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Abstract: Dynamic soaring is a flight maneuver to exploit gradient wind field to
extend endurance and traveling distance. Optimal trajectories for permissible wind
conditions are generated for loitering dynamic soaring as well as for traveling pat-
terns with a small unmanned aerial vehicle. The efficient direct collection approach
based on the Runge-Kutta integrator is used to solve the optimization problem. The
fast convergence of the optimization process leads to the potential for real-time ap-
plications. Based on the results of trajectory optimizations, the general permissible
wind conditions which involve the allowable power law exponents and feasible ref-
erence wind strengths supporting dynamic soaring are proposed. Increasing the
smallest allowable wingtip clearance to trade for robustness and safety of the ve-
hicle system and improving the maximum traveling speed results in shrunken per-
missible domain of wind conditions for loitering and traveling dynamic soaring
respectively. Sensitivity analyses of vehicle model parameters show that properly
reducing the wingspan and increasing the maximum lift-to-drag ratio and the wing
loading can enlarge the permissible domain. Permissible domains for different trav-
eling directions show that the downwind dynamic soaring benefitting from the drift
is more efficient than the upwind traveling pattern in terms of permissible domain
size and net traveling speed.

Keywords: Dynamic soaring; Permissible wind conditions; Trajectory optimiza-
tion; Unmanned aerial vehicle (UAV).

1 Introduction

Long endurance flight has become a key issue and a target of research in unmanned
aerial vehicles (UAVs) [Noth (2008)]. Meanwhile, limited on-board energy capac-
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ity restricts the potential feasibility for most applications of long endurance flight
[Langelaan and Roy (2009)]. Whereas, wandering albatrosses can use a flight ma-
neuver called dynamic soaring (DS) to gain energy from horizontal wind gradient
so as to travel for a very long journey and period almost without flapping their
wings [Sachs, Traugott, Nesterova, Dell’Omo, Kummeth, Heidrich, Vyssotski, and
Bonadonna (2012)]. Rayleigh (1883) is usually accredited as the first scholar to
analyze the phenomenon of DS of albatrosses early in 1883. Since then, there has
been continuing interest in this issue from different perspectives. Some biologists
have studied the DS technique of albatrosses through observations and experiments,
which discloses required mechanism and conditions for them to be able to travel t-
housands of kilometers, even around the world [Richardson (2011); Weimerskirch,
Guionnet, Martin, Shaffer, and Costa (2000)]. Small UAVs have similar weight,
size and aerodynamic performance to the albatrosses [Deittert, Richards, Toomer,
and Pipe (2009a)]; in addition, the wind gradients are persistently distributed near a
surface (ground or water), over inversion layers, on the limits of the jet stream, over
geographic obstacles [Bencatel, Sousa, and Girard (2013)], and even in hurricanes
[Grenestedt, Montella, and Spletzer (2012)]. The engineering scientists therefor
expect that UAVs can utilize DS to perform energy-gain flight in order to expand
the mission range and duration [McGowan, Cox, Lazos, Waszak, Raney, Siochi,
and Pao (2003)].

As the computational algorithms developed rapidly, there has been considerable
research into offline optimization of DS trajectories, which offer more accurate nu-
merical solution of minimum wind conditions required for DS. Sachs and Casta
(2006) have set the fundamental problem of determining the minimum linear gra-
dient required for DS with a high-performance sailplane. Based on the optimal
trajectories for minimum wind gradient of a linear wind shear, [Bencatel, Kabam-
ba, and Girard (2014)] derive a general equation of the necessary and sufficient
conditions for sustainable DS with arbitrary aircraft models. However, the linear
gradient model is only suitable to describe the wind gradient in altitude region
rather than near the surface above which the horizontal wind speed varies irregular-
ly with the altitude [Gao, Hou, Guo, Fan, and Chen (2014)]. Zhao (2004) presents
in-depth analysis into the optimal patterns and the least required wind gradient slop
of glider DS using a direct collocation approach; the nonlinear correction coeffi-
cient, A, is introduced into the linear wind model to represent the gradient variation
with the altitude. However, the exponential-like wind profile (0 < A < 1) is not
realistic as far as the authors know. Sachs (2005a) analyzes the minimum reference
wind speed required for DS of albatrosses in a logarithmic wind field as shown by
Eq. 1. [Deittert, Richards, Toomer, and Pipe (2009a)] extend the work of Sachs by
investigating trajectories for maximal wind conditions that allow DS and for max-
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imal cross-country travel rates along various directions. The optimization problem
has be simplified by differential flatness and then implemented in AMPL software
[Fourer, Gay, and Kernighan (2002)] and solved with the nonlinear solver IPOP-
T [Wächter and Biegler (2006)]. Instead of the logarithmic wind model used by
Sachs (2005a); Deittert, Richards, Toomer, and Pipe (2009a) use a popular power
law model in wind energy engineering as shown by Eq. 2.

VW (h) =VR
ln(h/h0)

ln(HR/h0)
(1)

VW (h) =VR

(
h

HR

)p

(2)

Although there is no evidence that one of these two wind models is better or more
realistic to describe the wind gradient profile than the other, they both involve three
parameters used to denote reference wind strength (VR) at the reference height (HR)
and to take into account the surface properties (h0, p), like irregularity, roughness
and drag [Bencatel, Kabamba, and Girard (2014); Bencatel, Sousa, and Girard
(2013); Farrugia (2003); Gualtieri and Secci (2011)]. Sachs (2005a); Deittert,
Richards, Toomer, and Pipe (2009a) only consider the minimum or maximum ref-
erence wind strength at a constant reference height and constant h0 or p for DS.
Lissaman (2005) discusses the optimal DS trajectories exploiting wind fields with
various VR and HR at p = 0.2. The 1/7 Power Law (p = 0.1429) adopted by Deit-
tert, Richards, Toomer and Pipe (2009a) has been used to describes atmospheric
wind profiles over the surface sufficiently well during adiabatic conditions [Farru-
gia (2003)]. Nevertheless, research has shown that power law exponent p is usu-
ally larger than 1/7. Moreover, the value of p depends upon the observed site and
time on the order of hour, days and months [Farrugia (2003); Gualtieri and Secci
(2011)]. However, the analysis of the effect of various p on optimal DS trajectories
is still lacking. Furthermore, in this paper, another limitation of the small p val-
ue is disclosed by introducing the constraint of strictly positive wingtip clearance
[Deittert, Richards, Toomer, and Pipe (2009a)] in the trajectory optimization with
a glider model. The more general feasible wind conditions which involve the min-
imum and maximum power law exponent and the minimal and maximal reference
wind strength at different p are analyzed.

The engine assisted flight [Akhtar, Whidborne, and Cooke (2012); Sachs (2005b);
Zhao and Qi (2004)] is the probable method to implement repeatable DS cycle in
cases where the wind condition is out of the permissible domain for engineless
flight. Other researchers turn to wind turbines and solar panels to extract more en-
ergy from other environmental sources during DS for on-board energy supplement
[Bower (2011); Grenestedt and Spletzer (2010); Grenestedt and Spletzer (2010)].
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However, these facilities are out of the scope of this paper.

