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Abstract: Modified Chebyshev Picard Iteration is an iterative numerical method
for solving linear or non-linear ordinary differential equations. In a serial compu-
tational environment the method has been shown to compete with, or outperform,
current state of practice numerical integrators. This paper presents several improve-
ments to the basic method, designed to further increase the computational efficiency
of solving the equations of perturbed orbit propagation.
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1 Introduction

1.1 Background

Modified Chebyshev Picard Iteration (MCPI) combines the discoveries of two great
mathematicians: Emile Picard (Picard iteration) and Rafnuty Chebyshev (Cheby-
shev polynomials for orthogonal approximation). The decision to make use of
orthogonal Chebyshev function approximation and Picard iteration in a simultane-
ous manner for solving non-linear Ordinary Differential Equations (ODEs) was
first proposed in [Clenshaw and Norton (1963)]. Later authors further refined
the Chebyshev-Picard framework, and the parallel computing implications of the
method [Shaver (1980); Feagin and Nacozy (1983); Fukushima (1997)]. Bai’s dis-
sertation extended the earlier MCPI works and proved the capability of the method
to compete with, or outperform, the state of the practice for numerical integration
of ODEs [Bai (2012)]. Bai and Junkins applied MCPI to non-linear Initial Value
Problems (IVPs) and orbit propagation [Bai and Junkins (2011a)], and showed that
MCPI can outperform other higher order integrators such as Runge-Kutta-Nystrom
12(10) [Bai and Junkins (2011c)]. Bai and Junkins have also demonstrated using
variations of MCPI to: (i) efficiently solve Lambert’s transfer problem, (ii) solve an
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optimal control trajectory design problem more accurately and efficiently than the
Chebyshev pseudospectral method [Bai and Junkins (2011b)], (iii) and to evaluate
complex three-body station-keeping control problems formulated as a Boundary
Value Problem (BVP) [Bai and Junkins (2012)]. In 2013, Bani-Younes’ disser-
tation expanded upon the benefits of MCPI, and orthogonal approximation as a
whole, for perturbed orbit propagation [Bani-Younes (2013)]. More recently, Ma-
comber’s dissertation presented a body of work to enhance the overall performance
and algorithmic automation of MCPI [Macomber (2015)].

In the above developments, MCPI in a serial environment has been shown to be
able to compete with, or outperform, the state of the art numerical integration algo-
rithms for solution of a variety of initial and two point boundary value problems.
MCPI has the added benefit that it is an inherently massively parallelizable method,
a claim that is not possible for other competing algorithms except for a subset of
Implicit Runge-Kutta algorithms. Massively parallel MCPI has been shown capa-
ble of orders of magnitude performance increase over serial implementations for a
variety of orbit propagation problems [Shaver (1980); Koblick, Poole, and Shankar
(2012); Woollands, Read, Macomber, Probe, Bani-Younes, and Junkins (2015); Bai
and Junkins (2011a, 2010); Macomber, Probe, Woollands, and Junkins (2015a)].
However, tuning of MCPI (time segment lengths and degree of Chebyshev ap-
proximation) is problem-dependent. A tuning study must frequently precede the
realization of the advantages discussed above [Macomber, Probe, Woollands, and
Junkins (2015b)]. As shown in [Macomber (2015)], while MCPI can converge over
multiple orbits for low eccentricity cases, optimal efficiency is obtained for several
segments per obit (typically three to five). For the Molniya orbit, seven segments
are rquired for optimal efficiency.

This paper presents a set of improvements to basic MCPI (as presented in the above
references), for increasing the computational performance of perturbed orbit propa-
gation. Numerically propagating high-fidelity orbits requires evaluation of compu-
tationally expensive perturbation force models, and generally these force function
evaluations account for the vast majority of computation time. The spherical har-
monic gravity series is one of the most costly of these models to calculate if high
precision solutions are required. Because MCPI is an iterative method, and the
force functions must be evaluated on every iteration, there are two strategies for
reducing total computation time. The first is to decrease the computational cost
per iteration, and the second is to decrease the number of iterations. In Sec. 2.1, an
adaptive spherical harmonic gravity method is presented that automatically chooses
the necessary spherical harmonic series degree and order based upon the required
acceleration precision and the instantaneous orbital radius. For highly eccentric or-
bits, the number of terms in the gravity expansion may vary from tens of thousands
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near perigee to fewer than 50 terms near apogee, without accuracy loss. Similar
studies not relating to MCPI have been previously conducted by other authors, for
instance [Arora and Russell (2015)]. In Sec. 2.2, a Taylor series method is pre-
sented for approximating high-fidelity gravity accelerations using computationally
cheaper lower-fidelity function evaluations, either between subsequent Picard itera-
tions, or for neighboring trajectories in the vicinity of a reference trajectory. Due to
the fixed point nature of Picard iteration convergence, the later iterations approach-
ing final convergence result in multiple gravity force evaluations very near fixed
points in the force field. The small spatial variations of gravity near each node can
be captured with very efficient local models. Sec. 2.3 presents a method for im-
proving the initial state estimate at each function evaluation point, thus reducing
the required number of Picard iterations.

