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A Unification of the Concepts of the Variational Iteration, 
Adomian Decomposition and Picard Iteration Methods; 

and a Local Variational Iteration Method
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Abstract: This paper compares the variational iteration method (VIM), the Ado-
mian decomposition method (ADM) and the Picard iteration method (PIM) for 
solving a system of first o rder n onlinear o rdinary d ifferential e quations (ODEs). 
A unification of the concepts underlying these three methods is attempted by con-
sidering a very general iterative algorithm for VIM. It is found that all the three 
methods can be regarded as special cases of using a very general matrix of La-
grange multipliers in the iterative algorithm of VIM. The global variational itera-
tion method is briefly reviewed, and further recast into a Local VIM, which is much 
more convenient and capable of predicting long term complex dynamic responses 
of nonlinear systems even if they are chaotic.
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1 Introduction

The rapidly increasing interest of researchers in nonlinear problems has prompted 
a variety of analytical, semi-analytical and numerical methods. Among them, the 
variational iteration method (VIM) [Inokuti, Sekine and Mura (1978); He (1999)], 
the Adomian decomposition method (ADM) [Adomian (1988)] and the Picard iter-
ation method (PIM) [Fukushimam (1997)] (often combined with other approxima-
tion techniques, such as the modified Chebyshev-Picard iteration (MCPI) method 
[Woollands, Younes and Junkins (2015)]) have received wide attention. Unlike 
in classical perturbation methods, these three methods do not depend on the exis-
tence of a “small parameter” in the nonlinear problem, and they are not limited to 
cases of weak nonlinearities. The applications of the three methods are relatively 
straightforward in that there is no need to determine the so-called small parameter
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or make linearization transformations to the original equation. Further, the results
obtained with these methods are valid for the whole parameter domain. Thus they
are regularly utilized in areas where the traditional techniques are not applicable.
In literature, some comparisons have been made between them on the efficiency
and scope of application. The advantages and disadvantages of each method are
illustrated in papers [He (1999); Rach (1987)].

The VIM is capable of solving a large class of nonlinear problems, including both
the systems expressed as either ordinary or partial differential equations. It is an
analytical asymptotic approach [He (2006)], where the initial guess function is cor-
rected step by step, and finally reaches the true solution. The correctional iterative
formula of VIM is similar to that of the Newton-Raphson method, except that the
former method is for functions while the latter is for fixed point of nonlinear alge-
braic equations (NAEs). From the view of Inokuti, Sekine and Mura (1978), we
can see that the VIM is somehow an extension of the Newton method to the prob-
lem in function space. And the extension can also be made to problems expressed
in algebraic, differential, integral, or finite-difference equations, or the combination
of them. This idea is illustrated in detail and referred as the general use of Lagrange
multipliers in Inokuti, Sekine and Mura (1978). However, for the case of general
nonlinear terms, the derivation of exact generalized Lagrange multiplier is normal-
ly impossible. Considering that, the VIM of He [He (1999)] omits the nonlinearity
in the adjoint equation satisfied by the generalized Lagrange multiplier. Other than
that, the VIM of He [He (1999)] incorporates an artificial parameter in the approx-
imation of the periodic solution. By eliminating the secular terms including the
parameter, the accuracy of the result can be improved significantly. But this trick
does not always work. As is illustrated in the section 3, it seems that only in some
special cases can the approach show its efficiency.

The ADM is a decomposition method. It treats the solution as the sum of a se-
ries of functions, and decomposes the nonlinear terms into the rearranged Taylor
series expansion in terms of Adomian polynomials. With an initial guess given,
the solution is corrected in each iteration step by adding an integral of an Adomian
polynomial. As the iteration proceeds, the nonlinear equation is solved gradual-
ly. This method provides great convenience for the calculation of the correctional
function, but the construction of Adomian polynomials is somewhat complex, es-
pecially for the higher order terms. The conditions for convergence of this method
have been discussed in literature. It should be noted that the method is just locally
convergent because it is based on a Taylor series expansion. Some modifications
were made to it by recursively applying it over divided time segments, so that the
global convergence can be achieved [Ghosh, Roy and Roy (2007)].

Compared to VIM and ADM, Picard’s method takes a very simple form. How-
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ever, its application is very limited, since it needs to integrate the nonlinear terms
in each iteration step, which could be very difficult to implement. Compared to
Adomian’s method, the Picard iteration lacks the ease of computation and also the
ability to solve a wide class of equations. But by combining with other compu-
tational techniques, it is still possible to make advances to PIM. For example, the
MCPI method [Woolland, Younes and Junkins (2015)] combines the Chebyshev
polynomials with the Picard’s method and is applied to the two body gravitational
integration problem. It is shown that the integration process of Picard’s method
becomes very simple and the method achieves high accuracy and efficiency.