Since the real-time wind field estimation method [Langelaan, Spletzer, Montel-
la, and Grenestedt (2012)] and the trajectory tracking strategy for both powered
[Akhtar, Whidborne, and Cooke (2012)] and unpowered [Bird, Langelaan, Montel-
la, Spletzer, and Grenestedt (2014)] DS with small UAVs are more and more ma-
ture, this paper only focuses on the basic problem of designing the optimal DS tra-
jectories for permissible wind conditions. Besides, the trajectory optimization of-
ten suffers from computational complexity. Akhtar, Whidborne, and Cooke (2012)
showed that their optimization typically takes about 8 seconds to converge to a fea-
sible solution on a standard desktop PC. Compared to the typical time for complet-
ing a DS cycle (9.6–10.9 s), the results is barely satisfactory for small UAVs with
limited computational resources on-board. In effect, [Bird, Langelaan, Montella,
Spletzer, and Grenestedt (2014)] trade computational complexity for on-board stor-
age as they select the appropriate optimal path in real-time from the pre-computed
ones across the range of expected aircraft speeds and wind conditions. In this paper,
an efficient direct collection approach based on the Runge-Kutta integrator is used
to solve the optimal trajectory in the AMPL [Fourer, Gay, and Kernighan (2002)]
combined with IPOPT [Wächter and Biegler (2006)]. The computational time is
compared with the one in the work of Deittert, Richards, Toomer, and Pipe (2009a)
due to use of the same software and solver.

2 Methodology

2.1 Wind field model

In this paper, the power law wind model given by Eq. 2 is applied. The reference
height can be picked arbitrarily and the authors follow Deittert’s choice of HR =
20 m. The power law exponent p determines the distribution of the wind gradients
along the altitude away from the surface. In general, lowest p values about 0.1
occur over smooth, hard ground, lake, or ocean, 0.24 in areas with many trees or
0.3 in small towns, whereas higher values about 0.4 are found in urban areas with
tall buildings [Gualtieri and Secci (2011)], and in the extreme case, values of 0.5–
1.0 may be found for selected heights [Farrugia (2003)]. Thus Deittert’s choice
of p = 0.1429 by which wind profiles over open oceans are matched well is no
longer suitable for other surfaces with different roughness. Moreover, the p value
varies with time and date at the same place. Therefore, it is worth studying on
the optimal trajectories at different p values for small UAVs that are expected to
accomplish persistent flight missions at any time and any place. The wind fields
with different p values at VR = 10 m/s are show in Fig. 1(a). The reference wind
speed VR represents the overall gradient and average speed of the wind profile that
is shown in Fig. 1b.
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Figure 1: Wind fields with different parameters.

Table 1: Parameters for the flight models.

Parameter Albatross SBXC glider
m [kg] 9.0 5.443
b [m] 3.47 4.32
S [m2] 0.65 0.957
CD0 0.033 0.017
K 0.019 0.0192
e 0.90 0.85
AR 18.52 19.54
CL,max 1.5 1.0
µmax [◦] 75 60
γmax [◦] – 50
Vmin [m/s] – 9.54
Vmax [m/s] – 73.2
(L/D)max 20 28

2.2 Flight model

There are two different flyers considered in this paper: an albatross and the SBXC
glider. Their parameters are both listed in Tab. 1. The albatross flight model and
the numerical results given by Sachs and Bussotti (2005) are treated as benchmarks
to validate the subsequent trajectory optimization method in this paper. While,
the SBXC glider [Lawrance (2011)] is the main research object based on which
the permissible wind conditions for optimal DS trajectories are discussed. The
corresponding parameters of both models have the same order of magnitude and the
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values are very close. Particularly, the SBXC glider have higher maximum lift-to-
drag ratio, which indicates the potential of high performance of DS with the small
UAV [Sachs and Casta (2006)]. Besides, the maximum lift coefficient CL,max =
1.0 and maximum bank angle µmax = 60◦ of the SBXC glider are approximated
by the SD2048 airfoil and the maximum load factor of 2.0 respectively [Lawrance
(2011)].

The equations of motion (EOM) for a UAV given by Zhao (2004) in Eqs. 3–8 is
used in this paper:

mV̇ =−D−mgsinγ−mV̇W cosγ sinΨ (3)

mV cosγ Ψ̇ = Lsin µ−mV̇W cosΨ (4)

mV γ̇ = Lcos µ−mgcosγ +mV̇W sinγ sinΨ (5)

ḣ =V sinγ (6)

ẋ =V cosγ sinΨ+VW (h) (7)

ẏ =V cosγ cosΨ (8)

where L is lift force, D is drag force which are expressed as follows:

L =
1
2

ρSCLV 2 (9)

D =
1
2

ρSCDV 2 (10)

The drag coefficient CD depends on the lift coefficient CL, yielding

CD =CD0 +KC2
L =CD0 +

1
πARe

C2
L (11)

For the wind gradient is a quite steady phenomenon, the wind acceleration V̇W in
the EOM only depends on the vertical wind gradient combined with the vertical
speed of the vehicle itself:

V̇W =
∂VW

∂h
ḣ = p

VR

h

(
h

HR

)p

V sinγ (12)

The states of preceding EOM are airspeed V , heading angle Ψ, air-relative flight
path angle γ , east, north positions x, y and the altitude h. The vehicle speed is mod-
eled in a wind relative reference frame by Eqs. 3–5 while the position is modeled
in an earth fixed frame by Eqs. 6–8. Actually, this EOM is simplified by omit-
ting the side aerodynamic force, considering CL and µ as control inputs directly
and estimating drag force coefficient by Eq. 11. Moreover, it does assume that a
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controller exists and is able to command and track a specified CL and µ . Under
these assumptions, solving rotational motion equations and calculating moments
are avoided subtly, thus the EOM has 3 DOF (degrees of freedom) and includes
translational dynamics only. This simplified EOM is approximate enough and has
been used for energy analysis and trajectory optimization in a significant amount of
research about DS [Akhtar, Whidborne and, Cooke (2012); Bower (2011); Deittert,
Richards, Toomer, and Pipe (2009a); Gao, Hou, Guo, Fan, and Chen (2014); Gren-
estedt and Spletzer (2010); Grenestedt and Spletzer (2010); Grenestedt, Montella,
and Spletzer (2012); Lawrance (2011)]. The advantage lies in the intuitiveness of
using scalar airspeed V and flight path angle γ as state variables that are closely
linked with effective energy of a UAV in the air-relative reference frame [Bower
(2011)], while the speed and position in EOM adopted by Sachs (2005a); Sachs
and Bussotti (2005) are both derived in the earth fixed frame. The primary dis-
advantage of these EOM appears when setting initial inertial speed that may be
non-intuitive when the airspeed and the wind speed are very close for a trajecto-
ry problem [Bower (2011)]. Although Zhao’s model [Zhao (2004)] is adopted in
this paper due to preceding advantages, it should be emphasized that these two sets
of EOM are equivalent. Thus, the optimal trajectory, which is obtained by Sach-
s’s model [Sachs and Bussotti (2005)] and used as the point of comparison, will
satisfies Zhao’s model adopted in this paper.