1.2 MCPI Fundamentals

An Ordinary Differential Equation (ODE)

ẋxx =
dxxx
dt

= fff (t,xxx(t)), xxx(t0) = xxx000 (1)

with a state vector xxx(t) ∈ Rn, and a given initial condition xxx000 at initial time t0, may
be rearranged without approximation to obtain the integral equation

xxx(t) = xxx(t0)+
∫ t

t0
fff (s,xxx(s))ds (2)

Picard proved that a sequence of approximate solutions of increasing accuracy
xxxi(t), i = 1,2,3, ... to this integral formulation may be recursively generated by

xxxi(t) = xxx(t0)+
∫ t

t0
fff (s,xxxi−1(s))ds (3)

Picard’s Method of Successive Approximations, now called Picard iteration, con-
stitutes a contraction mapping to the true solution xxx(t) under broadly applicable
assumptions [Picard (1893)]. For any smooth, integrable, single-valued function
fff (t,xxx(t)), the sequence converges over some interval (t f − t0) < δ for all starting
xxx0(t) within the range ||xxx0(t)− xxx(t)|| < ∆, where δ and ∆ are finite and can be
roughly bounded. The rate of convergence is largely dictated by |t f − t0| and ||d fff

dxxx ||,
and is approximately a geometric sequence.

In the MCPI method, orthogonal Chebyshev polynomials [Chebyshev (1857)] are
used as a basis set to approximate the integrand in the Picard integral of Eq. 3.
Chebyshev polynomials reside in the domain τ = [−1,1], and can be generated
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recursively as:

T0(τ) = 1 (4a)

T1(τ) = τ (4b)

Tk+1(τ) = 2τTk(τ)−Tk−1(τ) , k > 1 (4c)

Derivatives and integrals of the Chebyshev polynomials are defined analytically
in terms of the polynomials themselves, which allows analytic integration of the
integrand function within Picard iteration. Therefore all derived state variable ap-
proximations are easily, and kinematically consistently, represented as a Chebyshev
series. The integration property of Chebyshev polynomials states that∫

Tn(τ)dτ =
1
2

(
Tn+1(τ)

n+1
− Tn−1(τ)

n−1

)
, n≥ 2 (5)

Unlike traditional step-by-step integrators, during implementation of MCPI long
state trajectory arcs are approximated at each Picard iteration. The independen-
t variable in the system dynamics is scaled and shifted such that the timespan of
integration is projected onto the domain (−1 ≤ τ ≤ 1) of the Chebyshev polyno-
mials, thus the system states can be approximated using the Chebyshev polynomial
basis functions. The orthogonal nature of the basis functions means that the lin-
early scaled coefficients may be computed independently as simple ratios of inner
products, with no matrix inversion.

A key feature of MCPI is the utilization of time nodes corresponding to a non-
uniform cosine density sampling of the domain of the Chebyshev basis functions,
called Chebyshev-Gauss-Lobatto (CGL) nodes:

τ j =−cos
(

π

M
j
)
, j = 0,1,2, ..,M (6)

This sampling scheme is chosen to exploit the discrete orthogonality property of
the Chebyshev polynomials of the First Kind. In contrast to the nodes for discrete
orthogonality of Legendre polynomials, no iteration of a transcendental equation
is required to compute these nodes. The CGL sampling has much higher density
towards the edges of the ±1 domain than in the center. This provides, for most
approximation problems, a near-uniform approximation error in spite of the lack
of support to the left of τ = −1 and to the right of τ = +1. Of vital importance,
the sampling scheme greatly reduces the Runge phenomena, a common issue in
function approximation whereby large approximation errors are created near the
segment boundaries due to lack of knowledge of the states outside the boundaries.
It can be shown, as a practical matter, that the approximation error amplitudes are
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much more nearly constant as a consequence of cosine sampling, in comparison to
uniform sampling. Furthermore, sampling consistent with the discrete orthogonal-
ity conditions of the Chebyshev polynomials (or any other orthogonal polynomial
basis functions) eliminates the necessity of a matrix inverse and enables machine
precision approximation of the integrand in Picard iteration [Junkins, Bani-Younes,
Woollands, and Bai (2012)].

Note that any orthogonal polynomial basis function set gives rise to an algorithm
analogous to MCPI. However, the Chebyshev polynomials have some advantages:
(i) the cosine clustering of denser nodes (in order to leverage discrete orthogonality)
results in very small Runge effect (large approximation errors near the ends of
the interval) compared to other sampling schemes, and (ii) the nodes for discrete
orthogonality are algebraically computed with no need for iteration. Experiments
show that the Chebyshev polynomial basis set is slightly preferred over Legendre
polynomials for implementation with Picard iteration [Junkins and Bai (2012)].

1.3 Second Order MCPI

Consider a second order Ordinary Differential Equation

ẍxx =
d2xxx
dt2 = fff (t,xxx, ẋxx), xxx(t0) = xxx000, ẋxx(t0) = vvv000 (7)

with a state vector xxx(t) ∈ Rn, a position initial condition xxx000, and a velocity initial
condition ẋxx(t0) = vvv000. The above system could be solved by constructing an aug-
mented state vector zzz∈R2n as zzz = [xxxT , ẋxxT ]T and numerically integrating the system
using the first order MCPI formulation. In many settings, converting a system of n
second-order differential equations into a 2n-dimensional first-order state space for-
m can be done without penalty. However, it matters significantly in Picard iteration
- the number of Picard iterations for the first-order state space has been found to
be about twice that of the “natural” second-order system. Bai developed an MCPI
formulation to directly operate on the second order equation and calculate the posi-
tion state trajectory estimate xxx(t), thus avoiding demotion to a system of first order
equations. This is akin to a “double-integrator” numerical method. She called this
“position-only MCPI”, and noted that the velocity state trajectory estimate ẋxx(t) may
be obtained using the analytic derivative properties of the Chebyshev polynomial-
s [Bai (2012); Bai and Junkins (2011c)]. Bani-Younes developed a second-order
MCPI formulation for this type of equation, based upon Bai’s derivation, which
calculates both position and velocity state trajectory estimates in a “cascade” fash-
ion [Bani-Younes (2013)].