Despite all the detailed differences in VIM, ADM and PIM, it is the objective of this
paper to show that they are all not unrelated. As will be illustrated in section 2, the
iteration formula of the Picard’s method and the ADM can be completely deduced
from the iterative formula of the VIM. This indicates that a common mathematical
principle, which is the general use of Lagrange multipliers, underlies these method-
s, and a unification of the concepts underlying the three methods can be elucidated.
It will help to explain the similarity of the three methods, and how we can combine
the ideas in VIM, ADM and PIM to achieve possibly better analytical asymptotic
methods.

After that, a local variational iteration method (LVIM) is proposed in section 3.
Firstly, the differential transform (DT) method [Jang, Chen and Liy (2000)] is in-
troduced to help identify the generalized Lagrange multipliers. Then a piecewise
solution is obtained by dividing the whole time domain into a finite number of small
segments. The forcing term is approximated by a truncated Taylor series expansion
in the LVIM, so that the calculation of integrals can be simplified. The advantages
of the LVIM are as follows,

(1) The initial guess function can take a very simple form. Unlike the conventional
VIM, there is no need to pay much attention to the construction of an initial
guess. A linear function could be good enough for the LVIM, as long as it
meets the boundary condition of the problem.

(2) Instead of restricting the nonlinear term from variation artificially, the nonlinear
term can be included in the derivation of generalized Lagrange multipliers in
the LVIM. So the correctional formula is more effective.

(3) The introduction of DT method provides the approximation of generalized La-
grange multipliers in Taylor series expansion. It makes the derivation of gen-
eralized Lagrange multipliers much simpler, and also provides convenience to
the integration of the correctional formula.
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(4) The LVIM has applicability to long term predictions of many kinds of complex
nonlinear problems, including chaotic motions.

(5) The accuracy and computational speed of LVIM is relatively very high, even
compared to the numerical methods such as RK4.

To convey the ideas in a simple and clear way, a system of first order differential
equations is taken for illustration in this paper. However, the conclusions made in
the following sections are also applicable to the higher order differential equations.
It is well known that a higher order differential equation can always be transformed
into a system of first order differential equations. For example, the equation

dnx
dτn = f (

dnx
dτn , . . .

dx
dτ

,x,τ)

can be rewritten as a system of equations like

dx0

dτ
= x1,

dx1

dτ
= x2, . . . ,

dxn−1

dτ
= f (

dxn−1

dτ
, . . .x1,x0,τ)

by introducing the variables x0, . . .xn−1. Therefore, the nonlinear ordinary differ-
ential equations can be expressed in a general form as

dx
dτ

= F(x,τ),

where x = (x1,x2, . . .)
T , F = ( f1, f2, . . .)

T , τ ∈ [t0, t],

Where, here onwards, a bold symbol indicates a vector or a matrix, and for brevity,
the differential operator d

dτ
is denoted as L in the following sections.

In the preceding equation, F(x,τ) is a nonlinear function of the state vector x and
the independent variable τ .

2 PIM, ADM, and VIM

The three methods, i.e. VIM, ADM and PIM, were proposed independently by
different researchers at different times. ADM and PIM have been well known for
a long time, while VIM has a history of no more than four decades. Although
they appear to be unrelated to one another at first, a close examination leads to a
unification of the three methods with the perspective provided by the concepts of
VIM. In the following, the PIM and the ADM are briefly introduced. Then the
VIM is described and some transformations are made to elucidate the relationships
between all the three methods.
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2.1 PIM

Consider an initial value problem (IVP) governed by a system of first-order differ-
ential equations

Lx = F(x,τ),τ ∈ [t0, t],x(t0) = [x1(t0),x2(t0), . . .]T . (1)

It is equal to the associated integral equations

x(t) = x(t0)+
∫ t

t0
F[τ,x(τ)]dτ, τ ∈ [t0, t].

The PIM solves this problem in a recursive way by constructing a series of approx-
imating functions. The process works as

(1) Give an initial guess of the solution x0(τ) that satisfies the initial condition
x0(t0) = x(t0).

(2) Substitute it into the recursive formula that holds

xn+1(t) = x(t0)+
∫ t

t0
F[τ,xn(τ)]dτ, (2)

for n≥ 0.