2.3 Trajectory optimization using Runge-Kutta integrator

The flight model described by Eqs. 3–8 can be treated as a nonlinear system:

ẋ(t) = f(x(t),u(t)) (13)

where x = [V,Ψ,γ,h,x,y]T is the state vector, u = [µ,CL]
T is the control input

vector. The optimal DS problem is to find an optimal control u to perform energy-
neutral flight subjecting to a certain objective and satisfying the nonlinear differen-
tial equations and some other terminal and path constraints.

The optimal control problems for aircraft flight in time domain can be converted
into pure parameter optimizations for numerical solutions [Hull (1997)]. Deittert,
Richards, Toomer, and Pipe (2009a) use differential flatness to achieve the conver-
sion. A more efficient conversion method, the direct collocation approach, is used
in this paper due to its flexibility, simplicity, and computational speed [Guo, Zhao,
and Capozzi (2011)]. In this approach, values of state and control variables are ap-
proximately represented as solution parameters at M discrete time nodes which are
spaced equally within the solution time range [0, t f ]: xi,k and u j,k, where k = 1, 2,
. . . , M represents the kth node, i = 1, 2, . . . , 6 represents the ith component of state
vector x and j = 1, 2 represents the jth component of control vector u. Putting all
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the unknown parameters together, we have the design vector:

X = [x1,1, . . . ,x6,1, . . . ,x1,k, . . . ,x6,m, . . . ,x1,M, . . . ,x6,M,

u1,1,u2,1, . . . ,u1,k,u2,k, . . . . . . ,u1,M,x2,M,VR, t f ]
T

= [xT
1 , . . . ,x

T
k , . . . ,x

T
M,uT

1 , . . . ,u
T
k , . . . ,u

T
M,VR, t f ]

T

(14)

The explicit fourth-order Runge-Kutta integrator which has high accuracy in dis-
cretization [Hager (2000)] is used to approximate the nonlinear system Eq. 13. For
k = 1,2, . . . ,M−1, define:

∆t =
t f

M−1
(15)

ûk =
uk +uk+1

2
(16)

k1,k = f(xk, ûk) (17)

k2,k = f
(

xi,k +
k1,k

2
∆t, ûk

)
(18)

k3,k = f
(

xi,k +
k2,k

2
∆t, ûk

)
(19)

k4,k = f(xi,k +k3,k∆t, ûk) (20)

Thus, the nonlinear system can be converted into 6(M−1) equality constrains as:

Ck = xk+1−xk−
1
6
(k1,k +2k2,k +2k3,k +k4,k)∆t = 0 (21)

An ideal DS cycle is that the vehicle can come back to the initial states after flying
across the wind field. The cycle is repeatable and energy neutral. Thus the terminal
constraints for the free traveling DS pattern are:

V (0) =V (t f ) (22)

Ψ(0) = Ψ(t f ) (23)

γ(0) = γ(t f ) (24)

h(0) = h(t f ) (25)

The free traveling pattern in which horizontal displacement of the vehicle is unre-
stricted is first defined as basic DS pattern by Zhao (2004) and also considered as
the optimal DS pattern performed by the albatrosses [Sachs and Bussotti (2005)].

If considering a strict closed loitering DS pattern, terminal position constraints de-
fined by Eqs. 26–27 should be added based on the free traveling pattern:

x(0) = x(t f ) (26)



Permissible Wind Conditions for Optimal Dynamic Soaring 539

y(0) = y(t f ) (27)

However, the heading angle constraint in Eq. 23 only leads to eight-type trajecto-
ries. The more practical circular-type trajectories for stations keeping applications
can be generated by setting 2π difference for terminal constraint on the heading
angle as:

Ψ(0) = Ψ(t f )±2π (28)

If a vehicle or an albatross is expected to gain net traveling speed toward a certain
direction such as upwind, downwind or crosswind, the traveling DS pattern defined
as cross-country DS pattern by Deittert, Richards, Toomer, and Pipe (2009a) can
be studied by adding the following terminal constraints instead of Eqs. 26–27:

atan2(x(t f )− x(0),y(t f )− y(0)) = ε (29)

Vt =

√
(x(t f )− x(0))2 +(y(t f )− y(0))2

t f
≥Vt,min (30)

where ε is the traveling direction, Vt is the net traveling speed. The minimum
travel speed Vt,min is used to prevent the resulting trajectories from becoming closed
trajectories.

The initial conditions in all patterns are prescribed as:

x(0) = 0 (31)

y(0) = 0 (32)

In all the time nodes, the following path constraints should be satisfied:

−µmax ≤ µ ≤ µmax (33)

0≤CL ≤CL,max (34)

Vmin ≤V ≤Vmax (35)

− γmax ≤ γ ≤ γmax (36)

Particularly, the path constraint of strictly positive wingtip clearance [Deittert,
Richards, Toomer, and Pipe (2009a)] is introduced to avoid collision between the
vehicle and the surface:

h− 1
2

b |sin(µ)|> hmin = 0 m (37)

The aim of this paper is to find the permissible wind conditions to support optimal
DS of loitering and traveling patterns. According to the preceding wind model the
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wind conditions includes two factors: one is the power law exponent p; the other
is reference wind strength VR. Thus, the main problem is to seek the minimum and
maximum bounds of p and VR as follows:

minJ(X) =±VR (38)

minJ(X) =±p (39)

When using Eq. 39 as the value function, the p is also treated as an unknown
parameter and should be augmented in the design vector of Eq. 14.

To sum up, the converted trajectory optimization problem can be stated to be find-
ing a solution of the design vector X that minimizes the object value of Eq. 38
or Eq. 39, and satisfies the nonlinear differential constraints parameterized by Eq.
21, the terminal constraints defined by Eqs. 22–32 and the path constraints defined
by Eqs. 33–37. The optimization problem is implemented in AMPL [Fourer, Gay,
and Kernighan (2002)], a modelling language for mathematical programming, and
solved with IPOPT [Wächter and Biegler (2006)], a nonlinear mathematical pro-
gramming solver.

2.4 Method validation

The solution methodologies from previous sections were validated by reproducing
the numerical results for the problem of minimum wind strength of free traveling
pattern DS given by Sachs and Bussotti (2005). Since the albatross has sophis-
ticated flight technique in close proximity to the surface, the wingtip clearance
constraint Eq. 37 is not considered in the validation process. Instead, as in Sachs’s
work, only a minimum height of the point mass above the surface is used:

h≥ hmin = 0.5 m (40)

Copying directly the figures from his work is not convenient for comparison, thus
only the key parameters reflecting the characteristics of the trajectory are listed
in Tab. 2 such as minimum wind strength, cycle time, maximum height, travel
direction and so on.

At first, the problem of minimum wind strength proposed by Sachs was solved us-
ing differential flatness (DF) method with the preceding software and solver [Deit-
tert, Richards, Toomer, and Pipe (2009a)]. The resulting trajectory is shown in
Fig. 2 by dash-dotted lines and airspeed and control inputs in Fig. 3. These re-
sults and corresponding parameters in Tab. 2 are almost identical with the results
in Sachs’s publication [Sachs and Bussotti (2005)] (see his Figs. 6–10). The most
significant difference is shown by a displacement difference along x axis of about 8
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Table 2: Parameters of optimal trajectories with different methods.

