
Copyright © 2016 Tech Science Press CMES, vol.111, no.5, pp.437-471, 2016

Simple Efficient Smart Finite Elements for the Analysis of
Smart Composite Beams

M. C. Ray1, L. Dong2 and S. N. Atluri3

Abstract: This paper is concerned with the development of new simple 4-noded
locking-alleviated smart finite elements for modeling the smart composite beams.
The exact solutions for the static responses of the overall smart composite beam-
s are also derived for authenticating the new smart finite elements. The overall
smart composite beam is composed of a laminated substrate conventional compos-
ite beam, and a piezoelectric layer attached at the top surface of the substrate beam.
The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite
element models of the beams, based on an “equivalent single layer high order s-
hear deformation theory”, and a “layer-wise high order shear deformation theory”,
are also derived for the purpose of investigating the required number of elements
across the thickness of the overall smart composite beams. Several cross-ply sub-
strate beams are considered for presenting the results. The responses computed by
the present new “smart finite element model” excellently match with those obtained
by the exact solutions. The new smart finite elements developed here reveal that the
development of finite element models of smart composite beams does not require
the use of conventional first order or high order or layer-wise shear deformation
theories of beams. Instead, the use of the presently developed locking-free 4-node
elements based on conventional linear piezo-elasticity is sufficient.

Keywords: Piezoelectricity, exact solutions, smart finite element, smart struc-
tures.

1 Introduction

In the quest for developing very light weight high performance flexible structures,
a concept has emerged for developing structures with self-controlling and/or self-
monitoring capabilities. Expediently, utilizing the piezoelectric effects Foreward
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(1981) first attempted to demonstrate the feasibility of using the piezoelectric ac-
tuators to damp out the vibrations of a cylindrical fiber glass mast. Subsequent-
ly, Bailey and Hubbard (1985), Bruke and Hubbard (1987), Crawley and Leuis
(1987), Im and Atluri (1989), Shi and Atluri (1990) successfully reported that the
patches of piezoelectric actuators being bonded with the host beams efficiently per-
form as the distributed actuators of the host beams. Miller and Hubbard (1987)
first demonstrated that a layer of the piezoelectric material being integrated with
a cantilever beam can act as the distributed sensor of the host cantilever beam.
When these distributed sensors and actuators are the elements of the control sys-
tems such that the distributed piezoelectric actuators can be activated with a proper
control voltage, the host structure attains the self-controlling and self-sensing capa-
bilities. Such flexible host structures possessing built-in mechanism for achieving
self-controlling and self-sensing capabilities are being customarily called as smart
structures. Since its inception, tremendous research on smart structures has been
going on for developing very light weight smart flexible structures. Needless to say
that the finite element method has been established as the most widely accepted
analytical method for structural analysis and in case of the analysis of smart struc-
tures, the same is also true. A brief review of the finite element analysis of the
smart structures is now in order.

Shi and Atluri (1990) developed finite element models of smart beams and frames,
undergoing large deformations, using a complementary energy approach. Robbins
and Reddy (1991) developed a finite element model of an aluminum beam actuated
by a piezoelectric layer using a “layer wise displacement theory”. Ha et al. (1992)
derived a finite element model of laminated composite plates containing distributed
piezoelectric sensors and actuators, using an eight noded brick element augmented
with incompatible modes. Hwang and Park (1993) presented a finite element for-
mulation for control of vibration of laminated plates integrated with piezoelectric
sensors and actuators. In 1994, Ray, Bhattacharyya and Samanta first derived a
finite element model for three dimensional analysis of smart composite plates em-
ploying a “high order shear deformation theory” proposed by Lo, Christensen, Wu
(1978). Saravanos and Heyliger (1995) derived a finite element model for static
and free vibration analysis of composite beams with embedded piezoelectric sen-
sors and actuators using “layer wise displacement theories”. Lin, Hsu and Huang
(1996) derived a finite element model for analyzing the deflection control of plates
with piezoelectric actuators. Saravanos, Heliger and Hopkins (1997) employed lay-
er wise displacement and electric potential theories for the finite element analysis of
laminated composite plates integrated with piezoelectric sensors and actuators. B-
hattacharya, Suhail and Sinha (1998) developed a finite element model for the free
vibration analysis of laminated composite plates coupled with piezoelectric sensors
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and actuators and the model is based on the “first order shear deformation theory”
(FSDT). Chee, Tong and Steven (1999) derived a finite element model based on a
“high order displacement field” and a “layer wise linear electric potential theory”
for the static analysis of smart composite beams. Varadarajan, Chandrashekhara
and Agarwal (2000) derived a finite element model of composite beam based on
a “high order shear deformation theory” and implemented the LQG/LTR method
for studying robust control of the beams using piezoelectric actuator layer. Valoor,
Chandrashekhara and Agarwal (2001) derived a finite element model of compos-
ite beams integrated with piezoelectric sensors and actuators and employed neural
network for robust control of the beams. Chee, Tong and Steven (2002) again
derived a finite element model of smart composite plates based on a “high order
shear deformation theory” and a “layer wise electric potential theory” and opti-
mized the piezoelectric actuator orientations for static shape control of the plates.
Kulkarni and Bajoria (2003) derived a finite element model using a “high order
shear deformation theory” for analyzing active control of curved beams integrated
with piezoelectric sensors and actuators. The finite element model derived by Luo
and Tong (2004) is based on the Timoshenko beam theory and capable of detect-
ing debonding of the piezoelectric sensors and actuators. Gupta, Seshu and Issac
(2004) derived a finite element model of piezoelectrically actuated shells and exper-
imentally verified the model. Ahmed, Upadhyay and Venkatesan (2005) developed
a layer-by-layer finite element model of cantilever beam actuated by a piezoelec-
tric layer capturing the continuity of shear stress across the interface between the
piezoelectric layer and the host beam. Trindade and Benjeddou (2006) derived a
finite element model of smart beams with embedded shear mode piezoceramic ac-
tuators and sensors using high order shear deformation theory. Using a layer wise
displacement theory and employing an optimal control strategy, Zabihollah, Seda-
gahti and Ganesan (2007) derived a finite element model for analyzing active vi-
bration control of smart laminated beams. Al-Ajmi and Benjeddu (2008) proposed
a discrete layer finite element model for detecting the damage in smart beams. Ne-
to, Yu and Roy (2009) proposed two finite elements for the static analysis of smart
beams with piezoelectric actuators. Bendary, Elshafei and Riad (2010) proposed a
finite element model of beams coupled with piezoelectric actuators which involved
one dimensional isoperimetric hermite cubic shape functions and the lagrange in-
terpolation function. In order to monitor the health of smart structures , Umesh
and Ganguli (2011) developed a finite element model of smart composite plates us-
ing “first order shear deformation theory” and investigated the control gains as the
damage indicators. Park and Lee (2012) derived spectral finite element model in
frequency domain for the dynamic analysis of smart composite beams based on the
Euler-Bernouli beam theory. Elshafei and Alraien (2013) presented a finite element
formulation of smart composite beams based on a “high order shear deformation
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theory”. Zhang and Schmidt (2014) carried out geometrically nonlinear finite el-
ement analysis of smart composite structures using “first order shear deformation
theory”. Song, Kim, Park and Lee (2015) derived a finite element model based
on the “first order shear deformation theory” for investigating the guided waves in
smart composite beams.