In this section, an outline is presented of yet one more variation of the MCPI cas-
cade method for second order ODE systems. This new method rigorously enforces
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the kinematic relationship between the acceleration, velocity, and position state
Chebyshev coefficients using the analytic integration property of the Chebyshev
polynomials, and avoids truncating certain small terms in the Chebyshev series
as in the previous developments [Bai (2012); Bani-Younes (2013)]. An explicit
term-by-term derivation of the core equations and the vector/matrix formulation is
rigorously derived in [Macomber (2015)].

In order to satisfy the second order ODE, the kinematic relationships

dxxx
dt

= ẋxx,
dẋxx
dt

= fff (t,xxx(t), ẋxx(t)) (8)

must be true at all times. The independent time variable is shifted and scaled from
t0 ≤ t ≤ t f to a new variable −1≤ τ ≤ 1 by the transformation

t = w1 +w2τ , w1 =
t f + t0

2
, w2 =

t f − t0
2

(9)

Similarly scaling the dynamics defined by the ODE, the transformed kinematic
relationships, written as

dxxx
dτ

= vvv,
dvvv
dτ

= ggg(τ,xxx(τ),vvv(τ)) (10)

must be true at all times. Rearranging the above differential equations to integral
equations may be performed without approximation. Picard updates to the velocity
states are obtained by

vvvi(τ) = vvv000 +
∫

τ

−1
ggg(s,xxxi−1(s),vvvi−1(s))ds, i = 1,2, ... (11)

and kinematic updates to the position states are obtained by

xxxi(τ) = xxx000 +
∫

τ

−1
vvvi(s)ds (12)

Notice that Eq. 12 is not Picard iteration, it is simply an integral of an exact kine-
matic constraint between vvvi(τ) and xxxi(τ). Whereas the integrand of the Picard it-
eration of Eq. 11 contains the position and velocity state history along the (i−1)th

trajectory approximation, Eq. 12 is simply the integral of the ith velocity history to
obtain the ith position history.

Orthogonal function approximation with Chebyshev polynomials may be accom-
plished with either of two very closely related formulations: the interpolation ap-
proximation, or the least squares approximation. Both methods are valid when
sampling the function at the Chebyshev-Gauss-Lobatto (CGL) nodes of Eq. (6).
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When the number of CGL sample points M is equal to the Chebyshev order of ap-
proximation N, the interpolation method is used. When more CGL sample points
than the Chebyshev order of approximation are used (M > N), the least squares
method is used. [Fox and Parker (1968); Macomber (2015)]. Using the interpola-
tion approximation formulation, an Nth-order Chebyshev polynomial sequence is
used to approximate the ith Picard estimate of the system position states sampled at
M = N CGL nodes

xxxi(τ)≈
N

∑
k=0

′′
ααα

i
kTk(τ) (13)

≈ 1
2

ααα
i
0T0(τ)+ααα

i
1T1(τ)+ααα

i
2T2(τ)+ ...+

1
2

ααα
i
NTN(τ)

The velocity states are approximated with an (N − 1)th-order Chebyshev series,
again sampled at M = N CGL nodes, using the least squares Chebyshev approxi-
mation formulation

vvvi(τ)≈
N−1

∑
k=0

′
βββ

i
kTk(τ) (14)

≈ 1
2

βββ
i
0T0(τ)+βββ

i
1T1(τ)+βββ

i
2T2(τ)+ ...+βββ

i
N−1TN−1(τ)

The summation in Eq. 14 is from k = 0 to N − 1 since the analytic integration
property causes the Chebyshev order of approximation to increase by one, thus the
reason for using the least square formulation for the velocity states instead of the
interpolation formulation.

A separate Chebyshev polynomial sequence of order (N− 2), with M = N CGL
samples, is used to approximate the integrand on the right hand side of Eq. 11

ggg(s,xxxi−1(s),vvvi−1(s))≈
N−2

∑
k=0

′FFF i−1
k Tk(s) (15)

≈ 1
2

FFF i−1
0 T0(s)+FFF i−1

1 T1(s)+FFF i−1
2 T2(s)+ ...+FFF i−1

N−2TN−2(s)

again using the least squares approximation formulation.