Method Sachs’s Deitterrt’s (DF) This work (RK)
VR,min [ms−1] 8.56 8.55 8.59
cycle Time [s] 7.2 7.17 7.17
hmax [m] 19.7 19.71 19.69
∆x [m] 60.2 52.01 53.37
∆y [m] 68.5 67.48 68.69
direction [◦] 41.31 37.62 37.85
solution time [s] unknown 727.47 (48.89) 16.02 (1.39)
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Figure 2: Albatross DS trajectory requiring minimum wind strength.

m resulting in a minor numerical difference of less than 4◦ in travel direction. The
difference is probably due to using different optimization methodology and soft-
ware. Further, Deittert’s method was expounded very clearly in his paper [Deittert,
Richards, Toomer, and Pipe (2009a)] and easy to implement. Thus, the results
computed by their method were used as a more convenient and intuitive baseline
for validating methodologies of this paper. In addition, comparing the computa-
tional times for different methods solving the same problem is more convincing
due to use of the same software and solver.

To be fair, all the optimization processes were implemented under Windows XP
on the personal computer with Intelr Core™, i3-2100 CPU@3.10GHz. The num-
ber of time points of M = 100 and the convergence tolerance of le-8 for all design
variables, value function, and constraints were set for both methods. The number
of frequency components N for the DF method was selected by empirical formula
M = 5N to achieve good results [Deittert, Richards, Toomer, and Pipe (2009a)].
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Figure 3: Albatross optimal DS trajectory parameters.

The initial conditions were first set to be 1.0 for all design variables and the solu-
tion time of about 12 minutes and 16s were obtained respectively. Although this
setting of initial conditions for one method is not equivalent for the other one, it
likely represents somewhat bad guesses for all design variables. The trajectory re-
sults marked by solid lines in Fig. 2 and noted by “RK” short for Runge-Kutta in
Fig. 3 are identical with the ones of DF method. From the results of solution time
in Tab. 2, the RK method is more efficient than the DF method, however, the so-
lution time of 16 s is still unsuitable for real-time applications. Thus, more proper
initial conditions are expected to accelerate the convergence process. The curves of
positions, states and inputs for the minimum wind trajectory in Sachs’s publication
[Sachs and Bussotti (2005)] all have shape characteristics of trigonometric func-
tions. Thus, the initial curves fitted manually by trigonometric functions according
to his resulting figures were used for RK method. These initial guesses (IG, for
short) are shown by Eqs. 41–46 and by dotted lines in Figs. 2–3.

x(t) =−36sin(1.2π (t +2)/t f )+24 (41)

y(t) =−36tan(0.5πt/t f −π/4)+24 (42)



Permissible Wind Conditions for Optimal Dynamic Soaring 543

z(t) =−10cos(2πt/t f )+10 (43)

V (t) = 15+6cos(2πt/t f ) (44)

CL(t) = 1.3 (45)

µ(t) =−πcos(2πt/t f )/3 (46)

The initial guesses of sinusoidal basis functions for DF method [Deittert, Richards,
Toomer, and Pipe (2009a)] are converted from the ones of position time functions
Eqs. 41–43 by least-squares fitting method. The solution time plummets to 48.89 s
and 1.39 s for DF and RK methods respectively under new initial guesses.

In sum, although both methods performs well in solving the optimal trajectory
problem for DS, the RK method is far faster than the DF method under the proper
initial conditions, making real-time implementation possible. The RK method will
be used in the remaining sections of our work.

3 Limitation of the 1/7th wind power law for optimal dynamic soaring

The 1/7th Power Law (p = 0.1429) has been used to describe the wind profiles
over the surface in previous publications about DS [Deittert, Richards, Toomer,
and Pipe (2009a); Sachs and Bussotti (2005)]. However, when considering the
minimum wind strength for the loitering DS pattern under terminal constraints of
Eqs. 22, 24–28 and wingtip clearance constraint of Eq. 37 where hmin = 0 m for
SBXC glider in the wind field of p = 0.1429, the solver fails to give convergent
optimizations. Similar situation can be found in free traveling pattern for both
glider and albatross models. It indicates that the SBXC glider is unable to perform
optimal DS under the wind field of p = 0.1429 no matter how strong the reference
wind VR is.

However, assuming that the wingtip clearance constraint of Eq. 37 is loosened
to the minimum height constraint of Eq. 40 where hmin = 0 m, the optimization
process converges to a minimum VR = 3.88 m/s for a closed circular trajectory as
shown by dotted lines in Fig. 4. Air-relative energy, inertial energy, height and
wingtip clearance of this optimal trajectory are marked by thick solid, light solid,
dotted and dash-dotted lines respectively in Fig. 5(a). During this DS cycle, the
UAV gains mechanical energy or ground speed through high altitude turn. It can
be concluded by arbitrarily selecting two points at the same altitude in the upper
curve of the height and analyzing the kinetic energy increase from the prior point
before turning to the posterior point after turning. Further, the energy gain from
the wind profile is proportional to the reference wind speed, VR [Sachs (2005a)].
On the contrary, the UAV losses inertial energy during the low altitude turn and
comes back to the initial state of inertial energy after finishing one DS cycle. Thus
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Figure 4: Closed trajectory for minimum wind strength and strictly positive height
of point mass (dotted line) and the most proximal closed trajectory for strictly posi-
tive wingtip clearance (solid line) under the same wind condition: p= 1/7, VR,min =
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trajectories in Fig. 4. Wind condition: p = 1/7, VR,min = 3.88 m/s.
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in the inertial fame, the trajectory can be characterized as the energy-neutral DS
during which the energy gain from the wind profile is just sufficient to compensate
for the energy loss due to drag. Figure 5(a) shows that the air-relative energy has a
gently downward trend during the high altitude turn and decreases fast during the
low altitude turn where the airspeed is larger as well as the energy loss due to drag.
The air-relative energy gain mainly occurs at the moments of upwind climb and
downwind dive at low altitude where the wind gradients are the largest in the whole
wind profile of p = 0.1429 (see Fig. 1(a)). It is because the air-relative energy
gain depends linearly upon the wind gradient when the UAV climbs upwind or
dives downwind according to the “dynamic soaring force” theory [Barnes (2015);
Deittert, Richards, Toomer, and Pipe (2009a)]. As seen from Fig. 5(a), the UAV
recovers the air-relative energy when coming back to the initial position after one
DS cycle, which indicates a balance between the energy gain and the energy loss,
and an energy-neutral DS cycle in the air-relative frame. To sum up, the DS process
is the unification of the energy-neutral cycles both in the inertial frame and in the
air-relative frame. The energy gain of the former cycle originates from the reference
wind speed VR at higher altitude, while the energy gain of the latter cycle from the
wind gradients depending on the wind parameter p at lower altitude. However, the
downward wingtip is about 2 m below the surface when the vehicle flies at low
altitude. The albatrosses are perhaps unable to perform this trick, let alone the
UAVs.