2.2 ADM

For convenience, we rewrite the dynamical system in the preceding IVP as Lx =
F(x,τ), where L stands for the first-order derivative. Let L−1 be the inverse opera-
tor of L, namely the definite integrator. The equation can be recast as

x = x(t0)+L−1F(x,τ), (3)

with x(t0) being the initial condition.

The innovative part of ADM is that it approximates both the solution and the non-
linear part as sequences of functions and introduces the Adomian polynomials so
that the original problem will be solved progressively.

x =
∞

∑
n=0

x̄n, F(x,τ) =
∞

∑
n=0

An(x̄0, x̄1, . . . x̄n).

This enables us to rewritte the Eq. (3) as

∞

∑
n=0

x̄n = x(t0)+L−1
∞

∑
n=0

An(x̄0, x̄1, . . . x̄n).
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The solution can thus be derived recursively in the following way

x̄0 = x(t0) (4)

x̄n+1 = L−1An. (5)

The Adomian polynomials An are generated by simply rearranging the Taylor series
expansion of F(x,τ) about x̄0 = x(t0). They are expressed as

A0 = F(x̄0), A1 = F′(x̄0)x̄1, A2 = F′(x̄0)x̄2 +F′′(x̄0)
x̄2

1
2!
, . . . ,

where

F′(x̄0) =
∂F
∂ x̄0

=


∂F1

∂ x̄1,0

∂F1

∂ x̄2,0
· · ·

∂F2

∂ x̄1,0

∂F2

∂ x̄2,0
...

. . .

 ,

and

F′′(x̄0) =
∂ 2F
∂ x̄2

0
=



∂ 2F1

∂ x̄1,0∂ x̄1,0

∂ 2F1

∂ x̄1,0∂ x̄2,0
· · · ∂ 2F1

∂ x̄2,0∂ x̄1,0

∂ 2F1

∂ x̄2,0∂ x̄2,0
· · ·

...
. . .

∂ 2F2

∂ x̄1,0∂ x̄1,0

∂ 2F2

∂ x̄1,0∂ x̄2,0
· · · ∂ 2F2

∂ x̄2,0∂ x̄1,0

∂ 2F2

∂ x̄2,0∂ x̄2,0
...

. . .


.

2.3 VIM

Consider the following general nonlinear system

Lx = F(x,τ),τ ∈ [t0, t] (6)

where L is the first order differential operator and F is a nonlinear operator. The
solution of this system can be approximated with an initial approximation x0(t) and
the correctional formula as

xn+1(t) = xn(t)+
∫ t

t0
λλλ (τ){Lxn(τ)−F[xn(τ),τ]}dτ,
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where λλλ (τ) is a matrix of Lagrange multipliers which are yet to be determined.
Suppose ΠΠΠ[x(τ),λλλ (τ)] is a vector function of x(τ) and λλλ (τ), where t0 ≤ τ ≤ t.

ΠΠΠ[x(t),λλλ (t)] = x(τ)|
τ=t +

∫ t

t0
λλλ (τ){Lx(τ)−F[x(τ),τ]}dτ.

Let x̂(τ) be the exact solution of Lx(τ) = F[x(τ),τ]. Naturally, it satisfies the
expression

ΠΠΠ[x̂(t),λλλ (t)] = x̂(τ)|
τ=t +

∫ t

t0
λλλ (τ){Lx̂(τ)−F[x̂(τ),τ]}dτ = x̂(τ)|

τ=t .

Now we want to make the function ΠΠΠ[x(t),λλλ (t)] stationary about x at x(t) = x̂(t).
Firstly, the variation of ΠΠΠ[x(t),λλλ (t)] is derived as

δΠΠΠ[x(t),λλλ (t)] = δx(τ)|
τ=t +δ

∫ t

t0
λλλ (τ){Lx(τ)−F[x(τ),τ]}dτ

= δx(τ)|
τ=t +

∫ t

t0
δλλλ (τ){Lx(τ)−F[x(τ),τ]}dτ

+
∫ t

t0
λλλ (τ)δ{Lx(τ)−F[x(τ),τ]}dτ

=
∫ t

t0
δλλλ (τ){Lx(τ)−F[x(τ),τ]}dτ + δx(τ)|

τ=t + λλλ (τ)δx(τ)|τ=t
τ=t0

−
∫ t

t0
[Lλ (τ)+λλλ (τ)

∂F(x,τ)
∂x

]δx(τ)dτ−
∫ t

t0
λλλ (τ)

∂F(x,τ)
∂τ

δτdτ

If F is not an explicit function of τ , the term [∂F(x,τ)/∂τ]δτ can be omitted in the
preceding formula.