Combining Eqs. 13 through 15, updates to the integrand and state coefficients take
the form

vvvi(τ) =
N−1

∑
k=0

′
βββ

i
kTk(τ) = vvv(−1)+

∫
τ

−1

[
N−2

∑
k=0

′FFF i−1
k Tk(s)

]
ds (16a)

xxxi(τ) =
N

∑
k=0

′′
ααα

i
kTk(τ) = xxx(−1)+

∫
τ

−1

[
N−1

∑
k=0

′
βββ

i
kTk(s)

]
ds (16b)
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where vvv(−1) and xxx(−1) are the initial conditions of the velocity and position s-
tates. Eq. 16a is a Picard iteration, and Eq. 16b is a kinematic update. Notice that
integrating the acceleration approximation of Eq. 15 naturally increases the order
of the Chebyshev series by one to obtain the corresponding velocity approxima-
tion, and by two to obtain the corresponding position approximation. The (usually
small) highest order terms in Eqs. 16a and 16b could be truncated to enforce an
ad hoc desire to approximate position, velocity, and acceleration by a degree N−2
polynomial, but we avoid these truncations here. All approximation errors arise at
the acceleration level, and the velocity and position approximations are constrained
to be kinematically consistent.

In Eq. 13 the system states are approximated using an Nth order Chebyshev approx-
imation, sampled at M = N CGL nodes, therefore using the interpolation method.
In Eq. 15 the integrand function is approximated using an (N−2)th-order Cheby-
shev sequence, but M = N CGL sample points are still used, therefore using the
least squares method. More detail on the distinction between the Chebyshev inter-
polation and least squares methods, and their implications to MCPI, may be found
in Ch. 1 of [Macomber (2015)].

The integrand Chebyshev approximation to find the coefficient vectors FFF i−1
k is per-

formed directly by evaluating the integrand function on the left-hand-side of Eq. 15
at the M + 1 CGL sample points. The coefficients are solved by the same method
as in the first order MCPI case, by the expression

FFF i−1
k =

2
M

M

∑
j=0

′′ggg(s j,xxxi−1(s j),vvvi−1(s j))Tk(s j) (17)

Having calculated the integrand coefficients, the velocity and position state coeffi-
cients may be found by solving across the equal sign in Eqs. 16. The velocity state
coefficients βββ

i
k are related to the integrand coefficients FFF i−1

k by the expressions:

βββ
i
N−1 =

1
2(N−1)

FFF i−1
N−2 (18a)

βββ
i
N−2 =

1
2(N−2)

FFF i−1
N−3 (18b)

βββ
i
k =

1
2k

(FFF i−1
k−1−FFF i−1

k+1) , k = 1,2, ..,N−3 (18c)

βββ
i
0 = 2vvv000 +2

N−1

∑
k=1

[
(−1)k+1

βββ
i
k

]
(18d)

The position state coefficients ααα i
k are related to the velocity state coefficients βββ

i
k by
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the expressions:

ααα
i
N =

1
N

βββ
i
N−1 (19a)

ααα
i
N−1 =

1
2(N−1)

βββ
i
N−2 (19b)

ααα
i
k =

1
2k

(βββ i
k−1−βββ

i
k+1) , k = 1,2, ..,N−2 (19c)

ααα
i
0 = 2xxx000 +2

N−1

∑
k=1

[
(−1)k+1

ααα
i
k

]
+
[
(−1)N+1

ααα
i
N
]

(19d)

Note the presence of the factor of 2 in the denominator of Eq. 18a, which is not
present in Eq. 19a or in the first-order MCPI derivation. The presence of the factor
of 2 is caused by the fact that the least squares Chebyshev approximation formula-
tion is used for both the velocity state coefficients βββ k and the integrand coefficients
FFFk, as opposed to Eq. 19a where the position states αααk utilize the interpolation ver-
sion of the Chebyshev formulation. Similarly, in the first-order MCPI the Cheby-
shev sequence on the left-hand-side of the equation uses the interpolation formu-
lation, and the sequence on the right-hand-side uses the least squares formulation.
A related phenomenon may be observed in the difference of structure of the zeroth
coefficients (the factor of 2 being absent from the last term) in Eqs. 18d, and 19d.
Essentially, when the Chebyshev sequence on both sides of the equation uses the
least squares formulation, the coefficient expressions will take the form of Eqs. 18a
and 18d, but when one side of the equation uses the least squares formulation and
the other side uses the interpolation formulation, the coefficient expressions will be
of the form of Eqs. 19a and 19d.

As with the first order MCPI formulation, the second order MCPI may be restruc-
tured into a vector/matrix framework. A brief overview is given here, and the details
are explicitly presented in [Macomber (2015)].

The ith estimate of the position and velocity states are written as a matrix by stack-
ing the state values for all M+1 CGL sampled times τ0 to τM as

X i = matrix{xxxi(τ0)
T ; xxxi(τ1)

T ; ... ; xxxi(τM)T} (20a)

V i = matrix{ẋxxi(τ0)
T ; ẋxxi(τ1)

T ; ... ; ẋxxi(τM)T} (20b)

where each xxxi(τ j)= [xi
1(τ j) , xi

2(τ j) , ... , xi
n(τ j)]

T and ẋxxi(τ j)= [ẋi
1(τ j) , ẋi

2(τ j) , ... ,
ẋi

n(τ j)]
T is an (n×1) vector. Eq 13 for the Chebyshev interpolation approximation
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of the position states may be expressed as a vector/matrix equation by

X i =


T0(τ0) T1(τ0) . . . TN(τ0)
T0(τ1) T1(τ1) . . . TN(τ1)

...
... . . .

...
T0(τM) T1(τM) . . . TN(τM)




1
2

1
. . .