Reconsidering the positive wingtip clearance constraint of Eq. 37 and removing
the terminal position constraint of Eqs. 25–27, the most proximal closed trajectory
under the same wind condition (p = 0.1429, VR = 3.88 m/s) is computed in order
to disclose the handicaps in performing circular trajectories. The optimal trajectory
for the value function of minimum terminal position difference in Eq. 47 is noted by
solid lines in the Fig. 4 and the corresponding energy states are shown in Fig. 5(b).

minJ(X) =

√
(x(t f )− x(0))2 +(y(t f )− y(0))2 +(z(t f )− z(0))2 (47)

The variation of inertial energy is very similar to the one in the minimum wind
strength trajectory as shown in Fig. 5(a) However, while turning at low altitude, the
vehicle (point mass) cannot approach the surface where large wind gradients exit
because of keeping the strictly positive wingtip clearance. The air-relative energy
therefor cannot achieve two typical increases during upwind climb and downwind
dive as shown in Fig. 5(a) and the energy extracted from the air mass cannot sup-
port a closed trajectory as well as an energy-neutral cycle. The terminal position
difference only reflected in the height in Fig. 4 indicates the energy shortfall.

In sum, the limitation of the wind field of p = 0.1429 for DS is that the vertical
range of wind gradients at low altitude is too narrow to be exploited by the UAV
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with a banked and long wingspan. As seen from Fig. 5(a), the vertical distribu-
tion of wind gradients depends on the power law exponent p in a wind field. The
vertical range of large gradient is extended with increasing p. Although the wind
gradient over there is smaller under a larger p, the opportunity that the UAV can
use the strong wind gradient will increase due to its higher location. Considering
the analysis above, the reference wind speed VR is only one aspect of the permis-
sible wind conditions for DS and the power law exponent p is another key factor
affecting the energy-gain process. Additionally, the p value is influenced by many
factors including time, season and site, so that the p value should be included when
considering the permissible wind conditions for DS.

4 Permissible wind conditions for loitering dynamic soaring

4.1 Minimum and maximum feasible power law exponent

In this section, the feasible p values of the wind field for loitering DS patterns with
the SBXC glider are investigated. Setting the same terminal constraints especially
for closed and circular trajectories, considering the strictly positive wingtip clear-
ance as the last section, and adding the parameter p into the design vector, the
trajectory optimization problems for minimum and maximum feasible p values are
solved.

The range of p values is determined using Eq. 48 according to the real situations
of wind fields in nature as described in Sec. 2.1.

0≤ p≤ 1.0 (48)

The terminal constraint for reference wind strength defined by Eq. 49 is deter-
mined by the extreme wind speed observed in hurricanes [Schott, Landsea, Hafele,
Lorens, Taylor, Thurm, Ward, Willis, and Zaleski (2012)].

0 m/s≤VR ≤ 70 m/s (49)

The trajectory optimization for minimum p converges to 0.2146 selecting the ref-
erence wind strength of VR = 12.0032 m/s. The closed trajectory and trajectory
parameters for the minimum power law exponent is noted by dark-gray lines in
Figs. 6–7. When solving the most proximal closed trajectory at the wind field with
p = 0.1429 and the same reference wind strength of VR = 12.0032 m/s, the result-
ing trajectory and the energy variation are very similar to the case of VR = 3.88
m/s in Figs. 4 and 5(b) although the reference wind speed here is much stronger
than that in those figures. The terminal position difference shown only in the height
indicates the vehicle cannot execute energy-neutral DS in the air-relative frame due
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Figure 6: Closed trajectory for minimum p selecting VR = 12.0032 m/s (dark gray
lines) and the most proximal closed trajectories for VR = 10 m/s (light gray lines)
and VR = 14 m/s (black lines) at the wind field with the minimum p.

to the narrow vertical range of strong wind gradient at low altitude when p = 1/7.
The minimum feasible p value is slightly larger than 1/7. As the range of low al-
titude wind gradient increases with the increasing p value, there is more effective
energy gained by the UAV during upwind climbing and downwind diving at low
altitude. When the p value reaches the minimum feasible value, the vehicle just
obtain enough energy from the wind field to perform strictly closed trajectory as
well as the energy-neutral cycle.

More interestingly, with the fixed value of p = 0.2146, solving the optimization
problems for minimum and maximum reference wind speed respectively according
to Eq. 38, the resulting objective function values are very close to VR = 12.0032 m/s
which is selected by the optimization process for minimum p, and the deviations
are within 10−5. This indicates that the reference wind speed of VR = 12.0032 m/s
is the unique permissible wind condition for the wind field with p = 0.2146.

In order to explain why other values of VR do not support closed trajectory DS,
take the most proximal closed trajectories for VR = 10 m/s and VR = 14 m/s in the
wind field with the minimum p for example. For sake of comparison, these two
trajectories and their parameters are superposed in Figs. 6 and Fig. 7 by light-gray
lines and black lines respectively. There is no height (potential energy) difference
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Figure 7: Trajectory parameters for optimal DS cycles in Fig. 6.
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between the start and end points for both situations and the terminal constraint of
airspeed defined by Eq. 22 is also satisfied, thus the energy-neutral cycles have been
realized for both air-relative and inertial frames. However, the terminal position
differences are mainly presented in the downwind direction (positive x coordinates).

In the first place, the overall wind gradients in the wind field with VR = 10 m/s
decreases compared to the feasible wind field for minimum p. As can be seen
form Fig. 7(b), compared to the height shown in Fig. 7(a), the UAV not only
utilizes the limited wind gradients at low altitude but also be willing to use the wind
gradients at higher altitude during the upwind climb to gain energy. As Fig. 7(a)
shows, the UAV promptly climbs after low altitude turn and the potential energy
increases, while the air-relative kinetic energy decreases (see Fig. 7(c)). Although
the air-relative total energy is also increasing as shown in Fig. 7(b), the available
overall energy contained in the wind field with weaker VR, after all, is limited.
Thus, the airspeed (air-relative kinetic energy) is smaller than that of the trajectory
for minimum p as shown in Fig. 7(c). Besides, the headwind is relative stronger
at higher altitude so the ground speed along the upwind direction is weaker (see
Fig. 7(d)), and then, the displacement in the direction of negative x coordinates
during upwind climb decreases obviously (see Fig. 6). Finally, the UAV cannot
come back to the start place after high altitude turn due to the drift.

On the contrary, the overall wind gradients in the wind field with VR = 14 m/s are
larger than that in the feasible wind field for minimum p as well as the overall wind
speed. To avoid the strong wind at higher altitude, the UAV tends to fly upwind
at somewhat lower altitude, as shown in Fig. 7(a). To compensate the drift during
upwind climb, the UAV is forced to fly faster relative to the wind compared to the
minimum-p trajectory (see Fig. 7(c)).

However, the UAV must perform the high altitude turn from upwind direction to
downwind direction to close the trajectory and come back to the initial airspeed
to achieve the energy-neutral. As Fig. 7(c) shows, the airspeed for trajectory of
VR = 14 m/s decreases to almost the same as the minimum-p trajectory during the
high altitude turn. Due to the larger wind speed at high altitude in the wind field
with VR = 14 m/s, the downwind drift increases as well as the displacement in the
direction of positive x (see Fig. 6). Therefore, the UAV misses the initial point
after the high altitude turn. Although the UAV beforehand struggled against the
headwind by using the energy gained from the wind gradient while climbing (see
Fig. 7b) to get more displacement in the upwind direction than that in minimum-p
situation (see Fig. 6), the high altitude drift is still too strong to be compensated.

