSS, SCSC and
SCSF Al/ZrO2 square FG plates are shown in Figs. 16–18.

3.2.2 Modal analysis of functionally graded shells

In this subsection, a clamped FG cylindrical shell is studied with geometric pa-
rameters a/h = 10, a/R = 0.1, a = b and with different gradient indexes from 0
to ∞. The constituents of the FG shell considered in this example are Si3N4 and
SUS304, whose material properties are given in Table 1. The non-dimensional
frequency parameter adopted for comparison is ωn = ωna2

√
ρmh/Dm in which

Dm = Emh3/12(1−v2
m). We solve these problems using a uniform 20×20×1 mesh

with DPH20 elements. The first four non-dimensional frequency parameters are
presented in Table 6 along with HSDT solutions [Neves, Ferreira, Carrera, Cine-
fra, Roque, Jorge and Soares (2013); Pradyumna and Bandyopadhyay (2008); Yang
and Shen (2003)]. From Table 6, it is found that the solutions given by the proposed
DPH20 element are in excellent agreement with the HSDT solutions.
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Yang et al. (2003) 145.7400  112.5310  79.4070  69.6090  63.8060  

Neves et al. (2013)a 141.8485  114.5495  77.0818  66.7332  62.0082  

Neves et al. (2013)b 142.6024  115.3665  77.7541  67.2689  62.5668  

present 145.1461  118.5338  79.2588  68.5822  63.8848  

4 Pradyumna et al. (2008) 195.5366  160.6235  104.7687  89.1970  85.1788  

Yang et al. (2003) 206.9920  159.8550  112.4570  98.3860  90.3700  

Neves et al. (2013)a 199.1566  160.7355  107.9484  93.3350  86.8160  

Neves et al. (2013)b 200.3158  162.0337  108.9677  94.0923  87.6341  

present 204.4336  166.8808  111.3657  96.2167  89.6707  
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 (b) 

Figure 19: Finite element model for the FG cylindrical shell by (a) NASTRAN and (b) the 

present DPH20 elements. 
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4 Pradyumna et al. (2008) 195.5366  160.6235  104.7687  89.1970  85.1788  

Yang et al. (2003) 206.9920  159.8550  112.4570  98.3860  90.3700  

Neves et al. (2013)a 199.1566  160.7355  107.9484  93.3350  86.8160  

Neves et al. (2013)b 200.3158  162.0337  108.9677  94.0923  87.6341  

present 204.4336  166.8808  111.3657  96.2167  89.6707  
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Figure 19: Finite element model for the FG cylindrical shell by (a) NASTRAN and (b) the 

present DPH20 elements. 

We also consider FG cylindrical shells with different boundary conditions. The constituents 

of the FG shell are Si3N4 and SUS304, whose material properties are given in Table 1. The 

gradient index 2p   is used in this example. The inner radius and outer radius of the 

cylindrical shell are 60inr mm  and 70outr mm  respectively. The spans of the 

(b)
Figure 19: Finite element model for the FG cylindrical shell by (a) NASTRAN and
(b) the present DPH20 elements.

We also consider FG cylindrical shells with different boundary conditions. The
constituents of the FG shell are Si3N4 and SUS304, whose material properties are
given in Table 1. The gradient index p = 2 is used in this example. The inner
radius and outer radius of the cylindrical shell are rin = 60mm and rout = 70mm
respectively. The spans of the cylindrical shell in z direction and in θ direction are
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(a) 1 =0.0832             2 =0.1003            3 =0.2793   

 

(b) 1 =0.0835            2 =0.1011           3 =0.2813     

 

(a) 4 =0.2815            5 =0.3586            6 =0.3611    

 

(b) 4 =0.2820            5 =0.3610          6 =0.3649   

Figure 20: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CFFF FG cylindrical shell by (a) NASTRAN and (b) the present
DPH20 elements.
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(a) 1 =0.3442          2 =0.5107          3 =0.7114   

   

(b) 1 =0.3450          2 =0.5156          3 =0.7151    

   

(a) 4 =0.7860          5 =0.8221         6 =0.8540   

   

(b) 4 =0.7865          5 =0.8229          6 =0.8636  

Figure 21: First six non-dimensional frequency parameters and their corresponding mode 

shapes of a SSSS FG cylindrical shell by (a) NASTRAN and (b) the present DPH20 elements. 