1
1
2




(ααα i

0)
T

...
(ααα i

k)
T

...
(ααα i

N)
T

 (21)

Similarly, Eq. 14 for the Chebyshev least squares approximation of the velocity
states may be expressed as a vector/matrix equation by

V i =


T0(τ0) T1(τ0) . . . TN−1(τ0)
T0(τ1) T1(τ1) . . . TN−1(τ1)

...
... . . .

...
T0(τM) T1(τM) . . . TN−1(τM)




1
2

1
. . .

1
1




(βββ i

0)
T

...
(βββ i

k)
T

...
(βββ i

N−1)
T

 (22)

The above two equations may be summarized as

X i = Tα Wα
α

i (23a)

V i = Tβ Wβ
β

i (23b)

In general, Wα is an (N+1)×(N+1) diagonal weight matrix, and Tα , a matrix of
Chebyshev polynomials evaluated at CGL sampled times τ j, is of size (M + 1)×
(N + 1). Wβ is an N×N diagonal weight matrix, and Tβ is of size (M + 1)×N.
Note that Tα has a 1

2 as the last term, whereas in Tβ the last term is a 1. This is due
to the slight differences between the Chebyshev interpolation formulation used to
approximate the position states, and the Chebyshev least squares formulation used
to approximate the velocity states.

The integrand of the ODE is fit using the least squares Chebyshev approximation.
A Chebyshev approximation of order N − 2, with M = N CGL sample points is
used. During the ith Picard iteration, the (N−1)×n matrix of integrand coefficients
F i−1 contains the individual n×1 integrand coefficient vectors FFF i−1

0 through FFF i−1
N−2.

The integrand coefficient fit, as given by Eq. 17, may be written as a vector/matrix
expression:

F i−1 = TF TV G(X i−1,V i−1) (24)

for short. In the above equation, TF T is an (N−1)× (M+1) matrix of Chebyshev
polynomials T0 through TN−2 evaluated at the M + 1 CGL sample points, and V
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is an (M + 1)× (M + 1) Cheybshev weight matrix. G(X i−1,V i−1) is the result of
evaluation of the integrand functions at the (i− 1)th approximation of the system
states. The similarity in notation between the weight matrix V and the ith velocity
state approximation V i is being used in order to remain consistent with previous
MCPI publications.

The Picard iteration to relate the unknown velocity state coefficients β i to the
known integrand coefficients F i−1 (as given by Eqs. 18), and the kinematic con-
straint relating the unknown position state coefficients α i to the (now) known ve-
locity state coefficients β i (from Eqs. 19) may be written in matrix/vector form
as

β
i =V0 + Rβ Sβ F i−1 (25a)

α
i = X0 + Rα Sα

β
i (25b)

Sβ and Sα are of size N × (N − 1) and (N + 1)×N, respectively, and take the
general form

S =



1 −1
2 S(1,3) . . . S(1,k) . . . S(1,N)

1 0 −1 0 0 . . . 0
0 1 0 −1 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 1 0 −1
0 0 0 . . . 0 1 0
0 0 0 0 . . . 0 1


(26)

where the top row has the kth term given by

S(1,k)≡ (−1)k
(

1
k−2

− 1
k

)
(27)

V0 and X0 are of size N× n and (N + 1)× n, respectively, and are responsible for
enforcing the initial boundary conditions for the velocity and position coefficients.

Rβ and Rα are square matrices of size N×N and (N +1)× (N +1), respectively,
and are defined by

β R = diag
{

1 , ... ,
1
2r

, ... ,
1

2(N−2)
,

1
2(N−1)

}
, r = 2,3, ...,N−2 (28a)

αR = diag
{

1 , ... ,
1
2r

, ... ,
1

2(N−1)
,

1
N

}
, r = 2,3, ...,N−1 (28b)

These two weight matrices reflect the difference between using the least squares
Chebyshev formulation for both sets of states (as with β i and F i−1), and using the
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least squares Chebyshev formulation for one set and the interpolation formulation
for the other other (as in the the case of α i and β i), as discussed above.

Summarizing the expressions so far, we have

F i−1 = TF TV G(X i−1,V i−1) (29a)

β
i =V0 + Rβ Sβ F i−1 (29b)

α
i = X0 + Rα Sα

β
i (29c)

V i = Tβ Wβ
β

i (29d)

X i = Tα Wα
α

i (29e)

Defining constant matrices

Cα ≡ RSFT TV (30a)

Cx ≡ TW (30b)

Cγ ≡ RS (30c)

a Picard update is of the form

F i−1 = TF TV G(X i−1,V i−1) (31a)

β
i =V0 + Cβ

α Gi−1 (31b)

α
i = X0 + Cα

γ β
i (31c)

V i = Cv xβ
i (31d)

X i = Cx xα
i (31e)

Note that the matrices Cx, Cγ , and Cα , as well as their matrix products, are constant
once the order of approximation N, and therefore the number of CGL sample points
M, are set. These matrices may therefore be generated once prior to propagating
with MCPI, and do not cause any computational overhead during the process of
Picard iteration.