The trajectory optimization for maximum power law exponent always converges
to the up boundary of p value domain, p = 1.0. However, the selected reference
wind speeds are different when using different initial guesses to solve the same
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optimization problem. In other words, in the wind field with p = 1.0, the reference
wind speed supporting the closed trajectory DS is not unique.

4.2 Permissible wind condition boundary

From the analysis in last subsection, it can be predicted that the feasible range of
VR for closed DS increases from the sole point to a wide domain as the p value
increases. In this subsection, the minimum and maximum VR for each feasible p
value are computed by the trajectory optimization using Eq. 38 as the cost function.
It is run for p value range from 0.25 to 1.0 in steps of 0.05 increments and the results
in combined with the minimum p point are shown in Fig. 8. The maximum VR value
increases rapidly while the minimum VR value gradually decreases with increasing
p value. Particularly at the p value slightly larger than the minimum, the feasible
VR range extends significantly due to the soaring maximum feasible VR. When p
value is larger than 0.625, the theoretical value for maximum VR exceeds the up
limit of the constraint for VR in Eq. 49. Thus, the maximum VR is restricted to the
value equal to 70 m/s according to the natural truth in the optimization process.
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Figure 8: Permissible wind conditions for loitering DS with SBXC glider.

As the p value increases, the vertical range of the large wind gradient in the wind
field is extended, and in the meantime, the high altitude wind gradient increases, as
illustrated in Fig. 1(a). Thus, the UAV can gain almost equivalent energy for closed
trajectory DS even in a wind field with a smaller VR which determines the overall
gradient of the wind profile. On the other hand, more energy can be obtained by
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the UAV in the wind field with higher p and higher VR, to conquer the strong head-
wind at high altitude. Besides, the overall wind speed is reduced with increasing p
value (see Fig. 1(a)), thus the drift while climbing has a deceasing trend which is
favorable for closing the DS trajectory loop. The UAV therefor can get more dis-
placement during the upwind climb phase at relative lower altitude preparing the
high altitude turn even if the VR is higher.

The curves of maximum and minimum VR for different p values constitute the
boundary of a bell-shaped domain for permissible wind conditions. The point of
minimum p value is the top of the “bell” and the line segment joining the points of
maximum and minimum VR for p = 1.0 forms the bottom of the “bell”. As long as
the combination of VR and p values falls inside the bell-shaped domain, it can be
considered as a permissible wind condition for closed trajectory DS.

4.3 Permissible wind conditions for maximizing the minimum allowable wingtip
clearance

The preceding permissible wind conditions are based on the critical wingtip clear-
ance constraint of Eq. 37 where hmin = 0 m, which indicates the vehicle wingtip
might just touch the surface during DS, especially at the stage of the low altitude
turn. It is a challenge for the guidance and control to follow the optimal DS trajec-
tory with a long wingspan vehicle, particularly, the turbulence always exists in the
wind field near the surface [Deittert, Richards, Toomer, and Pipe (2009b)]. Besides,
there are measurement errors in avionics (for example, the altimetric sensor), thus
the scrapes and collisions between the wingtip and the surface seems inevitable.
Furthermore, the increasing p value implies the increasing height of humps or ob-
stacles on the surface as described in Sec. 2. A. It is obvious that increasing the
clearance between the wingtip and the surface can make the whole system more
robust, safe and applicable while performing stationary DS in different circum-
stances.

Selecting each point of p and VR values in the bell-shaped domain as the known
conditions, the closed trajectories for maximizing the minimum wingtip clearance
defined by Eq. 50 can be computed.

minJ(X) =−hmin (50)

Running the trajectory optimizations for p value varying from 0.25 to 1.0 at 0.05
step interval and integral VR values between the minimum and the maximum for
each p value, the results for the maximum lower bound of wingtip clearance (hmin)
are obtained and marked by the contour plot in Fig. 8. The unit of the maximum
hmin value marked in each contour is meter. For each p value, the maximum values
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of hmin at the maximum and minimum VR are both almost zero and the correspond-
ing trajectories are identical with the trajectories for the maximum and minimum
VR using the constraint of strict positive wingtip clearance except the situations that
VR is forced to equal 70 m/s. It can be inferred that the positive wingtip clearances
is a crucial constraint for feasible VR range. The maximum hmin increases at first
and reduces afterwards with increasing VR. It is because the larger wind gradient in
the wind field, particularly in higher altitude, reduces the dependence for gaining
energy on the strong wind gradient at low altitude; in the meantime, the increas-
ing overall wind strength speeds up the drift the vehicle tend to maneuver at lower
altitude in turn.

When the p value is relatively large, the wind field can be treated almost as linear
wind profile and the VR linearly determines the wind gradient slope as shown in Fig.
1(a). Thus the maximum and minimum VR values at p = 1.0 represent the critical
constant wind gradient for closed DS trajectories. As the VR increases slightly from
the minimum VR value for large p values, the overall wind gradient increases rapid-
ly and the wind strength is still weak. The maximum hmin shows a dramatically
upward trend because there is consistent wind gradient in the whole wind profile
and the small drift at higher altitude has little effect on the DS process.

For the same VR at the permissible domain, the maximum hmin becomes larger with
increasing p value. On the one hand, there is larger wind gradient available for
energy extraction at high altitude with larger p value for the same VR. On the other
hand, the high altitude wind blows more weakly as p value increases and, hence the
drift decreases. Moreover, the VR at the extreme value for the maximum hmin at each
p gradually decreases from about 12 m/s to 5 m/s as p value increases. It indicates
that the increased wind gradient at high altitude depending on increasing p value
exceeds the reduction due to decreasing VR value in terms of energy extraction by
the DS vehicle. Besides, the slightly smaller VR value reduces the overall wind
speed as well as the drift.

To sum up, if the guidance and control system has a maximum error of 2 m in height
for DS trajectory tracking under persistent turbulence and the height of obstacles
on the surface are within 3 m, the permissible wind conditions become a shrunk
bell-shaped domain which boundary is determined by the maximum hmin contour
of 5 m.

4.4 Sensitivities of the permissible wind conditions to vehicle model parameters

Section 3 has shown that the long wingspan of the vehicle restricts the utilization
of large wind gradient at low altitude and it can be concluded from Sec. 4.3 that
the wingtip clearance is a key factor to determine the permissible domain of wind
conditions for close DS. It implies that reducing the wingspan can improve the
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performance of extracting energy from wind field in terms of the range of the per-
missible domain for wind conditions. Thus, the effect of changing wingspan on
the permissible domain under the same constraint of minimum wingtip clearance
is considered significantly in this section.
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Figure 9: Variation of minimum p point with changing wingspan.