The above review of literature indicates that all the finite element models of smart
structures presented so far in the literature are based on some “displacement theo-
ries” which include “classical theories”, the “first order shear deformation theory”,
“high order shear deformation theories” and “layer-wise theories”. In practice, the
smart structures are thin. So, the use of high order shear deformation theories is
not essential for finite element modeling of smart structures. Although the layer-
wise displacement theory provides accurate results for laminated structures when
the material properties of the adjacent layers differ significantly, the finite element
model based on the layer-wise theory involves excessively large number of nodal
degrees of freedom increasing the computational cost of the model. On the oth-
er hand, if “first order shear deformation theory” is used, the finite element model
needs to introduce the shear correction factor for alleviating the shear locking prob-
lem.

Recently, Dong, EI-Gizawy, Juhany and Atluri (2014) developed an efficien-
t locking-free 4-noded finite element for analyzing the laminated beams, based on
simple and conventional 2D elasticity theories. This work motivated the authors
to develop a new simple 4-noded finite element for analyzing the smart composite
structures without using any higher order or layer-wise deformation theories. This
paper is concerned with the derivation of such a new smart finite element. Laminat-
ed composite beams integrated with a piezoelectric layer at their top surfaces are
considered for deriving this new smart finite element. Exact solutions of the over-
all smart beams are also derived here for validating the new finite element model.
Two more finite element models of the overall beams based on an equivalent single
layer high order shear deformation theory and a layer-wise high order shear defor-
mation theory are also derived for the purpose of comparison, and for determining
the number of the new smart elements required across the thickness of the overall
beam.

2 Basic Equations

Figure 1 illustrates a simply supported laminated composite beam integrated with a
layer of piezoelectric material at its top surface. The length and the thickness of the
beam are designated by L and h, respectively. The thickness of the piezoelectric
layer is denoted by hp. The top surface of the beam is subjected to a distributed
mechanical load q(x). The piezoelectric layer acts as a distributed actuator layer
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Figure 1: Schematic diagram of a simply supported laminated composite beam
integrated with a piezoelectric actuator layer.

of the substrate beam. For actuating the substrate beam, the distributed electric
potential (voltage) is applied on the top surface of the piezoelectric layer while
the surface of the piezoelectric layer being in contact with the top surface of the
substrate beam is grounded. The origin of the coordinate system (x− z) is located
at one end of the beam such that the lines given by x = 0 and x = L represent
the ends of the beam and the plane given by z = 0 denotes the mid-plane of the
beam. The constitutive relations for the converse and the direct piezoelectric effects
appropriate for the beam analysis are given by

{σ p}= [Cp]{∈p∗}− [e](E}, (1)

{D}= [e]T{∈p∗}+[ε](E} (2)

In Eqs. (1) and (2), the state of stresses {σ p}, the state of assumed strains {∈p∗},
the electric field vector {E}, the electric displacement vector {D}, the elastic coef-
ficient matrix [Cp], the piezoelectric constant matrix [e] and the dielectric constant
matrix [ε] are given by

{σ p}= [ σ
p
x σ

p
z σ

p
xz ]T , {∈p∗}= [ ∈p∗

x ∈p∗
z γ

p∗
xz ]T ,

{E}=
[

Ex Ez
]T

, {D}=
[

Dx Dz
]T

,

[Cp] =

 Cp
11 Cp

13 0
Cp

13 Cp
33 0

0 0 Cp
55

 , [e] =

 0 e31
0 e33
0 0

 and [ε] =

[
ε11 0
0 ε33

]
(3)
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in which, σ
p
x , σ

p
z and σ

p
xz are the normal stress along the x-direction, the normal

stress along the z-direction and the transverse shear stress, respectively at any point
in the piezoelectric layer; while ∈p∗

x , ∈p∗
z and γ

p∗
xz are the assumed normal strain

along the x-direction, the assumed normal strain along the z-direction and the as-
sumed transverse shear strain, respectively at the same point. Also, Cp

i j, ei j and εi j

are the elastic coefficients, the piezoelectric coefficients and the dielectric constants
of the piezoelectric material, respectively while Ex and Ez are the electric fields a-
long the x-and the z- directions, respectively. The constitutive relations for the k-th
orthotropic composite layer of the substrate beam are

σ
k
x =Ck

11 ∈∗x +Ck
13 ∈∗z , σ

k
z =Ck

13 ∈∗x +Ck
33 ∈∗z

and σ
k
xz =Ck

55γ
∗
xz, k = 1, 2, 3, . . . , N

(4)

in which, σ k
x , σ k

z and σ k
xz are the normal stress along the x-direction, the normal

stress along the z-direction and the transverse shear stress, respectively at any point
in the k-th layer of the substrate beam while ∈∗x , ∈∗z and γ∗xz are the assumed normal
strain along the x-direction, the assumed normal strain along the z-direction and
the assumed transverse shear strain, respectively at the same point in the k-th layer.
Also, Ck

i j is the elastic constant of the orthotropic k-th layer. The displacement
fields {dp} and {d} at any point in the piezoelectric layer and in the substrate
beam, respectively are given by

{dp}=
[

up wp
]T and {d}=

[
u w

]T (5)

where up and wp are the displacements at any point in the piezoelectric layer along
the x-and the z- directions, respectively while u and w are the same in the substrate
beam. Based on the displacement fields, the states of strains {∈p} and {∈} at any
point in the piezoelectric layer and in the substrate beam, respectively are given by

{∈p}=
[
∈p

x ∈p
z γ

p
xz
]T

=
[

∂up

∂x
∂wp

∂ z
∂up

∂ z + ∂wp

∂x

]T

and {∈}=
[
∈x ∈z γxz

]T
=
[

∂u
∂x

∂w
∂ z

∂u
∂ z +

∂w
∂x

]T (6)

The electric potential function φ (x, z) at any point in the piezoelectric layer is re-
lated to the electric fields as follows:[

Ex Ez
]
=−

[
∂φ

∂x
∂φ

∂ z

]
(7)

The total potential energy (Π) of the overall smart composite beam of width b is
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given by

Π =
1
2

b
L∫

0

 h/2+hp∫
h/2

(σ p
x ∈p∗

x +σ
p
z ∈p∗

z +σ
p
xzγ

p∗
xz −DxEx−DzEz)dz

+
N

∑
k=1

hk+1∫
hk

(σ k
x ∈∗x +σ

k
z ∈∗z +σ

k
xzγ
∗
xz)dz−2q(x)w(x, h/2+hp)

− 2Φ(x) σ̄(x)|z=h/2+hp

]
dx

(8)

In Eq. (8), Φ(x) and σ̄(x)are the applied distributed electric potential and charge on
the top surface of the piezoelectric layer, respectively. Also, hk and hk+1 represent
the z coordinates of the bottom and the top surfaces of any orthotropic layer of the
substrate beam, respectively.