Then we collect the terms including δx(τ)|
τ=t and δx(τ),

δx(τ)|
τ=t + λλλ (τ)δx(τ)|

τ=t ,
∫ t

t0
[Lλ (τ)+λλλ (τ)

∂F(x,τ)
∂x

]δx(τ)dτ.

Note that the boundary value of x(τ) at τ = t0 is prescribed, that is to say δx(τ)|
τ=t0 =

0. Thus the stationary condition for ΠΠΠ[x(τ),λλλ (τ)] is obtained as
δx(τ)|

τ=t : diag[1,1, . . .]+ λλλ (τ)|
τ=t = 0

δx(τ) : Lλ (τ)+λλλ (τ)
∂F(x,τ)

∂x
= 0

δλλλ (τ) : Lx(τ) = F[x(τ),τ]

.

Noting that the exact solution x̂ is unknown, therefore the truly optimal λλλ (τ) is not
available herein. As an alternative, λλλ (τ) is approximated by replacing x̂ with xn. If
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xn is a neighbored function of x̂, i.e. x̂−xn = δ x̂, the error caused will not exceed
O2(δ x̂).
In the VIM of He (1999), sometimes the nonlinear term is considered as restricted
from variation, in order to simplify the calculation of λλλ . As an asymptotic method
for solving nonlinear problems, VIM provides plenty of freedom to the user. It does
not restrict the selection of initial guess functions and even allows the existence
of unknown parameters in it. Further, depending on the selection of a restricted
variation, the matrix of generalized Lagrange multipliers λλλ can be determined in
various ways. The less restricted the variational terms are, the more accurate will
the Lagrange multipliers be.

3 VIM and its relationship to PIM and ADM

Instead of PIM, if VIM of He [He (1999)] is utilized to solve the IVP governed by
Eq. (1), we will get the corresponding correctional formula with λλλ

xn+1(t) = xn(t)+
∫ t

t0
λλλ [Lxn− F̃(xn,τ)]dτ = 0,

where F̃(xn,τ) is considered as being restricted from variation. The matrix of La-
grange multipliers λλλ are determined from the following restricted stationary con-
ditions:{

λλλ (τ)|τ=t +diag[1,1, . . .] = 0
Lλ (τ) = 0

The Lagrange multipliers, therefore, can be identified as λλλ (τ) = diag[−1,−1, . . .].
As a result, we obtain the following iteration formula

xn+1(t) = xn(t)−
∫ t

t0
{Lxn(τ)−F[xn(τ),τ]}dτ = xn(t0)+

∫ t

t0
F[xn(τ),τ]dτ,

Noting that xn(t0) is equal to the initial value x(t0), it is exactly the Picard iteration.

In the paper of He (1999), a first-order differential equation is considered and the
ADM is proved to be a specific version of VIM. This work is reviewed in the
following.

Consider the equation Lx+Rx+Nx = g(τ), in which L is a first-order differential
operator, while R is a linear operator. For this equation, the correctional formula of
VIM is

xn+1 = xn +L−1{λ [Lxn +Rxn +Nxn−g(τ)]}.



A Unification of the Concepts of the Variational Iteration Methods 575

Considering Rxn +Nxn as restricted from variation, λ can be easily obtained as −1
in this case. Suppose x0 = x̄0 = x(t0)+ L−1g(τ), substituting it into the formula
gives

x1 = x̄0−L−1{Lx̄(t0)+Rx̄0 +Nx̄0}.

Note that L−1Lx̄(t0) = 0. Therefore we have

x̄1 =−L−1Rx̄0−L−1Nx̄0.

Similarly the iteration process gives

x2 = (x̄0 + x̄1)−L−1{L(x̄(t0)+ x̄1)+R(x̄0 + x̄1)+N(x̄0 + x̄1)}= x̄0 + x̄1 + x̄2.