At first, considering the permissible domain based on the model parameters for
the SBXC glider as the baseline case, the sensitivity of the minimum power law
exponent to the wingspan b is investigated by repeatedly solving the optimization
problem while changing the b value alone between runs and the results are shown
by circles in Fig. 9(a). The corresponding VR values at the points for minimum p
are shown in Fig. 9(b). Then, the permissible wind condition boundaries for two
typical wingspan values around the baseline case (b = 3.42 m and b = 5.22 m) are
computed and shown in Fig. 10(a) to illustrate the changing of the whole permis-
sible domain with the variation of wingspan. As Fig. 9 shows, the minimum p
value decreases slightly with shorter wingspan, while the VR value remains around
12m/s. Figure 10(a) illustrates that the minimum p point moves to the left and
the permissible domain is expanded as the wingspan decreases. The permissible
boundary curve of the baseline case which is actually between the example curves
is omitted hear to avoid unclearness. This can be thought of as a validation for the
implication at the beginning of this section. In fact, to change the wingspan alone
is equivalent to loosening the constraint of minimum wingtip clearance. Thus, the
vehicle center of gravity can reach the lower altitude with stronger wind gradient
and the range of allowable reference wind speed extends at each p value.

However, the extension of permissible domain with deceasing wingspan is not very
obvious. In the past, two more important parameters affecting the required wind
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Figure 10: Permissible wind condition boundaries for b = 3.42 m and b = 5.22 m
respectively.

conditions for DS have been discussed: the maximum lift-to-drag ratio, (L/D)max,
and the wing loading, m/S [Sachs and Casta (2006); Sukumar and Selig (2013)],
which are also key parameters of flight performance in conceptual design of aircraft
[Raymer (1992)]. The changing wingspan just has impacts on these two parame-
ters. According to Eq. 11 the maximum lift-to-drag ratio is

(L/D)max =
1
2

√
πARe
CD0

(51)

Decreasing the wingspan alone reduces the aspect ratio (AR) which is defined as the
ratio of the wingspan to the average wing chord and results in smaller (L/D)max. In
the meantime, it reduces the wing area and then increases the wing loading. These
impacts are not considered in above discussion about changing the wingspan alone.
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In order to decouple the impacts due to those two parameters, the wing loading is
set to be fixed at first in the following discussion. When the wingspan becomes
shorter, the wing chord is extended to keep a constant wing area. The (L/D)max
becomes smaller due to decreasing AR. In this case, the minimum p points and the
corresponding VR values for AR ranging from 12.22 to 30.70 are shown by triangles
in Fig. 9 and the permissible domains for b = 3.42 m and b = 5.22 m are shown
in Fig. 10(b). The minimum p point moves toward upper right on the p-VR plane
with decreasing wingspan. Although the variation of VR becomes greater, these two
boundary curves do not form strict intersections. The permissible domain is shrunk
inward with the deceasing wingspan under the same wing loading instead of be
expanded when reducing the wingspan alone. Thus, the size of permissible domain
shows an increasing trend as AR increases because larger (L/D)max means smaller
drag force and consequently less energy required extracting from wind field. It also
implies that the effect of increasing AR and remaining constant wing loading while
increasing the wingspan to expand the permissible domain exceeds the effect to
reduce due to only extending the wingspan.

Then, considering the fixed AR, the wing loading increases from 3.62 kg/m2 to 9.09
kg/m2 as the wingspan becomes shorter and consequently the wing area decreases.
In such case, the p value noted by rectangles in Fig. 9(a) decreases more signifi-
cantly than the situation of only decreasing the wingspan. Figure 10(c) shows that
the minimum p point moves to upper left and the permissible domain boundary
extends outward with decreasing wingspan.

Furthermore, since the wingspan can influence the permissible domain of wind
conditions for closed DS through directly changing (L/D)max and m/S, the para-
sitic drag coefficient CD0 which is another parameter affecting (L/D)max according
to Eq. 51 and the vehicle mass m which also determines the wing loading obviously
should be considered in the sensitivity analysis. Figure 11 shows that the minimum
p value is reduced linearly with decreasing CD0 because of the direct effect of im-
proving (L/D)max and the selected VR value remains stable at around 12 m/s. It
can be inferred that the permissible domain of wind conditions would be enlarged
outward as CD0 decreases.

Moreover, as Fig. 12 shows, the minimum p value sees a downward trend with
increasing m due to the larger wing loading. It also implies that the size of permis-
sible domain would be expanded with increasing m. High vehicle mass is beneficial
to perform closed DS even in the wind field with small p value in which the prac-
ticable wind gradient is limited because the “dynamic soaring force” defined in
[Barnes (2015); Deittert, Richards, Toomer, and Pipe (2009a)] depends linearly on
the UAV’s mass. It also can be noted that the decreasing of p value become gentle
with increasing m because the larger wing loading usually results in higher average
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lift coefficients and larger airspeed [Deittert, Richards, Toomer, and Pipe (2009a)]
which cause more energy loss due to drag [Eqs. 10–11].
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efficient CD0.
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Figure 12: Variation of minimum p
point with changing vehicle mass m.

To sum up, the point of minimum p value is used to moving on the p-VR plane with
changing vehicle parameters. It reflects the variation of the permissible domain of
wind conditions for close DS to some extent. To reduce the wingspan alone cannot
obviously improve the efficiency of gaining energy from gradient wind fields; how-
ever, if properly increasing the maximum lift-to-drag ratio and the wing loading,
the point of minimum p value will move toward the left on the p-VR plane and the
permissible domain will be enlarged.

5 Permissible wind conditions for traveling dynamics soaring

5.1 Permissible wind conditions for upwind dynamic soaring considering the
maximum traveling speed

The other possible applications of periodic DS are getting net inertial speed toward
different directions in the reconnaissance and survey missions over open areas.
Take the upwind DS that is the extreme and hardest situation [Richardson (2015)]
for example, the permissible wind conditions for traveling DS are analyzed. To
compute the upwind traveling DS trajectories, the constraints of Eqs. 29–30 where
ε = 90◦ and Vt,min = 0.5 m/s are required to ensure displacement along the expect-
ed traveling direction. The constraint of wingtip clearance is also considered and
for comparison’s sake, hmin = 0.25 m is selected in all the optimization processes.
The result for minimum power law exponent is p = 0.2069 selecting VR = 12.8617
m/s and the net traveling speed is just the minimum, Vt = 0.5 m/s. Like the closed
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trajectories, the maximum and minimum VR at minimum p are identical with the
VR value selected by the optimization for minimum p. The maximum power law
exponent is always 1.0 and the selected VR values are various when using different
initial guesses. The curves of maximum and minimum VR versus p form a bell-
shaped domain in Fig. 13, which illustrates the permissible wind conditions for
upwind traveling DS.
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Figure 13: Permissible wind conditions for upwind traveling DS with SBXC glider.

The UAV is usually expected to fly from one point to another point as fast as possi-
ble, thus the trajectory optimization for maximum traveling speed described by the
value function in Eq. 52 is considered.

minJ(X) =−Vt (52)

where Vt is defined by Eq. 30. Running the trajectory optimization at each point
within the bell-shaped domain, the results of maximum Vt are obtained and shown
by the contour plot in Fig. 13. The unit of the velocity value marked in each contour
is m/s. Like the boundary of permissible domain for loitering DS trajectories, the
lines of maximum and minimum VR are identical with the contour of Vt,max = 0.5
m/s for upwind traveling DS trajectories except the situation of 70 m/s. It implies
that the constraint of minimum Vt in Eq. 30 determines the feasible VR range.