2.1 Derivation of new 4-noded smart finite elements

(a) (b)

Figure 2: Typical 4-noded finite elements: (a) one piezoelectric smart element and
one laminated beam element across the thickness of the overall smart beam (b) one
laminated smart element across the thickness of the overall smart beam

The overall smart composite beam is discretized by four noded isoparametric el-
ements. The finite element mesh can be generated by using two elements across
the thickness of the overall beam as shown in Fig. 2(a). In this case, the bottom
element is composed of the orthotropic layers of the substrate beam and is called
the beam element, while the top element is composed of the piezoelectric material
only and is called the piezoelectric element. The other option for generating the
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mesh is to use one element across the thickness of the overall beam as shown in
Fig. 2(b). This element is a laminated smart finite element in which the top layer is
the piezoelectric layer while the other layers are the orthotropic layers of the sub-
strate beam. Thus three types of elements namely the piezoelectric smart element,
laminated smart finite element and the beam element are to be formulated for the
mesh described by Fig. 2. The piezoelectric smart element is characterized by its
height hp and length L/n with n being the number of elements along the length of
the beam. The length and height of the beam element are L/n and h, respectively.
The assumed strain fields in the piezoelectric and the beam elements are given by
[Dong, EI-Gizawy, Juhany and Atluri (2014)]:

{∈p∗}= [A]{γ p} and {∈∗}= [A]{γ} (9)

in which {γ p} and {γ} are the matrices of unknown constants for the assumed
strain distributions and [A] is a matrix describing the distribution of the assumed
strains in the elements. These are given by

[A] =

 1 0 0 z 0
0 1 0 0 x
0 0 1 0 0

 , {γ p}=
[

γ
p
1 γ

p
2 γ

p
3 γ

p
4 γ

p
5

]T
and {γ}=

[
γ1 γ2 γ3 γ4 γ5

]T (10)

It may be noted from Eqs. (9) and (10) that the assumed normal strains vary linearly
with respect to the element-local Cartesian coordinates and the assumed transverse
shear strain is constant. It is also to be noted that the assumed bending strain is not
coupled with the shear deformation. On the other hand, the displacements at any
point in the respective element are given by nodal interpolation:

{dp}= [N]{dpe} and {d}= [N]{de} (11)

in which [N] is the shape function matrix, {dpe} and {de} are the nodal displace-
ment degrees of freedom for the piezoelectric element and the beam element, re-
spectively and their explicit forms are as follows:

{dpe}=
[

up
1 wp

1 up
2 wp

2 up
3 wp

3 up
4 wp

4

]T
,

{de}=
[

u1 w1 u2 w2 u3 w3 u4 w4
]T

,

[N] =

[
n1 0 n2 0 n3 0 n4 0
0 n1 0 n2 0 n3 0 n4

]
,

n1 = (1−ξ )(1−η)/4, n2 = (1+ξ )(1−η)/4,

n3 = (1+ξ )(1+η)/4 and n4 = (1−ξ )(1+η)/4

(12)
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Figure 3: 4-noded element with five points of collocation.

where up
i , wp

i (i=1, 2, 3, 4) are the displacements of the i-th node of the piezoelectric
element along the x-and the z- directions, respectively; ui, wi (i=1, 2, 3, 4) are the
same for the beam element, ni is the shape function of natural coordinates (ξ , η)
associated with the i-th node of the element. It is evident from Eqs. (11) and (12)
that the mesh based normal strains are associated with the mesh based shear strain.
Thus it is impossible to cause linearly varying bending strain across the thickness
of the beam without causing transverse shear strain. This leads to the so-called
phenomenon of shear locking. In order to alleviate this locking problem, Dong
and Atluri (2011) suggested to invoke the compatibility between the independently
assumed strain and the mesh based strain field based on the displacement field at
some pre-selected points of collocation resulting in the solutions of the unknown
constants {γ p} and {γ}. The five such preselected points of collocation as shown
in Fig. 3 are considered as follows:

Point A: ξ = 0, η =− 1√
3

; Point B: ξ = 0, η =
1√
3

;

Point C: ξ =− 1√
3
, η = 0; Point D: ξ =

1√
3
, η = 0;

Point E: ξ = 0, η = 0;

(13)

Thus the compatibility of the assumed strains with the mesh based strains based on
the displacement fields at the above mentioned five points given by Eq. (13) results
in the following conditions:
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Piezoelectric element:

γ
p
1 + zp

Aγ
p
4 =∈p

x
(
xp

A,z
p
A

)
, γ

p
1 + zp

Bγ
p
4 =∈p

x
(
xp

B,z
p
B

)
,

γ
p
2 + xp

Cγ
p
5 =∈p

z
(
xp

C,z
p
C

)
, γ

p
2 + xp

Dγ
p
5 =∈p

z
(
xp

D,z
p
D

)
and γ

p
3 = γ

p
xz
(
xp

E ,z
p
E

) (14)

Beam element:

γ1 + zAγ4 =∈x
(
xp

A,z
p
A

)
, γ1 + zBγ4 =∈x

(
xp

B,z
p
B

)
,

γ2 + xCγ5 =∈z
(
xp

C,z
p
C

)
, γ2 + xDγ5 =∈z

(
xp

D,z
p
D

)
and γ3 = γxz

(
xp

E ,z
p
E

) (15)

It may be noted that the coordinates xp
C, xp

D, zp
A and zp

B are the local Cartesian co-
ordinates of the points of collocation in the piezoelectric element while xC, xD, zA

and zB are the local Cartesian coordinates in the beam element. Using the strain-
displacement relations given by Eq. (6) in Eqs. (14) and (15), the unknown con-
stants {γ p} and {γ} can be determined as follows:

{γ p}= [X̄ p]−1[B]{dpe}and {γ}= [X̄ ]−1[B]{de} (16)

where,

[X̄ p] =


1 0 0 zp

A 0
1 0 0 zp

B 0
0 1 0 0 xp

C
0 1 0 0 xp

D
0 0 1 0 0

 , [X̄ ] =


1 0 0 zA 0
1 0 0 zB 0
0 1 0 0 xC

0 1 0 0 xD

0 0 1 0 0



and [B] =



∂n1
∂x

∣∣∣
A

0 ∂n2
∂x

∣∣∣
A

0 ∂n3
∂x

∣∣∣
A

0 ∂n4
∂x

∣∣∣
A

0
∂n1
∂x

∣∣∣
B

0 ∂n2
∂x

∣∣∣
B

0 ∂n3
∂x

∣∣∣
B

0 ∂n4
∂x

∣∣∣
B

0

0 ∂n1
∂ z

∣∣∣
C

0 ∂n2
∂ z

∣∣∣
C

0 ∂n3
∂ z

∣∣∣
C

0 ∂n4
∂ z

∣∣∣
C

0 ∂n1
∂ z

∣∣∣
D

0 ∂n2
∂ z

∣∣∣
D

0 ∂n3
∂ z

∣∣∣
D

0 ∂n4
∂ z

∣∣∣
D

∂n1
∂ z

∣∣∣
E

∂n1
∂x

∣∣∣
E

∂n2
∂ z

∣∣∣
E

∂n2
∂x

∣∣∣
E

∂n3
∂ z

∣∣∣
E

∂n3
∂x

∣∣∣
E

∂n4
∂ z

∣∣∣
E

∂n4
∂x

∣∣∣
E


(17)

It may again be noted that each row of the matrix [B] is to be computed at each
of the five collocated points given by Eq. (13). On substitution of Eq. (16) into
Eq. (9), the assumed strains can be expressed in terms of the nodal displacement
degrees of freedom as follows:

{∈p∗}= [B∗p]{dpe} and {∈p}= [B∗]{de} (18)
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in which [B∗p] = [A][X̄p]
−1[B] and [B∗] = [A][X̄ ]−1[B]. The electric potential at any

point in the piezoelectric finite element can be expressed in terms of the nodal
electric potential degrees of freedom {φ e} as follows:

φ = [Nφ ]{φ e} (19)

where

[Nφ ] =
[

n1 n2 n3 n4
]

and {φ e}=
[

φ1 φ2 φ3 φ4
]T (20)

Using Eq. (5) in Eq. (3), it can be written that

{E] =−[Bφ ]{φ e} (21)

where

[Bφ ] =

[
∂n1
∂x

∂n2
∂x

∂n3
∂x

∂n4
∂x

∂n1
∂ z

∂n2
∂ z

∂n3
∂ z

∂n4
∂ z

]
(22)

The materials being studied here are linear. Thus substituting Eqs. (1), (2), (4),
(11), (18), (5) and (6) in Eq. (4) and subsequently applying the principle of mini-
mum potential energy i.e. δΠ = 0, the following elemental governing equilibrium
equations are obtained:

[K pe]{dpe}+[K pe
dφ
]{φ e}= 0, [K pe

dφ
]T{dpe}− [K pe

φφ
]{φ e}= {Fe

φ }

and [Ke]{de}= {Fe}
(23)

where [K pe] and [Ke] are the elemental stiffness matrices for the piezoelectric ele-
ment and the substrate beam element, respectively; [K pe

dφ
] and [K pe

φφ
] are the elemen-

tal electro-elastic coupling matrix and the elemental dielectric stiffness matrix of
the piezoelectric layer, respectively. Also, {Fe

φ
} and {Fe} are the elemental electri-

cal load vector due to the applied distributed charge and the elemental mechanical
load vector, respectively. The forms of these matrices are given by

[K pe] =

Le∫
0

h/2+hp∫
h/2

[B∗]T [Cp][B∗]dzdx, [K pe
dφ
] =

Le∫
0

h/2+hp∫
h/2

[B∗]T [e][Bφ ]dzdx,

[K pe
φφ
] =

Le∫
0

h/2+hp∫
h/2

[Bφ ]
T [ε][Bφ ]dzdx, {Fe

φ }=
Le∫

0

[Nφ ]
T

σ̄(x, h/2+hp)dx,

[Ke] =

Le∫
0

N

∑
k=1

hk+1∫
hk

[B∗]T [Ck][B∗]dzdx, {Fe}=
Le∫

0

[N]T [ 0 1]T p(x,−h/2)dx
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(24)

As discussed in [Dong, EI-Gizawy, Juhany and Atluri (2014)], the technique of
“over integration” is needed to accurately evaluate the stiffness matrices of laminat-
ed elements. In order to take care of the different material properties of each lamina
in the substrate, a layer-wise two-point Gauss quadrature in the thickness direction
is adopted in this study. In this way, we consider another variable (−1 ≤ ηk ≤ 1)
as the natural coordinate in the thickness direction of any (k-th) individual layer,
which can be related to the natural coordinate (−1 ≤ η ≤ 1) of the whole beam
element as follows:

η =
1
h
(hk +hk+1)+

ηk

h
(hk+1−hk) (25)

Thus the elemental stiffness matrix for the substrate beam is to be evaluated as:

[Ke] =

1∫
−1

N

∑
k=1

1∫
−1

[B∗]T [Ck][B∗] |J| (hk+1−hk)

h
dηkdξ (26)

The elemental equations as derived above are assembled in a straight forward man-
ner to obtain the global equations of equilibrium as follows:

[K]{d}+[Kdφ ]{φ}= {F} (27)

[Kdφ ]
T{d}− [Kφφ ]{φ}= {Fφ} (28)

It may be noted that although two sets of equations given by Eqs. (27) and (28)
are derived, Eq. (27) is required to compute the nodal displacements if the electric
potential is prescribed and Eq. (28) estimates the corresponding nodal charges.

2.2 Exact Solutions of the Smart Composite Beam

Replacing the assumed strains {∈p∗} and {∈p∗} by the displacement field based s-
trains {∈p} and {∈}, respectively in Eq. (8) and applying the principle of minimum
potential energy i.e. δΠ = 0, the following governing equilibrium equations for the
piezoelectric layer and the orthotropic layers of the substrate beam are obtained:

Piezoelectric layer: σ
p
x, x + σ

p
xz, z = 0, σ

p
xz, x + σ

p
z, z = 0 and Dx ,x + Dz ,z = 0 (29)

Substrate beam: σ
k
x,x + σ

k
xz,z = 0 and σ

k
xz,x + σ

k
z,z = 0; k = 1,2,3, ...,N (30)

The simply supported boundary conditions obtained from the variational principle
are

σ
k
x = wk = σ

p
x = wp = φ = 0 at x = 0 and L; k = 1,2,3, ...,N

σ
p
z (x, h/2+hp) = q(x), σ

1
z (x,−h/2) = σ

p
xz(x, h/2+h f ) = σ

1
xz(x,−h/2) = 0,

φ(x, y, h/2+hp) = Φ(x) and φ(x, y, h/2) = 0
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(31)

Also, the variational principle yields the following interface continuity conditions:

up(x, h/2) = uN(x, h/2), wp(x, h/2) = wN(x, h/2),

σ
p
z (x, h/2) = σ

N
z (x, h/2), σ

p
xz(x, h/2) = σ

N
xz(x, h/2),

uk(x, hk+1) = uk+1(x, hk+1),

wk(x, hk+1) = wk+1(x, hk+1); k = 1,2,3, ...,N−1

σ
k
z (x, hk+1) = σ

k+1
z (x, hk+1),

σ
k
xz(x, hk+1) = σ

k+1
xz (x, hk+1); k = 1,2,3, ...,N−1

(32)

2.2.1 Exact solutions for the piezoelectric layer

For a particular mode of deformation, the displacement functions and the electric
potential function for the piezoelectric solid which satisfy the boundary conditions
at the edges of the beam given by Eq. (31) are assumed as

up =U p(z)cos px, wp =W p(z)sin px and φ = Φ(z)sin px (33)

where U p(z), W p(z) and Φ(z) are unknown functions of z and p = mπ/L with m
being the mode number. It may further be assumed that[

U p(z) W p(z) Φ(z)
]
=
[

U0p W 0p Φ0
]

esz (34)

where U0p, W 0p and Φ0 are unknown constants to be determined and s is a char-
acteristic parameter. Considering {∈p} and {∈} in place of {∈p∗} and {∈p∗},
respectively and subsequently using Eqs. (1), (2), (6), (33) and (34) into the gov-
erning equations given by Eq. (29), the following set of homogeneous algebraic
equations are obtained: A11 A12 A13
−A12 A22 A23
−A13 A23 −A33


U0p

W 0p

Φ0

=


0
0
0

 (35)

in which

A11 =Cp
55s2−Cp

11 p2, A12 = (Cp
13 +Cp

55)ps, A13 = e31 ps,

A22 =Cp
33s2−Cp

55 p2, A23 = e33s2, A33 = ε33s2− ε11 p2 (36)

For non-trivial solutions of U0p, W 0p and Φ0, the determinant of the co-efficient
matrix of Eq. (36) must vanish. This leads to the following sixth degree polynomial
equation:

As6 +Bs4 +Cs2 +D = 0 (37)
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where,

A = ε33Cp
33Cp

55 + e2
33Cp

55, D =−ε11Cp
11Cp

55 p6

B =−{ε33(C
p
55

2
+Cp

11Cp
33)+ ε11Cp

33Cp
55− ε33(C

p
13 +Cp

55)
2

+ e2
33Cp

11 + e2
31Cp

33−2e31e33(C
p
13 +Cp

55}p2
,

C = {ε33Cp
11Cp

55 + ε11(C
p
55

2
+Cp

11Cp
33)+ e2

31Cp
55− ε11(C

p
13 +Cp

55)
2}p4 (38)