If x̄1 is regarded as relatively small, expanding the nonlinear functional about x̄0 and
ignoring the higher-level small functions leads to N(x̄0 + x̄1) = N(x̄0)+ x̄1N′(x̄0).
Then we have

x̄2 =−L−1{L(x̄(t0)+ x̄1)+R(x̄0 + x̄1)+N(x̄0 + x̄1)}
=−L−1{Lx̄1 +R(x̄0 + x̄1)+N(x̄0)+ x̄1N′(x̄0)}
=−L−1{Rx̄1 + x̄1N′(x̄0)}

Further, in the nth step of iteration, regard x̄n−1 as the relatively small function and
omit the terms O(x̄m1x̄m2 . . . x̄mk), where m1+m2+ . . .+mk ≥ n. It leads to the
correctional formula of ADM.

It is worth to note that the above comparison can also be made in the case of multi-
dimensional system. Herein, a general form of the nonlinear ordinary differential
equations is taken for illustration.

Lx = F(x,τ),

The ADM gives an iteration formula as

x̄n+1 = L−1An, xn =
n

∑
i=0

x̄i,

while the correctional formula of VIM is

xn+1(t) = xn(t)+
∫ t

t0
λλλ [Lxn−F(xn, t)]dτ.

Set λλλ as diag[−1,−1, . . .] and follow the manipulations we made to the one dimen-
sional case. Suppose x0 = x̄0, from the correctional formula of VIM we have

x1 = x̄0−L−1Lx̄0 +L−1F(x̄0,τ) = x̄0 +L−1A0 = x̄0 + x̄1.
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Accordingly,

x2 = x̄0 + x̄1−L−1L(x̄0 + x̄1)+L−1F[(x̄0 + x̄1),τ].

Regard x̄1 as a relatively small amplitude vector of functions. The nonlinear term
can be rewritten as

F[(x̄0 + x̄1),τ] = F(x̄0)+F′(x̄0)x̄1 +O(x̄2
1).

Omitting the small terms O(x̄2
1), it leads to

x2 = x̄0 +L−1[F(x̄0)+F′(x̄0)x̄1] = x̄0 +L−1(A0 +A1) = x̄0 + x̄1 + x̄2.

As the iteration goes on, we have

xn = x̄0 +L−1[F(x̄0)+F′(x̄0)(x̄1 + x̄2 + . . . x̄n−1)

+
1
2!

F′′(x̄0)(x̄1 + x̄2 + . . . x̄n−1)
2 + . . .]

= x̄0 + x̄1 + x̄2 + . . .+ x̄n +O(x̄m1x̄m2 . . . x̄mk),

which becomes the ADM correctional formula by omitting the small terms O(x̄m1
x̄m2 . . . x̄mk).

From the statements above, it is clear that the ADM and PIM can both be regarded
as variants of VIM. Although they are treated as different methods in literature,
and were developed into various forms such as modified ADM and MCPI method,
a common principle, namely the general use of Lagrange multipliers guides all of
them.

4 Local variational iteration method

4.1 Limitations of Global VIM

It has been shown that the VIM is effective in approximating the periodic motion-
s of nonlinear systems, especially the limit cycle oscillation. To verify that, an
unforced Duffing equation is solved with VIM herein. The governing equation is{

ẋ1− x2 = 0
ẋ2− cx2 + k1x1 + k2x3

1 = 0
, (7)

where c = 0, k1 = 1, k2 = 1.

In the approach proposed by He (1999), the Lagrange multiplier λ is derived with
the nonlinear term being restricted from variation, and it is shown to be tenable in
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the unforced case with the initial conditions x1(t0) = A, x2(t0) = 0 and initial guess
x1(t) = Acosωt. The correctional formula is(

x1
x2

)
n+1

=

(
x1
x2

)
n
+
∫ t

t0

[
λ11 λ12
λ21 λ22

](
ẋ1− x2

ẋ2− cx2 + k1x1 + k2x̃3
1

)
n

dτ,

With the nonlinear term x̃3
1 restricted from variation, the matrix of Lagrange multi-

pliers satisfies the condition:

δx(τ)|
τ=t : λλλ (τ)|

τ=t =

[
−1 0
0 −1

]
;

δx(τ) :−λ̇λλ (τ)+λλλ (τ)

[
0 −1
k1 −c

]
= 0.

Therefore, the matrix of Lagrange multipliers λλλ (τ) is identified as

λλλ (τ) =

[
−cos(τ− t) sin(τ− t)
−sin(τ− t) −cos(τ− t)

]
.