 

 

Figure 21: First six non-dimensional frequency parameters and their corresponding
mode shapes of a SSSS FG cylindrical shell by (a) NASTRAN and (b) the present
DPH20 elements.
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(a) 1 =0.1732          2 =0.4113          3 =0.4229   

 

(b) 1 =0.1739          2 =0.4117          3 =0.4272   

 

(a) 4 =0.5030          5 =0.6505          6 =0.8826   

 

 (b) 4 =0.5061          5 =0.6593            6 =0.8838   

Figure 22: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CFFF FG cylindrical shell by (a) NASTRAN and (b) the present
DPH20 elements.
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Table 6: The non-dimensional frequency parameter ωn = ωna2
√

ρmh/Dm of
clamped FG cylindrical shells.

Mode Method p = 0 p = 0.2 p = 2 p = 10 p = ∞

1

Pradyumna et al. (2008) 72.9613 60.0269 39.1457 33.3666 32.0274
Yang et al. (2003) 74.5180 57.4790 40.7500 35.8520 32.7610

Neves et al. (2013)a 74.2634 60.0061 40.5259 35.1663 32.6108
Neves et al. (2013)b 74.5821 60.3431 40.8262 35.4229 32.8593

present 75.5192 61.7080 41.3946 35.8943 33.4029

2

Pradyumna et al. (2008) 138.5552 113.8806 74.2915 63.2869 60.5546
Yang et al. (2003) 144.6630 111.7170 78.8170 69.0750 63.3140

Neves et al. (2013)a 141.6779 114.3788 76.9725 66.6482 61.9329
Neves et al. (2013)b 142.4281 115.2134 77.6639 67.1883 62.4886

present 144.9942 118.3963 79.1736 68.5137 63.8204

3

Pradyumna et al. (2008) 138.5552 114.0266 74.3868 63.3668 60.6302
Yang et al. (2003) 145.7400 112.5310 79.4070 69.6090 63.8060

Neves et al. (2013)a 141.8485 114.5495 77.0818 66.7332 62.0082
Neves et al. (2013)b 142.6024 115.3665 77.7541 67.2689 62.5668

present 145.1461 118.5338 79.2588 68.5822 63.8848

4

Pradyumna et al. (2008) 195.5366 160.6235 104.7687 89.1970 85.1788
Yang et al. (2003) 206.9920 159.8550 112.4570 98.3860 90.3700

Neves et al. (2013)a 199.1566 160.7355 107.9484 93.3350 86.8160
Neves et al. (2013)b 200.3158 162.0337 108.9677 94.0923 87.6341

present 204.4336 166.8808 111.3657 96.2167 89.6707

l = 100mm and φ = π/2 respectively.

Three different boundary conditions are studied which are CFFF, SSSS and CSSF.
We solve these problems using a uniform 20×20×1 mesh with DPH20 elements,
as well as using NASTRAN. The comparison between the meshes by NASTRAN
(with 0.33 million DOFs) and the present method is shown in Fig. 19. The non-
dimensional frequency parameter used for comparison is ωn = ωna2

√
ρmh/Dm in

which Dm = Emh3/12(1− v2
m). The first six mode shapes along with the corre-

sponding non-dimensional frequency parameters are shown in Figs. 20–22. Very
good agreement is obtained for each of the different cases.

4 Conclusion

Through extensive numerical results of static and dynamic analyses of functionally-
graded plates and shells, it is demonstrated that the proposed DPH20 and DPH27
elements are entirely capable of accurately and ef?ciently predicting the static and
dynamical behaviors of FG structures in a very simple and cost-effective manner.
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Because higher-order and layer-wise plate and shell theories involve (1) postulat-
ing very complex assumptions of plate/shell kinematics in the thickness direction,
(2) defining generalized variables of displacements, strains, and stresses, and (3)
developing very complex governing equilibrium, compatibility, and constitutive
equations in terms of newly-defined generalized variables, while the currently pro-
posed DPH20 and DPH27 elements merely involve displacement DOFs at each
node, and rely only on the simple theory of solid mechanics, it is thus concluded
by the authors that the development of higher-order or layer-wise theories are not
entirely necessary for analyses of FG structures.
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