2 MCPI Algorithmic Improvements

This section describes several algorithmic improvements to the basic MCPI algo-
rithm that increase the performance when integrating the equations of perturbed
orbital motion. Virtually all of these enhancements center on methods to “legally
cheat” by drastically reducing the cost of local force function computations with-
out introducing significant approximation errors. These techniques are applicable
to broad classes of numerical integration algorithms, although some application-
specific tuning and validation may be required.
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2.1 Radially Adaptive Gravity

Because the Earth is not a perfect sphere with a spherically symmetric mass dis-
tribution, the gravitational potential in the vicinity of the Earth is a complicated
nonlinear scalar field. In order to compute high precision orbit predictions with
a numerical propagator, the local gravitational acceleration must be computed to
high precision along the entire orbit trajectory. This local high precision gravity
calculation is consistently one of the most computationally expensive aspects of
perturbed orbit propagation at state of the art precision.

The gravitation potential field of the Earth at a particular radius, latitude, and lon-
gitude (r,φ ,λ ) is modeled as a spherical harmonic series

U =
µ

r

[
1+

∞

∑
l=2

l

∑
m=0

(
R
r

)l

Pl,m[sin(φ)]{Cl,m cos(mλ )+Sl,m sin(mλ )}
]

(32)

where Cl,m,Sl,m are empirically determined coefficients, R is the radius of the Earth,
and Pl,m are recursively defined associated Legendre functions [Vallado (2013)].
The Cl,m and Sl,m are in fact higher order mass moments that could be comput-
ed exactly if the true density distribution and geometry of the Earth were known.
These have been “learned” by solving the inverse problem given almost six decades
of tracking actual satellite orbits. Implemented as a computational subroutine, E-
q. 32 and its gradient are a double for loop over the degree l and order m of the
gravity field. The max degree and order are generally chosen by the user/analyst
depending upon the orbital regime, the required accuracy of the solution, the avail-
able computational resources, or other heuristic criteria. The equation above is for
a “square” gravity model, meaning lmax = mmax.

The normalized
(R

r

)l factor in the summation of Eq. 32 causes the higher order
terms in the series to very quickly decrease in magnitude as the radial distance from
the Earth increases. The coefficients Cl,m and Sl,m multiplying the sine and cosine
terms roughly decrease in magnitude with increasing degree and order (roughly but
not strictly, nor monotonically). The size of the Cl,m and Sl,m coefficients reduce
from about 10−3 for lmax = 2 to about 10−6 for lmax ≥ 50. The combined effect of
these factors is that the potential field has many contributing high order terms at
low altitude, but very quickly becomes dominated by a few low order terms as the
radius increases.

We mention that lmax exceeding 200 is required if we wish to compute “atmo-
sphere skimming” low altitude orbits with state of the art precision. Therefore
the gravitational potential series in Eq. 32 and the three vector components of its
gradient can result in tens of thousands of terms to be computed. For this rea-
son, previous researchers have developed methods to decrease the computational
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burden of gravitational field calculations. These methods generally surrender the
elegance of the global spherical harmonic series in favor of local approximation of
the higher degree and order terms. Junkins developed an a priori finite element
method gravity representation, designed for in-flight applications, which allowed
the local gravitational perturbation potential to be modeled before flight using a
lower order 3D orthogonal basis set, greatly reducing the in-flight computation-
al cost [Junkins (1976); Singla and Junkins (2009); Engels and Junkins (1980)].
Bani-Younes and Junkins revisited this work using orthogonal Chebyshev polyno-
mials and modernized it for recent processor developments and parallel comput-
ing architectures [Bani-Younes (2013); Junkins, Bani-Younes, Woollands, and Bai
(2012)]. These methods, while greatly reducing the necessary real-time computa-
tions required in order to calculate a high fidelity gravity acceleration, do so at the
cost of added memory requirements (to store the local FEM coefficients). Looking
at the problem from a different direction, Vallado quantified the output trajectory
error as a result of truncating the gravity series at varying degree and order, and
drew conclusions about the degree and order required to achieve certain trajecto-
ry propagation errors [Vallado (2005)]. Other papers on this topic include [Arora
and Russell (2015); Born, Born, and Beylkin (2010); Arora, Vittaldev, and Rus-
sell (2015)]. In this section we present another method, conceptually related to
Vallado’s approach, to decrease the real-time computational cost of high-precision
gravity approximation.

The gravitational acceleration is computed with a gradient of the potential field

aaa = ∇∇∇U (33a)

aaa =

[
∂U
∂ r

][
∂ r
∂ rrr

]T

+

[
∂U
∂φ

][
∂φ

∂ rrr

]T

+

[
∂U
∂λ

][
∂λ

∂ rrr

]T

(33b)

where each of the partial derivative terms of the potential ∂U
∂ (·) is also a double

summation with the same ingredients as the potential series of Eq. 32. For instance,
the partial derivative of the potential with respect to the radius is

[
∂U
∂ r

]
=− µ

r2

[
1+

∞

∑
l=2

l

∑
m=0

(
R
r

)l

(l +1)Pl,m[sin(φ)]{Cl,m cos(mλ )+Sl,m sin(mλ )}

]
(34)

The acceleration exhibits similar radial trends with respect to the number of rel-
evant terms as the potential field. This is illustrated in Fig. 1, which shows con-
tours of the local variations of the radial acceleration. This is calculated using
the EGM2008 spherical harmonic gravity model with maximum degree and order
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200 [Pavlis, Holmes, Kenyon, and Factor (2008)]. Near the surface of the Earth the
acceleration perturbations are largest, and spatially vary quite rapidly, because of
the large number of non-negligible terms in the series of Eq. 32. However, at a ra-
dial distance of 3 Earth radii the acceleration spatially varies much more smoothly
and is two orders of magnitude smaller.