The solution corrected only once with VIM can already give a result comparable
with that of the RK4 method. The example of an unforced Duffing equation shows
that the VIM could be very efficient in approximating the periodic solution of non-
linear systems by eliminating the secular term appearing in the correctional formu-
la. The numerical results are plotted in Fig. 1 with the initial condition x(0) = 1,
ẋ(0) = 0 and initial guess x1(t) = cosωt. By substituting the initial guess into the
correctional formula of VIM, we can obtain a corrected solution, of which the sec-
ular term is (2− 17ω2 + 9ω4)cos(t).To eliminate the secular term, the frequency
is determined to be ω = 1.32774.

However, in a more general case with x(t0) =
(
A B

)T , the performance of VIM is
far inferior to the preceding one. The initial guess is selected as x(t) = Acosωt +
(B/ω)sinωt. Let A = 1 and B = 1, the variational iteration formula gives the
corrected solution, in which the terms of sin t and cos t are

−4−17ω2 +9ω4

1−10ω2 +9ω4 cos t,
−2−19ω2 +9ω4

1−10ω2 +9ω4 sin t.

It is easily identified that the coefficients of sin t and cos t can not both be equal
to zero. Here only the term of cos t is eliminated, leading to the approximation
ω ≈ 1.4493. Substituting it into the corrected solution, we have

x1(t) = 1.00598cos(1.4493t)−0.00597962cos(4.34791t)−0.111705sin(t)
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Figure 1: Comparison of VIM and RK4. solid line: RK4. Dash line: VIM

+0.694112sin(1.4493t)+0.0243163sin(4.34791t).

This result is compared with that of RK4 in Fig. 2.

It is believed that if both terms of sin t and cos t vanish, the corrected solution will
be more accurate. But with just one parameter ω in the initial guess, this will
be an impossible mission. Thus we tried to bring in two parameters ω1, ω2 in
the initial guess, which takes the form x1(t) = Acosω1t +(B/ω2)sinω2t. If the
resulted corrected solution can be obtained analytically, the accuracy will be much
improved. But along with it, the calculation of variational iteration formula will
become much more complex. We found that even with the help of Mathematica,
this job is still too burdensome to be accomplished.

Moreover, it is also indicated that a carefully selected initial guess is important to
ensure the convergence of this method. If the approximate function takes the form
as x1(t) = A+Bt rather than x1(t) = Acosωt, the result given by VIM will be more
and more divergent from the true solution with the iteration. It is illustrated in the
case A = 1 and B = 1. With VIM, the initial guess x1,0(t) = 1+ t is corrected for 2
times and the results are given as follows.

x1,1(t) = 5+3t−3t2− t3−4cos t−2sin t

x2,2(t) = 393349+252477t . . .+ t9 +

(
−7083587

18
+

999t
4

. . .− 3t7

7

)
cos(t)

+

(
1666

9
+6t−50t2−6t3

)
cos(2t)
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− 1
2

cos(3t)+
(
−505575

2
+378t . . .+

6t7

7

)
sin t

+

(
32+

424
3

t−8t3
)

sin(2t)− 11
4

sin(3t).

The solution x1,1(t) is compared with that of RK4 in Fig. 3.

Figure 2: Solid line: RK4. Dash line: VIM

Figure 3: Solid line: RK4. Dotted line: VIM

The above numerical examples and analysis show that VIM is fastidious to the ini-
tial condition of the problem, and also too sensitive to the initial guess function,
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which is analogous to the Newton’s iteration method for solving nonlinear alge-
braic equations (NAEs). This method also fails to predict the long term responses
of some complex nonlinear phenomenon such as chaos or quasi periodic motion,
because these patterns of motion are non-periodic and can hardly be approximated
by any analytical functions.

4.2 Methodology of LVIM

As is shown in Atluri (2005) and Dong, Alotaibi, Mohiuddine and Atluri (2014), lo-
cal approximations are far more effective in solving initial value and boundary val-
ue problems. We use these ideas in developing a local variational iteration method.

To remedy the drawbacks shown above, we propose to further improve the VIM.
Here is the primary idea. Firstly, the nonlinear term should be kept in the derivation
of Lagrange multipliers so that a better correction can be obtained for arbitrary
approximation. And then the entire time domain is divided into small intervals and
the LVIM is applied repeatedly in each time interval ti−1 ≤ τ ≤ ti. In each interval
ti−1 ≤ τ ≤ ti, we approximate locally using an arbitrary function x(τ) = A+Bτ

for instance; then the corrected solution will be a function of A and B, i.e. the
initial condition of each interval, thus the solution in the entire time domain can be
obtained by the repetition of A and B step by step.

