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New Insights on Energy Conserved Planar Motion
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Abstract: The planar motion of a particle within an arbitrary potential field is
considered. The particle is additionally subject to an external force wherein the
applied thrust-acceleration is constrained to remain normal to the velocity vector.
The system is thus non-conservative but since the thrust force is non-working, the
total energy is a conserved quantity. Under this setting, a major result of funda-
mental importance is established in this paper: that the flight direction angle (more
precisely, the sine of the angle between the position and velocity vectors) is shown
to always satisfy a linear first-order differential equation with variable coefficients
that depend upon the underlying potential function. As a consequence, an ana-
lytical solution for the flight direction angle can be obtained directly in terms of
the particle’s distance from the center of the field for a significant number of spe-
cial cases for the potential function. In the case of J2 perturbed spacecraft motion
within equatorial orbits, the problem is reduced to that of solving an incomplete
elliptic integral. Another important implication of the main result established here
is that motion problems subject to velocity-normal thrusting can always be reduced
to the study of equivalent single degree-of-freedom conservative systems with an
effective potential function. The paper concludes with various examples of both
academic and practical interest including the study of bounded two-body Keplerian
orbits and hodograph interpretetions
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1 Introduction

The problem of continuous thrusting in the two-body problem has rich history and
has been extensively studied for spacecraft applications. However, analytical solu-
tions to these problems are available only for very few special cases. For example,
some of the earliest work was done by Tsien (1953) using circumferential thrust for
escaping from an initial circular orbit. The classical problem of spacecraft motion
subject to a constant radial thrust is remarkable in the sense that it is fully inte-
grable; accordingly, it has been extensively investigated [Prussing (1998); Akella
(2000); Akella and Broucke (2002)]. The problem of tangential thrust acceleration
also allows for some analytical solutions as established by Benney (1958), as well
as an exponential sinusoid solution approximations for many revolution transfers
and interplanetary trajectories. The problem of continuous thrusting in the direction
perpendicular to the velocity vector has however received very limited attention, al-
beit the fact that energy remains a conserved quantity for these classes of problems.
Notable exceptions are recent work by Hernandez and Akella (2015) wherein ini-
tial circular orbits are considered with a focus on mission design and orbit transfer
analysis. An immediate consequence of thrusting normal to the velocity vector is
that, no matter how high the acceleration magnitude, trajectories always remain
bounded so long as thrusting commences from initially bounded orbits. Energy
conservation in this class of problems is reminiscent of the constant-radial-thrust
acceleration problem wherein angular momentum is the conserved quantity rather
than the energy. In the radial problem, there is one additional integral of motion;
therefore, the problem can be solved analytically [Akella and Broucke (2002)]. On
the other hand, a full analytical solution is not possible for the case thrusting normal
to the velocity, which has only one known constant.

The main contribution of this paper is that the flight direction angle, i.e., the angle
between the position and velocity vectors satisfies a linear first-order ordinary dif-
ferential equation in terms of the radial distance. This remarkable result holds for
arbitrary potential fields. As a consequence, an effective potential can be interpret-
ed to reduce the original system from two to a single degree of freedom system.
Our problem can therefore be shown to be equivalent to the one-dimensional mo-
tion of a unit point mass in the central force field subject to the velocity-normal
thrust acceleration.

The reminder of the paper is organized as follows. In Sec. II, the equations of mo-
tion are derived in both inertial and body-fixed rotating coordinates. The first order
linear differential equation govering the flight direction angle is also established
in this section. Several special case examples for potential functions are shown
in Sec. III together with a discussion on the effective potential formulation. We
finalize the paper with some concluding remarks in Sec. IV.
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2 Coordinate Frames and Problem Statement

Consider the planar motion of a point-mass object described by position vector
r = [x1, x2]

T , velocity vector v = [ẋ1, ẋ2]
T and potential energy W (r) where r =

‖r‖2, the radial distance from the origin of an inertial frame. The inertial frame
is taken to have a basis I = {î, ĵ}. Additionally, we consider a body-fixed frame
S = {ît , în}, where ît is the unit vector in the velocity direction and în is the unit
vector that is normal to the instantaneous velocity direction. For this study, it needs
to be noted that a constant external acceleration vector u is assumed to be acting
along the în-direction.