Figure 1: Local variations of the gravitational acceleration at various radii.

This trend may be examined more rigorously by plotting the individual contribution
from each of the terms in the double summation of the acceleration, as shown in
Figs. 2 and 3. These plots show the marginal contribution to the sum total of the
radial acceleration due to each individual term in the double summation, up to
lmax = mmax = 40. Fig. 2 is for an equatorial point in Low Earth Orbit, 330km
altitude in this case, where

(R
r

)l ≈
( 1

1.052

)l . Fig. 3 is for a point in the Geostationary

belt at an altitude of 35,786km, where
(R

r

)l ≈
( 1

6.61

)l . For the GEO case, the inverse
powers of radii very quickly cause the marginal contributions of any higher order
terms to be negligible. Conversely, at the LEO radius the inverse powers are too
weak to cancel out the rest of the terms, and all of the plotted terms are significant
to within the limits of double precision algebra. As a function only of radius, the
lmax to achieve any prescribed tolerance can be known in advance, with certainty,
and without any real time computation.

Because the equation of gravitational acceleration contains a double summation,
the computational cost of evaluating a series of maximum degree and order L varies
quadratically with L. The relative computational cost of a gravity model of order L
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Figure 2: Marginal radial gravitational acceleration magnitude as a function of
spherical harmonic degree and order, in LEO regime.
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compared to a model of some higher order Lmax is proportional to

E =
CostL

CostLmax

∝

(
L

Lmax

)2

(35)

At an arbitrary point along an eccentric orbit, if a desired acceleration precision
may be achieved with a gravity model of order L as would be achieved using the
model of arbitrarily determined order Lmax, then the equivalent gravity cost E of
model order L scales as Eq. 35.

This motivates the discussion of a radially adaptive spherical harmonic gravity
model for orbit propagation using MCPI, first presented in [Probe, Macomber,
Woollands, and Junkins (2015)]. A desired acceleration precision δ is specified
by the user/analyst. At each gravity series function evaluation point (with instan-
taneous orbital radius r) around the orbit, an Lth degree/order gravity series is e-
valuated, where L = L(r,δ ). The L at each evaluation point is chosen such that
L = max{lmax,mmax} ≤ Lmax, where lmax and mmax are the degree and order of the
highest order term in the double summation with magnitude greater than δ , and
Lmax is the heuristically chosen maximum degree and order that would otherwise
be used for every function evaluation. This implies no assumption of a monoton-
ically decreasing series. Neither does it cherry-pick higher order harmonic terms
while neglecting intermediate order terms, a situation which could potentially sys-
tematically eliminate harmonic gravitational perturbations.

An empirical method for a one-time a priori determination of the appropriate radi-
ally adaptive maximum gravity degree/order L= L(r,δ ) is straightforward to imple-
ment. Looping over the individual terms in the double summation of the spherical
harmonic gravity series allows the marginal contribution from each term to be stud-
ied. lmax and mmax, the maximum degree and order of terms which contribute more
than tolerance δ , are located in the process. Choosing to maintain a square gravi-
ty field for simplicity, we find the maximum required degree and order at a given
spatial position (r,φ ,λ ) as L = max{lmax,mmax} ≤ Lmax. To ensure that the spatial
sampling is representative and comprehensive, 1000 sample points are distributed
uniformly around the unit sphere [Leopardi (2006)]. The process of determining the
required degree and order is performed at all uniformly spaced sample points on a
spherical shell of radius r. Choosing the most conservative value gives L = L(r,δ ).
The process is repeated for a range of r values (rmin ≤ r ≤ rmax) from Low Earth
Orbit to above Geostationary Earth Orbit.

A different, semi-analytic, method for determining the maximum degree/order was
presented in [Probe, Macomber, Woollands, and Junkins (2015)]. The idea behind
this method is quite elegant, and it makes the (offline) computation of the maxi-
mum degree and order much faster than the empirical method described above. By
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examination of Eq. 32 it is clear that the contribution to the gravitation potential
for each term l,m is a product of two factors: the sine and cosine terms scaled by
the gravity field coefficients (in the curly brackets), and the associated Legendre
function scaled by the inverse powers of the radius. The magnitude of the contri-
bution of the sine and cosine terms is bounded by

√
C2

l,m +S2
l,m because the sine

and cosine factors themselves are bounded by±1. The magnitude of the associated
Legendre function scaled by the inverse powers of radius will be at its maximum
(for a given radius) at some geocentric latitude. Therefore, the problem is reduced
to finding the largest contribution of the product of these two at the single latitude
where the Legendre function is the greatest, eliminating the need for evaluation at
spherical shells around the Earth. In this manner, it is trivial to determine the max-
imum degree and order that has terms contributing to the gravitational potential
greater than a given threshold. This procedure is slightly more complicated for de-
termining contributions to the gravitational acceleration (gradient of the potential),
however the same principles may be applied.