With this in mind, the IVP of the unforced Duffing equation is solved with the
initial condition as x1(t0) = 1, x2(t0) = 1. The correctional formula is(

x1
x2

)
n+1

=

(
x1
x2

)
n
+
∫ t

ti−1

[
λ11 λ12
λ21 λ22

](
ẋ1− x2

ẋ2− cx2 + k1x1 + k2x3

)
n

dτ,

where ti−1 ≤ t ≤ ti. The stationary condition is

δx(τ)|
τ=t : λλλ (τ)|

τ=t =

[
−1 0
0 −1

]
;

δx(τ) :−λ̇λλ (τ)+λλλ (τ)

[
0 −1

k1 +3k2x2
1 −c

]
= 0, ti−1 ≤ τ ≤ ti and ti−1 ≤ t ≤ ti.

Instead of neglecting the nonlinear term, we kept it in the derivation of λλλ . This
makes the differential equations more difficult to be solved analytically. But an
exact analytical solution is not necessary here. The differential transform (DT)
method is introduced to obtain the approximated λλλ in the form of power series.
With the nonlinear term included, the approximated λλλ is actually more precise
than that in the VIM of He (1999).

Supposing that the initial guess of x1 takes the form as x1,0(τ) = Bτ +A, an ap-
proximated λλλ can be obtained using the DT method. Herein only the first four DT
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terms of λλλ (τ) is kept.

λ11 =−1+
1
2
(−t + τ)2

(
k1 +3(A+Bτ)2 k2

)
+

1
3
(−t + τ)3

(
6B(A+Bτ)k2−

1
2

c
(

k1 +3(A+Bτ)2 k2

))
,

λ12 =−t + τ− 1
2

c(−t + τ)2 +
1
3
(−t + τ)3

(
c2

2
+

1
2

(
−k1−3(A+Bτ)2 k2

))
,

λ21 = (−t + τ)
(
−k1−3(A+Bτ)2 k2

)
+

1
2
(−t + τ)2

(
−6B(A+Bτ)k2 + c

(
k1 +3(A+Bτ)2 k2

))
+

1
3
(−t + τ)3

(
−3B2k2 +6Bc(A+Bτ)k2

+
1
2

(
k1 +3(A+Bτ)2 k2

)(
−c2 + k1 +3(A+Bτ)2 k2

))
,

λ22 =−1+ c(−t + τ)+
1
2
(−t + τ)2

(
−c2 + k1 +3(A+Bτ)2 k2

)
+

1
3
(−t + τ)3(

− 1
2

c
(
−c2 + k1 +3(A+Bτ)2 k2

)
+

1
2

(
6B(A+Bτ)k2− c

(
k1 +3(A+Bτ)2 k2

)))
,

where ti−1 ≤ t ≤ ti and ti−1 ≤ τ ≤ ti. Using the correctional formula for one time,
we have

x1,1 = A+Bt +
1

5040
t2
(

42
(

5Bc(12+ ct (4+ ct))

+ k1

(
−5A(12+ ct (4+ ct))−
Bt (20+ ct (10+ ct))+ t2 (5A+Bt)k1

))
−6
(

35A3 (12+ ct (4+ ct))+21A2Bt (20+ ct (10+ ct))

+7AB2t2 (30+ ct (12+ ct))

+B3t3 (42+ ct (14+ ct))−4t2 (35A3 +21A2Bt +7AB2t2 +B3t3)k1

)
k2

+5t2 (126A5 +126A4Bt +84A3B2t2 +36A2B3t3 +9AB4t4 +B5t5)k2
2

)
,

where ti−1 ≤ t ≤ ti.
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In Fig. 4(a), the preceding solution is compared with the numerical results obtained
by ODE45, for which the relative and absolute accuracy are both set as 10−15. Fig.
4(b) shows the computational error of the LVIM with respect to ODE45. The time
step size is set as ∆t = 0.01 and the simulation is carried in t = [0,100]. From Fig.
4(b), it can be seen that the error of the LVIM is less than 10−3 even for t = 100.

Figure 4: Comparison of the LVIM and the ODE45.

To further inspect the performance of the LVIM in predicting complicated respons-
es, the forced Duffing equation is investigated.