For the same p value, the maximum Vt increases at the beginning and drops latter as
the reference wind becomes stronger. The increasing VR means more wind gradient
energy that can be extracted from the wind field by the UAV to support the upwind
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traveling. However, the increasing VR also causes more downwind drift and in
order to keep the inertial speed, the UAV requires larger airspeed but loses more
energy due to drag. For the same VR, the maximum Vt increases with the p value
because the increasing p value enhances not only the opportunity of using the large
gradient at low altitude but also the wind gradient at higher altitude. Additionally,
the smaller wind speed below the reference height due to the larger p value is
favorable for upwind traveling.

In sum, if the mission requirement for the UAV is to travel upwind with an average
inertial speed larger than 6 m/s for example, the permissible wind conditions be-
comes a shrunk bell-shaped domain which boundary is determined by the contour
of Vt,max = 6 m/s.

5.2 Permissible wind conditions for different traveling directions

Using the same method for calculating the permissible domain of upwind DS, the
permissible wind conditions for different traveling directions can be computed by
setting various traveling direction ε and repeatedly solving the optimization prob-
lem. As ε increases from−90◦ to 90◦, the minimum p value allowing traveling DS
shows a decreases trend as shown in Fig. 14(a). The permissible domain bound-
aries consisting of minimum and maximum VR curves for representative traveling
directions of ε = 90◦, −45◦, 0◦, 45◦ and 90◦ are shown in Fig. 15. According to
the sensitivities of the permissible domain to model parameters, the displacement
of minimum p point on the p-VR plane determines the size of the whole permissible
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Figure 14: Variation of minimum p point with changing traveling direction ε .
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domain. Similarly, the permissible domain expands due to that minimum p point
move toward left on the p-VR plane with increasing ε as shown in Fig. 15.

When ε < 0◦, the minimum p value decreases within a small range compared with
the one for ε = 90◦ (upwind). Although the VR value increases slightly (see Fig.
14(b)) , the boundaries of permissible domains for ε < 0◦ are basically coincident.
Just in the time of the traveling direction changes from upwind to downwind (ε =
0◦), the p value and VR value begin to change rapidly with increasing ε . As a
result, the permissible domain for traveling DS is expanded, especially the area for
relative smaller p and larger VR as shown in Fig. 15. When ε > 75◦ , the p value
decreases to the value below 0.05 and the selected VR value reaches the allowable
maximum. It means that the vehicle would mainly use the wide range wind gradient
determined by VR rather than the narrow layer of larger wind gradient. Since the
downwind traveling DS cases have larger permissible domain of wind conditions
than the upwind situation, they are said here to be more efficient. It is because
the vehicle performing upwind traveling DS has to overcome the drift, while in
the downwind situation, the vehicle can utilize the drift to obtain traveling speed
toward specific directions.

It also can be noted that the traveling speed at minimum p point is always 0.5
m/s which limited by Eq. 30 when ε < 0◦, increases rapidly when ε > 0◦ and
reaches about 67 m/s which is even close to the maximum allowable VR when ε >
75◦. It implies that, the vehicle benefits from the drift to get lager traveling speed
under the same wind conditions within the permissible domain during downwind
traveling DS than the upwind traveling situation.
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6 Conclusions

This paper shows the general feasible wind conditions that involve the power law
exponents (p) and the reference wind strengths (VR) at different p values for loi-
tering and traveling patterns of optimal DS. To solve the optimal DS trajectories,
an efficient direct collection approach based on the Runge-Kutta integrator is used.
The little computational time of this method indicates potential real-time applica-
tions for the CPU on-board a small UAV.

The wind field with p = 1/7 cannot support DS with SBXC glider because the
vertical range of larger wind gradients at low altitude which is determined by p
value is too narrow to be exploited by the UAV with a banked and long wingspan.
Moreover, the p value usually does not accord with the 1/7th Power Law and also
depends upon the observed site, the time and the date. Thus, this paper emphasizes
the effect of p value on the permissible wind conditions for DS.

For the loitering DS, the optimization results for minimum and maximum VR at
different p values show that the maximum VR increases rapidly while the minimum
VR gradually decreases with increasing p value within the allowable range. The
feasible range of VR, which increases from the unique point of permissible wind
condition (p = 0.2146 and VR = 12.0032 m/s) to a wide domain at p = 1.0, forms
a bell-shaped domain for permissible wind conditions. The permissible domain is
shrunk with increasing maximum smallest allowable wingtip clearance trading for
robustness and safety of the vehicle system. Sensitivities of the permissible domain
to vehicle model parameters show that loitering DS is more efficient in terms of the
permissible domain size when properly reducing the wingspan and increasing the
maximum lift-to-drag ratio and the wing loading of the soaring-capable vehicle.

For the traveling DS, similar bell-shaped domain of permissible wind conditions
can be found. The permissible domain is shrunk when improving the requirement
for traveling speed. When the traveling direction changes from upwind to down-
wind, the permissible domain for traveling DS is expanded, especially the area for
relative smaller p and larger VR. The downwind traveling DS benefits from the
wide range wind gradient and the drift due to VR instead of the narrow layer of
larger wind gradient determined by p value.
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Appendix A Nomenclature

A = nonlinear correction coefficient
AR = aspect ratio
b = wingspan, m
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CD = drag coefficientv
CD0 = parasitic drag coefficient
Ck = equality constrains at kth node
CL = lift coefficient
CL,max = maximum lift coefficient
D = drag, N
e = Oswald’s efficiency factor
f = nonlinear system function
g = normal acceleration, m/s2

HR = reference height, m
h = height, m
h0 = surface property parameter, m
hmax = maximum height, m
hmin = minimum height or minimum wingtip clearance, m
J(X) = value function
K = induced drag factor
ki,k = ith Runge-Kutta estimate at kth node
L = lift, N
(L/D)max = maximum lift-to-drag ratio
M = number of time nodes
m = vehicle mass, kg
N = number of frequencies
p = power law exponent
S = wing area, m2

t f = final time, s
u = system input vector
u j,k = jth component of u at kth node
uk = system input vector at kth node
ûk = mean vector of uk and uk+1
V = airspeed, m/s
Vmax = maximum airspeed, m/s
Vmin = minimum airspeed, m/s
VR = reference wind speed at HR, m/s
VR,min = minimum reference wind speed, m/s
Vt = net traveling speed, m/s
Vt,min = minimum net traveling speed, m/s
VW = wind speed, m/s
X = optimization design vector
x = system state vector
xi,k = ith component of x at kth node
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xk = system state vector at kth node
γ = air-relative flight path angle, rad
γmax = maximum air-relative flight path angle, rad
∆x = displacement along x axis, m
∆y = displacement along y axis, m
∆t = time step, s
ε = traveling direction angle, rad
µ = bank angle, rad
µmax = maximum bank angle, rad
ρ = air density, kg/m3

Ψ = azimuth, rad
0 = zero vector