For the geometrical parameters and material properties of the piezoelectric material
that is considered for evaluating the numerical results, two real roots and two pairs
of complex conjugate roots of Eq. (37) are obtained and these are denoted as

s1 , s2 = ±γ, s3 , s4 = (α± iβ ), s5 , s6 = −(α∓ iβ ) (39)

The last two equations of Eq. (35) provide:

W 0 = f (s)U0 and Φ
0 = g(s)U0 (40)

in which,

f (s) =
A13A23 +A12A33

A2
23 +A22A33

, g(s) =
A12A23−A13A22

A2
23 +A22A33

(41)

Now using the roots of Eq. (37) and the relations given by Eq. (40) in Eqs. (33)
and (34), the exact solutions for the displacement fields (up, wp) and the electric
potential function (φ ) in the piezoelectric layer are derived as follows:

up =(U1eγz +U2e−γz +U3eαz cos β z+U4eαz sin β z+U5e−αz cos β z

+U6e−αz sin β z) cos px
(42)

wp ={R1U1eγz +R2U2e−γz +U3eαz(R3 cos β z−R4 sin β z)

+U4eαz(R4 cos β z+R3 sin β z)−U5e−αz(R3 cos β z+R4 sin β z)

+U6e−αz(R4 cos β z−R3 sin β z)} sin px

(43)

φ ={Q1U1eγz +Q2U2e−γz +U3eαz(Q3 cos β z−Q4 sin β z)

+U4eαz(Q4 cos β z+Q3 sin β z)−U5e−αz(Q3 cos β z+Q4 sin β z)

+U6e−αz(Q4 cos β z−Q3 sin β z)} sin px

(44)

in which Ui (i=1, 2, 3, . ., 6) are the unknown constants. The various constants
appearing in Eqs. (43) and (44) are given by

Ri = f (si) and Qi = g(si); i = 1 and 2

R3 = Re{ f (s3)}, R4 = Im{ f (s3)}, Q3 = Re{g(s3)}
and Q4 = Im{g(s4)}

(45)
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Next, using the constitutive relations given by Eq. (1), the exact solutions for the
stresses in the piezoelectric layer are obtained as follows:

σ
p
x ={T1U1eγz +T2U2e−γz +U3eαz(T3 cos β z−T4 sin β z)

+U4eαz(T4 cos β z+T3 sin β z)+U5e−αz(T3 cos β z+T4 sin β z)

−U6e−αz(T4 cos β z−T3 sin β z)} sin px

(46)

σ
p
z ={T5U1eγz +T6U2e−γz +U3eαz(T7 cos β z−T8 sin β z)

+U4eαz(T8 cos β z+T7 sin β z)+U5e−αz(T7 cos β z+T8 sin β z)

−U6e−αz(T8 cos β z−T7 sin β z)} sin px

(47)

σ
p
xz ={T9U1eγz +T10U2e−γz +U3eαz(T11 cos β z−T12 sin β z)

+U4eαz(T12 cos β z+T11 sin β z)−U5e−αz(T11 cos β z+T12 sin β z)

+U6e−αz(T12 cos β z−T11 sin β z)} cos px

(48)

The various coefficients Ti (i=1, 2, 3, . . ., 12) appearing in Eqs. (46) to (48) are
given by

T1 =−pCp
11 +R1γCp

13−Q1γe33, T2 =−pCp
11−R2γCp

13−Q2γe33,

T3 =−pCp
11 +Cp

13(αR3−βR4)+ e33(αQ3−βQ4),

T4 =Cp
13(αR4 +βR3)+ e33(αQ4 +βQ3),

T5 =−pCp
13 +R1γCp

33 +Q1γe33, T6 =−pCp
13−R2γCp

33−Q2γe33,

T7 =−pCp
13 +Cp

33(αR3−βR4)+ e33(αQ3−βQ4),

T8 =Cp
33(αR4 +βR3)+ e33(αQ4−βQ3),

T9 =Cp
55(γ + pR1), T10 =Cp

55(γ− pR2),

T11 =Cp
55(α + pR3), T12 =Cp

55(β + pR4) (49)

2.2.2 Exact Solutions for the substrate Beam

For a particular mode of deformation, the displacement field for any (k-th) layer
of the substrate beam satisfying the boundary conditions given by Eq. (31) can be
assumed as

uk =U0kerkz cos px and wk =W 0kerkz sin px (50)

in which U0k, W 0k are the unknown constants for the k-th layer and ris a character-
istic parameter. Substitution of Eq. (50) into the governing equations for the k-th
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layer of the substrate beam given by Eq. (30) and the use of strain displacement
relations result into the following characteristics equation for the layer:

Akr4
k +Bkr2

k +Ck = 0 (51)

where Ak =Ck
33Ck

55, Bk =Ck
13

2
+2Ck

13Ck
55−Ck

11Ck
33 and Ck =Ck

11Ck
55 p4.

The roots of Eq. (51) are given by

rk1, rk2 = λk, −λk and rk3, rk4 = δk, −δk (52)

where λk =

√
1

2Ak

{
−Bk +

√
B2

k−4AkCk

}
and δk =

√
1

2Ak

{
−Bk−

√
B2

k−4AkCk

}
Using Eqs. (4), (50) and (52) and carrying out some algebraic manipulations, the
exact solutions for the displacement fileds and the state of stresses at any point in
the k-th layer of the substrate beam can be derived as follows:

uk = (Uk
1 eλkz +Uk

2 e−λkz +Uk
3 eδkz +Uk

4 e−δkz)cos px (53)

wk = {Lk
1(U

k
1 eλkz−Uk

2 e−λkz)+Lk
2(U

k
3 eδkz−Uk

4 e−δkz)}sin px (54)

σ
k
x ={(−pCk

11 +Lk
1λkCk

13)(U
k
1 eλkz +Uk

2 e−λkz)

+(−pCk
11 +Lk

2λkCk
13)(U

k
3 eδkz +Uk

4 e−δkz)}sin px
(55)

σ
k
z ={(−pCk

13 +Lk
1λkCk

33)(U
k
1 eλkz +Uk

2 e−λkz)

+(−pCk
13 +Lk

2λkCk
33)(U

k
3 eδkz +Uk

4 e−δkz)}sin px
(56)

σ
k
xz =Ck

55{(λk + pLk
1)(U

k
1 eλkz−Uk

2 e−λkz)

+(δk + pLk
2)(U

k
3 eδkz−Uk

4 e−δkz)}cos px
(57)

in which Lk
1 =

(Ck
13+Ck

55)pλk

Ck
33λ 2

k−Ck
55 p2 and Lk

2 =
(Ck

13+Ck
55)pδk

Ck
33δ 2

k−Ck
55 p2 .