2.1 Equation of Motion

The general equations of planar motion subject to external perturbation acceleration
u in Cartesian coordinates are

ṙ = v, v̇ =−∂W (r)
∂r

+u (1)

where as stated already, u is the thrust-acceleration applied normal to the velocity
direction; i.e., uT v = 0. The thrust acceleration is assumed to be parameterized
through

u = σA [cosφ , sinφ ]T (2)

where σ =± 1 (sign depends in the direction of the applied thrust), A is the constant
thrust acceleration parameter, and φ is the angle between the unit-vector î and the
direction of the thrust acceleration. The convection adopted here is that σ = 1 when
the thrust acceleration is along the +în direction (firing “inwards”); and σ = −1
when the thrust acceleration is along the −în direction (firing “outwards”). Given
this choice of the thrust acceleration direction, motion remains planar but angular
momentum defined by h = r×v is no longer constant with time.

On the other hand, since the thrust is applied perpendicular to the velocity vector,
the total energy defined by

E =W (r)+
v2

2
(3)

is a conserved quantity, where v = ‖v‖. This can be readibly confirmed by taking
the derivative of E with respect time along trajectories defined by Eq. 1, such that,

Ė =

(
∂W
∂r

)T

v+vT
[
−∂W

∂r
+u
]
= 0 (4)
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An immediate consequence of rearranging Eq. 3 is that velocity magnitude is de-
pendent only on radial distance, i.e.,

v2 = 2 [E−W (r)] (5)

Let s be the arc length of the path measured relative to the origin of the inertial
frame I . Suppose the velocity vector v makes an angle θ with the inertial î di-
rection. Let ρ denote the radius of curvature of the path, i.e., ρ = ds/dθ . Then,
kinematics leads to the velocity vector given by

v = vît =
ds
dt

ît (6)

and the acceleration vector

a =
dv
dt

ît +
v2

ρ
în = v

dv
ds

ît +
v2

ρ
în (7)

From the governing equations of motion in Eq. 1, the total acceleration experienced
by the body resolved in the moving frame S is given by

a =−∂W
∂ r

îr +σA în (8)

where îr is the unit vector along the r direction (i.e., îr = r/r). In terms of the flight
direction angle γ , i.e., the angle between the position vector r and velocity vector v,
we have the kinematic identity,

îr = cosγ ît − sinγ în (9)

It should be noted that γ ∈ [0,π) by definition. Combining Eq. 1, Eq. 6, and Eq. 9,
it can be established that

dr
ds

= cosγ (10)

Next, comparing terms from Eq. 7 and Eq. 8, it follows that

dv
dt

=−∂W
∂ r

cosγ (11)

and

v2

ρ
= σA+

(
∂W
∂ r

)
sinγ (12)
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Straightforward calculus provides the useful identity

d2r
ds2 =

1
2

d
dr

(
dr
ds

)2

(13)

Defining the function β as

β ≡ sinγ (14)

and substituting the following Bernoulli formula for the inverse of the radius cur-
vature ρ [Battin (1999)],

1
ρ
=

[
1
r

sin2
γ− d2r

ds2

]
1

sinγ
(15)

in Eq. 12 results in

v2r
d2r
ds2 =−σAβ r+

[
v2− r

(
∂W
∂ r

)]
β

2 (16)

After performing some straightforward algebra, we obtain the following first-order
linear ordinary differential equation governing β as given by

dβ

dr
=−

[
v2− r

(
∂W
∂ r

)]
v2r

β +
σA
v2 (17)

wherein v2 = 2 [E−W (r)] needs to be interpreted from Eq. 5. The establishment
of this “Fundamental Equation” governing the flight direction angle (specifically,
sinγ) is the major result of this paper. Given the fact that Eq. 17 is a linear differ-
ential equation in terms of radial distance r, the important implication is that sinγ

can always be directly expressed as a function of radial distance r for any potential
function W (r).

3 The Flight Direction Angle and Interpretation of the Effective Potential
Function

As was shown in the foregoing section, an analytical solution for the flight direction
angle can be obtained in terms of the particle’s distance from the center of the field.
There is yet another important consequence to this result. Recall that the energy
constant of motion in Eq. 3 can also be expressed as

E =
1
2
[
v2 cos2

γ + v2 sin2
γ
]
+W (r)

=
1
2
[
ṙ2 + v2 sin2

γ
]
+W (r)

=
1
2

ṙ2 +

[
1
2

v2 sin2
γ +W (r)

]
(18)
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Using Eq. 5 in Eq. 18 results in

E =
1
2

ṙ2 +
[
E sin2

γ +
(
1− sin2

γ
)

W (r)
]

(19)

which allows for the interpretation of an effective potential function

Weff(r) =
[
E sin2

γ +
(
1− sin2

γ
)

W (r)
]

(20)

such that the energy constant E = ṙ2/2+Weff(r) corresponds to the motion of an
equivalent single-degree-of-freedom conservative system.