ẍ+ cẋ+ k1x+ k2x3 = f cos(ωt),c = 0.15,k1 =−1,k2 = 1, f = 0.41,ω = 0.4. (8)

It is shown to be a chaotic system by RK4 and other reliable methods. Unsur-
prisingly, the VIM of He [He (1999)] fails to solve it because the solution is too
complicated to be computable. An approximation is made to the forced term of the
system. Since it is involved in the integration, a simple form of it will accelerate
the calculation. For that, the forced term is expanded into power series as well. The
stationary condition for λ is

δx(t) : 1− λ̇ (τ)|τ=t = 0,δ ẋ(t) : λ (τ)|τ=t = 0,

δx(τ) : λ̈ (τ)− cλ̇ (τ)+ k1λ (τ)+3k2x2
nλ (τ) = 0,

where ti−1 ≤ τ ≤ ti and ti−1 ≤ t ≤ ti.

Suppose the initial guess in each interval ti−1 ≤ τ ≤ ti is x0(τ) = A+Bτ . With
DT method, we can get the fourth-order approximated λ (τ, t) in terms of A and B,
which is

λ (τ, t) =−t +
1
2

c(t− τ)2 + τ +
1
6
(t− τ)3 (−c2 + k1 +3(A+Bt)2k2

)
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− 1
24

(t− τ)4 (−c3 +2ck1 +6(A+Bt)(2B+Ac+Bct)k2
)

Then substituting it into the correction formula, with the forced term being replaced
by power series, will lead to the corrected function x1(t)

x1(t) = A+Bt +
1
2
(
−Bc+ f cos(Cω)−Ak1−A3k2

)
t2

+
1
6

(
Bc2− c f cos(Cω)− f ω sin(Cω)
+(−B+Ac)k1 +A2(−3B+Ac)k2

)
t3

+
1
24

 −Bc3 + c2 f cos(Cω)− f ω2 cos(Cω)+ c f ω sin(Cω)+Ak2
1

−A
(
6B2−6ABc+A2c2 +3A f cos(Cω)

)
k2 +3A5k2

2+
k1
(
2Bc−Ac2− f cos(Cω)+4A3k2

)
 t4

+
1

120



Bc4− c3 f cos(Cω)+ c f ω2 cos(Cω)
−c2 f ω sin(Cω)+ f ω3 sin(Cω)+(B−2Ac)k2

1

+

 −6B3 +24AB2c−9A2Bc2

+A3c3 +6A(−3B+Ac) f cos(Cω)
+3A2 f ω sin(Cω)

k2

+3A4(9B−2Ac)k2
2

+k1

(
−3Bc2 +Ac3 +2c f cos(Cω)
+ f ω sin(Cω)−8A2(−3B+Ac)k2

)


t5 +O[t]6,

where ti−1 ≤ t ≤ ti. It has a compacted form with A, B, ti−1 (denoted as C in the
corrected function) as the coefficients. When applied to multiple time intervals, it
only needs to recompute A, B and t0, which correspond to the final position, velocity
and time instant of the last interval. The LVIM is very fast, precise and efficient on
solving nonlinear problems. Fig. 5 shows the chaotic motions of a forced Duffing
oscillator predicted by both LVIM and RK4 methods. The time step size of LVIM
is set as 0.2, while that of RK4 needs to be set as 0.02 in order to achieve the same
accuracy. The numerical simulation carried out with MATLB shows the LVIM is
almost 10 times faster than RK4 in this case. The computation time of the LVIM
and the RK4 are 0.013471s and 0.135445s, respectively.
Similar to the modified ADM, the variational iteration method is further improved
herein by bringing in some local approximation techniques, so as to be practical in
predicting long term motion and complex dynamical responses. The LVIM makes
the derivation of Lagrange multipliers λλλ and the calculation of the variational it-
eration formula much simpler, yet still provide reliable solution in each sub time
domain.
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Figure 5: Comparison of the LVIM and the RK4 method for the forced Duffing
oscillator. Dots: LVIM. Solid line: RK4

5 Conclusions

The Picard iteration method, the Adomian decomposition method and the varia-
tional iteration method are unified in this paper. From the view point provided by
the concept of generalized Lagrange multipliers, it is found that the three methods
are rooted in the same mathematical approach of generalized Lagrange multipli-
ers. By some simple transformations, the Picard iteration formula and Adomian
decomposition formula can be derived from the variational iteration formula.

However, the Global VIM is very laborious in practice and is unable to predict
long term responses of nonlinear systems, although it is able to provide an analyt-
ical solution. Being aware of that, we introduced a Local VIM that simplified the
derivation of the matrix of generalized Lagrange multipliers λλλ with the DT method.
By dividing the entire domain into small intervals and updating the initial condi-
tions in each sub-interval, the Local VIM method achieves very high accuracy and
very high computational speeds.
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