2.2.3 Solutions of unknown constants

In order to solve the unknown constants (Ui, i = 1,2,3, ..6;Uk
i , i = 1,2,3,4 and k =

1,2,3, ...,N), the prescribed boundary conditions are considered as follows:

q(x) = q0 sin px, Φ(x) =V sin px and φ (x, h/2) = 0 (58)

in which q0 is the amplitude of the prescribed mechanical load and V is the am-
plitude of the prescribed electric potential at the top surface of the piezoelectric
layer. Satisfaction of the prescribed boundary conditions given by Eqs. (31) and
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(58) and the continuity conditions given by Eq. (32) leads to the following system
of algebraic equations:

[K]{Γ}= {Q} (59)

in which Ki j is the coefficient of Γ j while the vectors {Γ} and {Q} are given by

{Γ}=
[

U1 U2 U3 · · · U1
1 U1

2 U1
3 U1

4 · · · UN
1 UN

2 UN
3 UN

4

]T
and {Q}=

[
q0 0 V 0 · · · 0 0 0

]T
(60)

3 Finite element model using LHSDT

For the beam analysis, an equivalent single layer high order shear deformation
theory (HSDT) proposed by Lo, Christensen and Wu (1978) is given by

u = u0 + zθx + z2
φx + z3

γx and w = w0 + zθz + z2
φz (61)

in which u0 and w0 are the translational displacement of any point on the mid-
plane (z=0) of the substrate beam along x and z directions, respectively; θx and θz

are the first order rotational variables while φx, γx and φz are high order rotational
variables. In this section, a finite element model of the overall smart beam being
studied here is derived using a “layer-wise high-order shear deformation theory
(LHSDT)”. According to this LHSDT, the displacement field at any point in the
substrate beam is given by Eq. (61) while the displacement field at any point in the
piezoelectric layer is considered as follows:

up = u0 +
h
2

θx +
h2

4
φx +

h3

8
γx +(z−h/2)ψx +(z2− h2

4
)lx +(z3− h3

8
)mx

up = u0 +
h
2

θz +
h2

4
φz +(z−h/2)ψz +(z2− h2

4
)lz (62)

in which ψx, lx, mx, ψz and lz are the generalized rotational coordinates for the
piezoelectric layer. The generalized displacement coordinates at any point in the
overall beam are expressed in a vector form as follows:

{d}= [ u0 w0 θx φx γx ψx lx mx θz φz ψz lz]
T (63)

A three-noded bar element is used for implementing this LHSDT to discretize the
overall beam. Thus the generalized displacement coordinate vector for the i-th node
of the element is given by

{di}= [ u0i w0i θxi φxi γxi ψxi lxi mxi θzi φzi ψzi lzi]
T
, i = 1,2,3 (64)
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and the generalized displacement vector {d} at any point in the element can be
expressed in terms of the nodal generalized displacement vector as follows:

{d}= [N]{de} (65)

in which the shape function matrix [N] and the nodal generalized displacement
vector {de} for the element are given by

[N] =
[
[N1] [N2] [N3]

]
and {de}=

[
{d1}T {d2}T {d3}T

]T (66)

while [Ni] = niI with ni and I being the shape function associate with the i-th node
of the element and a (12x12) identity matrix, respectively. The state of strains at
any point in the substrate beam and that in the piezoelectric layer of the element
can be expressed in terms of the nodal generalized degrees of freedom as follows:

{∈}= [Z1][B1]{de} and {∈p}= [Z2][B2]{de} (67)

in which the matrices [Z1] and [Z2] and the nodal strain-displacement matrices [B1]
and [B2] are presented in the Appendix. The electric potential function which is
zero at the interface between the piezoelectric layer and the substrate beam may be
assumed as

φ(x, z) =
(z−h/2)

hp
φ0(x) (68)

wherein φ0 is the electric potential distribution at the top surface of the piezoelec-
tric layer and can be expressed in terms of the nodal electric potential degrees of
freedom {φ e}as follows:

φ0 = [N̄φ ]{φ e}, [N̄φ ] = [ n1 n2 n3 ] and {φ e}= [ φ01 φ02 φ03 ]T (69)

Using Eqs. (7), (68) and (69), the electric filed vector at any point in the piezoelec-
tric layer of the element can expressed as

{E}=−[Zp][B3]{φ e} (70)

in which the matrices [Zp]and [B3] are presented in the Appendix. Using Eqs. (8),
(65), (67), (69) and (70) and carrying out the explicit integration with respect to z,
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the total potential energy of a typical element can be expressed as follows:

Π
e=

1
2

b
Le∫

0

{de}T
(
[B1]

T [D1][B1]+ [B2]
T [D2][B2]

)
{de}dx

+b
Le∫

0

{de}T [B2]
T [D3][B3]{ϕe}dx

− 1
2

b
Le∫

0

{ϕe}T [B3]
T [D4][B3]{ϕe}dx−b{ϕe}T{Fe

ϕ}−b{de}T{Fe}

(71)

in which,

[D1] =
N

∑
k=1

hk+1∫
hk

[Z1]
T [Ck][Z1]dz, [D2] =

h/2+hp∫
h/2

[Z2]
T [Cp][Z2]dz,

[D3] =

h/2+hp∫
h/2

[Z2]
T [e][Zp]dz [D4] =

h/2+hp∫
h/2

[Zp]
T [ε][Zp]dz,

{Fe
φ }=

Le∫
0

[Nφ ]
T

σ̄dx

and

{Fe}=
Le∫

0

[NT
] [ 0 1 0 0 0 0 0 0 0 0 0 0 ]T pdx

Now applying the principle of minimum potential energy i.e. δΠ= 0, the following
elemental governing equilibrium equations of the overall smart beam based on the
LHSDT are obtained:

[Ke]{dpe}+[Ke
dφ ]{φ e}= {Fe} and [Ke

dφ ]
T{de}+[Ke

φφ ]{φ e}= {Fe
φ } (72)

In Eq. (72), the various elemental matrices are given by

[Ke] =

Le∫
0

([B1]
T [D1][B1]+ [B1]

T [D1][B1])dx, [Ke
dφ ] =

Le∫
0

[B2]
T [D3][B3]dx

and [Ke
φφ ] =

Le∫
0

[B3]
T [D4][B3]dx

(73)
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The global equations of equilibrium of the overall smart beam are obtained by as-
sembling the elemental equations in a straight forward manner. However, they can
be representd by Eqs. (27) and (28). Using the “equivalent single layer HSDT”
given by Eq. (61), the above finite element model (FEM) has been suitably aug-
mented to derive another FEM of the overall smart beam. However, for the sake of
brevity the derivation of this FEM is not presented here.

4 Computation of transverse shear stress

The bending stress (σx) computed by the finite element models as derived above
can be utilized to compute the transverse shear stress in the overall smart beams by
numerically integrating the governing equilibrium equation as follows:

σxz =−
z∫

−h/2

∂σx

∂x
dz (74)

5 Results and discussions

In this section, numerical results are presented to investigate the performance of
the new 4-noded smart finite elements derived here. The thickness of the substrate
beam and that of the piezoelectric layer are considered as 5mm and 250µm, respec-
tively, while the aspect ratio (L/h) of the substrate beam is considered as 50. The
elastic and piezoelectric material properties of the piezoelectric layer (PZT5H) are
used as follows [Smith and Auld (1991)]:

Cp
11 = 151GPa, Cp

13 = 96GPa, Cp
33 = 124GPa, Cp

55 = 23GPa,

e31 =−5.1C/m2 and e33 = 27C/m2

The material properties of the orthotropic layers of the substrate beam are used as
follows [Pagano (1970)]:

EL = 172.5GPa, EL/ET = 25, υLT = υT T = 0.25,

GLT = 0.6ET , GT T = 0.2ET

in which the symbols have their usual meaning. The top surface of the overall smart
beam is subjected to the sinusoidally distributed upward mechanical load given by
Eq. (58) while the value of the amplitude (q0) of the applied load is 50N/m2. Unless
otherwise mentioned, the overall smart beam is discretized considering one element
for the substrate beam and one piezoelectric finite element across the thickness of
the overall smart beam as shown in Fig. 2(a). Also 10 elements are considered
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along the length of the beam. First a smart beam is considered in which the sub-
strate beam is a single layered beam. Figure 4 illustrates the static responses of this
beam when the piezoelectric layer is activated with the prescribed electric potential
(voltage) on its top surface. Displayed in the figure are the deflections w(x, 0) of
the mid-plane of the beam computed by the present new smart finite element model
(FEM) and exact solutions. It may be observed from this figure that the piezoelec-
tric layer activated by a negative voltage counteracts the upward deflection of the
beam due to the mechanical load only. The responses obtained by the present new
smart FEM almost identically match with the exact solutions when the piezoelec-
tric layer is passive (V =0) and active (V 6=0). The distributions of the axial normal
stress σx(a/2, z) and the transverse shear stress σxz(L/30, z) across the thickness of
the substrate of this smart beam have been illustrated in Figs. 5 and 6, respectively.
It may be observed from these figures that the flexural stress and transverse shear
stress computed by the present new FEM match excellently with the exact solu-
tions for the flexural stress and the transverse shear stress when the piezoelectric
layer is active (V 6=0) and passive (V =0). Figures 7 to 9 illustrate that the deflec-
tions w(x, 0) of the mid-plane of the cross-ply substrate beams when the lamination
sequence in the beams are (0˚/90˚), (0˚/90˚/0˚) and (0˚/90˚/0˚/90p), respectively. It
may be observed from these figures that the present new smart FEM accurately
computes the deflections of the mid-plane of these substrate beams. Figures 10 and
11 illustrate the comparison of the distributions of the axial normal stress σx(a/2, z)
across the thickness of the symmetric (0˚/90˚/0˚) and antisymmetric (0˚/90˚/0˚/90p)
cross-ply substrate beams computed by the present new smart FEM with that ob-
tained by the exact solutions. It may be observed that the present new smart FEM
accurately computes the bending stress in the multi-layered composite beams when
the piezoelectric layer is active (V 6=0) and passive (V =0). When compared with
the exact solutions, the transverse shear stress σxz(L/30, z) across the thickness
of the multilayered symmetric (0˚/90˚/0˚) and antisymmetric (0˚/90˚/0˚/90p) cross-
ply substrate beams computed by the present new smart FEM are indistinguishable
from those obtained by the exact solutions as shown in Figs. 12 and 13, respective-
ly.

At this juncture it may be recalled that the forgoing results are presented consid-
ering one element across the thickness of the substrate beam and one piezoelectric
finite element across the thickness of the piezoelectric layer as shown in Fig. 2(a).
Thus two elements are used across the thickness of the overall smart beam. Since
the beam element contains multiple orthotropic layers, a question naturally aris-
es that if one element can be used across the thickness of the overall smart beam
in which the top layer of the element is the piezoelectric layer as shown in Fig.
2(b). Figure 14 illustrates such results for the deflection of the mid-plane of a
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Figure 4: Active static control of shape of a single layered composite beam
(L/h=50, hp=250µm, h=0.005m, w∗ = 100ET h3

q0a4 w(x, 0), q0 =50N/m2).

Figure 5: Distribution of axial stress across the thickness of the beam with and with-
out actuated by a piezoelectric layer (L/h=50, hp=250µm, h=0.005m, q0 =50N/m2).
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Figure 6: Distribution of the transverse shear stress across the thickness of the
single layered composite beam (L/h=50, hp=250µm, h=0.005m, q0=50N/m2).

Figure 7: Active static control of shape of a two layered (0˚/90˚) composite beam
(L/h=50, hp=250µm, h=0.005m, w∗ = 100ET h3

q0a4 w(x, 0), q0=50N/m2).
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Figure 8: Active static control of shape of a three layered (0˚/90˚/0˚) composite
beam (L/h=50, hp=250µm, h=0.005m, w∗ = 100ET h3

q0a4 w(x, 0), q0=50N/m2).

Figure 9: Active static control of shape of a four layered (0˚/90˚/0˚/90˚) composite
beam (L/h=50, hp=250µm, h=0.005m, w∗ = 100ET h3

q0a4 w(x, 0), q0=50N/m2).
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Figure 10: Distribution of the axial stress across the thickness of the three lay-
ered (0˚/90˚/0˚) composite beam with and without actuated by a piezoelectric layer
(L/h=50, hp=250µm, h=0.005m, q0=50N/m2).

Figure 11: Distribution of the axial stress across the thickness of the four layered
(0˚/90˚/0˚/90˚) composite beam with and without actuated by a piezoelectric layer
(L/h=50, hp=250µm, h=0.005m, q0=50N/m2).
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Figure 12: Distribution of the transverse shear stress across the thickness of
the three layered (0˚/90˚/0˚) composite beam (L/h=50, hp=250µm, h=0.005m,
q0=50N/m2).

Figure 13: Distribution of the transverse shear stress across the thickness of
the four layered (0˚/90˚/0˚/90˚) composite beam (L/h=50, hp=250µm, h=0.005m,
q0=50N/m2).



Simple Efficient Smart Finite Elements 463

Figure 14: Comparisons of the responses due to in-plane actuation (e31 6= 0, e33 =
0) and combined in-plane and transverse actuations (e31 6= 0, e33 6= 0) with those
obtained by the exact solutions considering one element across the thickness of the
overall single layered substrate composite beam (L/h=50, hp=250µm, h=0.005m,
w∗ = 100ET h3

q0a4 w(x, 0), q0=50N/m2, V =-15 volt).

Figure 15: Comparison of the FEM based on the HSDT with the present smart
FEM for active shape control of a single layered substrate composite beam (L/h=50,
hp=250µm, h= 0.005m, w∗ = 100ET h3

q0a4 w(x, 0), q0=50N/m2).
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Figure 16: Comparison of the FEM based on the LHSDT with the present smart
FEM for the active shape control of a single layered substrate composite beam
(L/h=50, hp=250µm, h = 0.005m, q0=50N/m2, w∗ = 100ET h3

q0a4 w(x, 0)).