The reminder of this section will consider various special cases for the potential
function W (r) to further illustrate the current discussion.

3.1 Linear Harmonic Oscillator

The potential function for linear harmonic motion in the plane is defined by W (r) =
(ω2r2)/2 where ω > 0 is the constant associated with the unforced oscillation fre-
quency. Substituting this particular expression for W (r) for v2 in Eq. 5 and subse-
quently in Eq. 17 results in

dβ

dr
=− 2(E−ω2r2)

r(2E−ω2r2)
β +

σA
(2E−ω2r2)

(21)

Allowing for initial conditions r(0) = r0 and β (r0) = β0 for the flight-direction
angle, a closed-form solution of Eq. 21 can be written as

β (r) =− σA
ω2r

+

(
β0ω2r0 +σA

ω2r

)√
2E−ω2r2

0
2E−ω2r2 (22)

which can be easily verified by substitution in Eq. 21. It can be seen that Eq. 22
represents the analytical solution for w(r)≡ sinγ(r).

3.2 Kepler 2-Body Motion

For the case of two-body motion, the potential energy is given by the expression
W (r) = −µ/r with µ being the gravitational constant. Using this expression in
Eq. 5 presents

v2 = 2
(

E +
µ

r

)
(23)
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which can be substituted within Eq. 17 to provide the following analytical solution
for the flight direction angle, specifically for β (= sinγ); i.e.,

β (r) = β0

√
r0
√

Er0 +µ√
r
√

Er+µ

+
3µ2σA

8E
5
2
√

r
√

Er+µ
ln

( √
Er+µ +

√
Er√

Er0 +µ +
√

Er0

)

+
σA
8E2

[
(2Er−3µ)−

√
r0
√

Er0 +µ√
r
√

Er+µ
(2Er0−3µ)

]
(24)

wherein the initial conditions r(0) = r0 and β (r0) = β0 had been applied. It should
be stated that a special case of this particular result was discussed earlier by Hernan-
dez and Akella (2015) and Hernandez (2014), wherein an initial circular orbit was
assumed (more specifically, µ = 1, r0 = 1, β0 = 1). However, the result established
here in Eq. 24 generalizes the analytical solution for the flight direction angle for
arbitrary bounded initial Keplerian orbits. Given the fact that the flight-direction
angle is an explicit function of radial distance r from Eq. 24, an extremely elegant
interpretation for intial non-circular orbits can be made within the hodograph plane
through Figure 1. Specifically, it needs to be noted that for true Keplerian motion,
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Figure 1: The hodograph interpretation for initial non-circular orbits (eccentricity,
e > 0).

i.e., with A = 0, the hodograph representation for the velocity vector in Fig. 1 fol-
lows the classical result of being a circle having radius equaling the eccentricity e
of the initial orbit with the center of the circle at (1,0). On the other hand, when
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thrusting is introduced (A 6= 0), the hodograph circle is seen to deform into an “o-
val” shape with inward thrusting (σ =+1), and a “teardrop” with outward thrusting
(σ =−1).

3.3 J2 Perturbed Equatorial Orbits

The final special case analyzed here corresponds to J2 perturbed motion for equato-
rial earth orbits. In the absence of thrusting, an analytical solution for this problem
was obtained by Jezewski (1983) in terms of elliptic integrals. We now consid-
er motion subject to constant acceleration continuous thrusting along a direction
normal to the velocity vector. The potential function is given by

W (r) =−µ

r
− J0

3r3 (25)

wherein the constant J0 is given by

J0 =
3
2

µJ2r2
e

with J2 being the perturbation coefficient due to Earth’s oblateness and re is the
equatorial radius of the Earth. The solution for the flight direction angle from
Eq. 17 in this case reduces to

β (r) = β (0)

√
r
√

3Er3
0 +3µr2

0 + J0
√

r0
√

3Er3 +3µr2 + J0
+

3
2

σA
√

r√
3Er3 +3µr2 + J0

M(r,r0) (26)

where M(r,r0) is an elliptical integral defined by

M(r,r0) =
∫ r

r0

x
5
2

3Ex3 +3µx2 + J0
dx (27)

4 Conclusions

This paper establishes a fundamental result for the flight direction angle in terms of
radial distance in the case of planar motion subject to constant acceleration contin-
uous thrusting that is constrained to a direction normal to the instantenous velocity
vector. Energy is a conserved quantity as a consequence of this choice of thrust di-
rection. The sine of the flight direction angle is shown to satisfy a first-order linear
ordinary differential equation. This result holds for arbitrary potential functions.
An interesting corollory is that an effective potential function can be described for
a single degree-of-freedom equivalent system.
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