Figure 17: Active shape control of single layered cantilever substrate composite
beam (L/h=50, hp=250µm, h= 0.005m, q0=50N/m2, w∗ = 100ET h3

q0a4 w(x, 0)).
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single-layered substrate beam when one element is used across the thickness of the
overall beam. It may also be noted that when e31 6=0 and e33 =0, the piezoelectric
layer causes in-plane actuation. On the other hand when e31 6=0 and e33 6=0, the
piezoelectric layer causes both in-plane and transverse actuations simultaneously.
Also, if the magnitude of e33 is much larger than that of e31, the transverse actu-
ation by the piezoelectric layer will be predominant must be modeled. It may be
observed from Fig. 14 that if the piezoelectric layer acts as the in-plane actua-
tor, the responses obtained by the present smart FEM with one element across the
thickness of the overall beam excellently match with the exact solutions. If both
in-plane and transverse actuations by the piezoelectric layer are modeled by using
one element across the thickness of the overall beam, the responses of the actuat-
ed substrate beam do not match with the exact solutions. This may be attributed
to the fact that the transverse displacement continuity at the interface between the
piezoelectric layer and the substrate beam cannot be explicitly satisfied using one
element across the thickness. But it may again be observed from Fig. 4 that if one
element for the substrate beam and one piezoelectric finite element for the piezo-
electric layer are used across the thickness of the overall beam, the responses due to
transverse actuation computed by the present new FEM excellently match with the
exact solutions. In order to be confirmed that a separate piezoelectric finite element
is necessary across the thickness of the overall beam for the piezoelectric material
characterized with large value of e33, the responses of the overall beam obtained by
the different finite element models based on an equivalent single layer high order
shear deformation theory (HSDT) and a layer-wise high order shear deformation
theory (LHSDT) as derived in Section 3.0 are compared with the exact solutions as
shown in Figs. 15 and 16. For the results obtained by the present new smart FEM
as displayed in Figs. 15 and 16, two elements are considered across the thickness
of the overall beam. It may be observed from Fig. 15 that the responses obtained
by the FEM based on an equivalent single layer HSDT differ unacceptably from
that obtained by the present new smart FEM and exact solutions. But the responses
obtained by the FEM based on the LHSDT excellently match with that obtained by
the present new smart FEM and exact solutions as shown in Fig. 16. This ensures
that at least two elements comprising one element for the substrate beam and one
element for the piezoelectric layer across the thickness of the overall smart beam
must be considered for deriving accurate FEM based on the proposed new method.
Also, for the results presented in Fig. 16, the new smart FEM requires 66 degrees
of freedom for the beam, whereas the FEM based of the LHSDT requires 492
degrees of freedom. Thus the present new smart FEM is computationally much
less costly than the FEM based on the LHSDT. Similar results are also obtained
for the substrate cross-ply beams with more number of laminae. However, for the
sake of brevity they are not presented here. Finally, the deflections of a cantilever
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smart beam subjected to uniformly distributed load with intensity q0=50N/m2 and
actuated by the piezoelectric layer are presented in Fig. 17. In this case, the piezo-
electric layer is subjected to a uniformly distributed applied electric potential at its
top surface. It may be observed from this figure that the responses obtained by the
present new FEM match excellently with that obtained by the FEM based on the
LHSDT. Thus the present new 4-noded smart finite element can be efficiently used
for accurate modeling of the smart composite beams without using the existing
higher-order deformation theories or layer-wise deformation theories.

6 Conclusions

In this paper, new smart finite elements have been developed for the static analysis
of smart laminated composite beams. The smart beam is composed of a laminat-
ed substrate composite beam integrated with a piezoelectric layer at its top surface
which acts as the distributed actuator of the substrate beam. In case of simply
supported beams, the top surface of the piezoelectric layer is subjected to the sinu-
soidally distributed mechanical load and a sinusoidally distributed applied electric
potential. In case of the cantilever beam, the top surface of the piezoelectric layer
is subjected to the uniformly distributed mechanical load and electrical potential.
For the simply supported smart composite beams, exact solutions are derived to
validate the proposed new smart finite elements. These smart beams are also mod-
eled for comparison purpose by the conventional finite element method using an
“equivalent high order shear deformation theory (HSDT)” and a “layer- wise high
order shear deformation theory (LHSDT)”. Several examples are considered for
presenting the numerical results. Two types of new smart finite elements are devel-
oped. One is purely piezoelectric called the “piezoelectric element” and is used to
discretize the piezoelectric layer. The other element is a “laminated smart element”
in which the top layer is piezoelectric, while the other layers are the orthotropic lay-
ers of the substrate beam. The overall smart composite beam has been discretized
by using either two elements or one element across the thickness of the beam. In
case of two elements across the thickness, the top element is the “piezoelectric fi-
nite element” and the bottom element is the “laminated beam element” containing
only the orthotropic layers of the substrate beam. When the piezoelectric actuator
layer is active and passive, and causes both transverse and in-plane actuations, the
deflections, bending stresses and the transverse shear stresses of the smart compos-
ite beams computed by the present new smart FEM excellently match with those
obtained by the exact solutions if two elements are used across the thickness of the
overall beams. If one laminated smart finite element is used across the thickness
of the overall smart composite beams, the transverse actuation by the piezoelectric
layer cannot be accurately modeled. The transverse actuation by the piezoelectric
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layer cannot be accurately modeled even if the overall smart beam is modeled by
using the equivalent single layer HSDT. When the overall smart beam is modeled
by using the LHSDT, the responses of the smart composite beams due to both
transverse and in-plane actuations by the piezoelectric layer excellently match with
those obtained by the exact solutions and the new smart FEM considering two el-
ements across the thickness of the beams. This corroborates the fact that in case of
the piezoelectric actuator that is characterized by the large value of the transverse
piezoelectric coefficient (e)33 at least one piezoelectric finite element and one beam
element must be used across the thickness of the overall smart beams for accurate fi-
nite element modeling of the smart composite beams. The new smart FEM derived
here also accurately computes the active and passive responses of the cantilever
smart composite beams. As compared to the other FEMs based on the HSDT and
the LHSDT, the effort needed to derive the present new 4-noded smart FEM is
negligible. Also, the present new smart FEM is computationally significantly less
costly than the FEMs derived by using the HSDT and the LHSDT. The investi-
gations carried out here suggests that the present new 4-noded smart finite element
can be efficiently used for accurate modeling of smart composite beams without us-
ing the explicit forms of the displacement fields such as the classical beam theory,
the first order and the high order shear deformation theories, the layer-wise theory
and the like.
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Appendix

The matrices [Z1], [Z2] and [Zp] appearing in Eqs. (67) and (70) are as follows: 1 z z2 z3 0 0 0 0 0
0 0 0 0 1 2z 0 0 0
0 0 0 0 0 0 1 z z2

 ,
 1 h

2
h2

4
h3

8 z− h
2 z2− h2

4 z3− h3

8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 2z 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2z 3z2 h

2
h2

4 z− h
2 z2− h2

4


and

[Zp] =
1
hp

[
z− h

2 0
0 1

]
The nodal strain-displacement matrices [B1] and [B2] are given by

[B1] =
[
[B11] [B12] [B13]

]
and [B2] =

[
[B21] [B22] [B23]

]
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The nonzero elements of the submatrices [B1i], i=1, 2, 3 are as follows:

B1i(1,1)=B1i(2,3)=B1i(3,4)=B1i(4,5)=B1i(7,2)=B1i(8,9)=B1i(9,10)=
∂ni

∂x
,

B1i(5, 9) = B1i(6, 10) = B1i(7, 3) = ni, B1i(8, 4) = 2ni and B1i(9, 5)=3ni

The nonzero elements of the submatrices [B2i], i=1, 2, 3 are as follows:

B2i(1,1)=B2i(2,3)=B2i(3,4)=B2i(4,5)=B1i(5,6)=B2i(6,7)=B1i(7,8)=
∂ni

∂x
,

B2i(10, 2) = B2i(13, 9) = B2i(14, 10) = B2i(15, 11) = B1i(16, 12) =
∂ni

∂x
,

B2i(8, 11) = B2i(9, 12) = B2i(10, 6) = B2i(11, 7) = B1i(12, 8) = ni

The nodal electric field-potential matrix [B3] appearing in Eq. (70) is given by

[B3] =

[
∂n1
∂x

∂n2
∂x

∂n3
∂x

n1 n2 n3

]