Regardless if the empirical method or the more elegant semi-analytic method is
used, a cosine-like sampling ξ is defined to determine the radii at which to evaluate
the gravity model (as opposed to linearly spaced sampling):

r = rmin +(rmax− rmin)
[
1− cos

(
π

4
(1+ξ )

)]
(36a)

ξ =
4
π

cos−1
(

1− (r− rmin)

(rmax− rmin)

)
−1 (36b)

where −1 ≤ ξ ≤ 1. This sampling scheme allows for a concentration of evalu-
ation points near the Earth’s surface where the rate of change in the size of the
perturbations is the greatest. Additionally, it allows the required degree and order
L = L(r,δ ) to be approximated with orthogonal Chebyshev polynomials, using a
procedure developed by Junkins and Bani-Younes [Junkins, Bani-Younes, Wool-
lands, and Bai (2012); Bani-Younes (2013)].

The result of both the empirical and the semi-analytic method is a two-dimensional
look-up table of the required maximum gravity degree and order L, as a function of
radius r and desired acceleration tolerance δ . The resulting look-up table (generat-
ed by the empirical method) is plotted as a surface in Fig. 4, which was generated
for the EGM2008 spherical harmonic gravity model [Pavlis, Holmes, Kenyon, and
Factor (2008)]. The values are truncated at maximum degree and order 100 in this
example, but the procedure is valid for arbitrary maximum degree and order, and a
similar surface may be generated for any value of L.

To demonstrate the effect of radially adaptive gravity, a single orbital period of
a GEO Transfer Orbit is propagated, starting from perigee, using MCPI. A GEO



MCPI Enhancements for Orbit Propagation 47

−15

−10

−5

0

0
2

4
6

8
10

0

20

40

60

80

100

x: log(tol)

Numerical Results from EGM2008

y: Radius [er]

z:
 G

ra
vi

ty
 O

rd
er

Figure 4: Required spherical harmonic gravity degree and order as a function of
radius and desired acceleration tolerance.

Transfer Orbit is an elliptical orbit (e ≈ 0.6 in this case) with perigee in the Low
Earth Orbit region, and apogee at GEO altitude. Three MCPI segments are used,
each with MCPI order of approximation N = 40. The top plot of Fig. 5 shows
the instantaneous orbital altitude (above the surface of the Earth) around the orbit,
plotted with respect to the orbit period. The bottom plot in Fig. 5 shows the radially
adaptive spherical harmonic maximum degree and order L, using a tolerance of
δ = 10−15. The maximum allowable (in this example) degree and order Lmax = 40.
Near perigee (far left and far right of these plots), the algorithm chooses to use
L= Lmax = 40. However, as the radius increases, the required maximum degree and
order drops to about L = 10 near apogee. Looking back to Eq. 35, a reduction of
required gravity order from 40 to 10 represents a roughly

(10
40

)2
= 1/16 equivalent

gravity cost at each function evaluation point near apogee. For propagation of one
orbital period, and assuming three MCPI segments of order 40, each iteration of the
reference trajectory in which a full gravity evaluation is performed (the meaning
of this is explained in Sec. 2.2) has an equivalent gravity cost of 123 (one full
gravity evaluation at each of the N +1 nodes, with no radial adaptation). Using the
radially adaptive gravity model, each iteration in which a full gravity (deg = 40)
evaluation is performed has an equivalent gravity cost of 48.52, or more than 2.5X
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computational savings. Should we use an Lmax of 200, the savings is approximately
one order of magnitude.
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Figure 5: Radially adaptive gravity method - instantaneous orbital altitude and re-
quired maximum degree and order L along GEO Transfer Orbit.

The top plot of Fig. 6 shows the propagated position states rrr = [x,y,z]T around the
GTO orbit. The effect of the cosine sampling of the time domain at the CGL nodes
(as described by Eq. 6) of each segment causes the high relative sample density
near perigee at the endpoints, and the relative sparsity near apogee at the center.
The bottom plot of Fig. 6 shows the achieved Hamiltonian preservation from MCPI
propagation without radial adaptation (reference trajectory - red curve), and with
radial adaptation (black curve). The differences are hardly observable to plotting
precision, and both algorithms are able to achieve relative Hamiltonian preservation
on the order of 10−14.

The corresponding difference in the output trajectory between using MCPI with
the radially adaptive gravity, and without, are shown in Fig. 7. The top plot is
the deviation in position states, normalized by the magnitude of the position states
(|rrrre f − rrradaptive|/|rrrre f ), and the bottom plot is the normalized deviation in velocity
states (|vvvre f −vvvadaptive|/|vvvre f ). To numerical precision, the position and velocity are
identical until the trajectory re-approaches perigee, where a slight deviation occurs.
However, this deviation is nearly a machine precision error of δ = 10−15 (less than
one order of magnitude greater than the achievable limit of double precision: v 16
decimal places). These deviations are comparable to the errors in the reference
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trajectory itself. The conclusion: radial adaptation, for eccentric orbits around the
Earth, leads to dramatic speedup with no accuracy loss.
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2.2 Taylor Series Gravity Model

The radially adaptive method described in the previous section is a simple, elegan-
t means for reducing the cost of computing accelerations from the global gravity
model. A multiple fidelity approach to evaluating force functions can greatly reduce
computational effort in an iterative numerical algorithm such as MCPI or Implicit
Runge-Kutta (IRK) [Bradley, Jones, Beylkin, Sandberg, and Axelrad (2014); Jones
(2012); Aristoff and Poore (2012); Probe, Macomber, Kim, Woollands, and Junk-
ins (2014)]. The motivation for this is the fact that, during the initial few iterations
(when the nodal convergence errors have 10−4 or greater relative error), it is com-
putationally wasteful to calculate a full accuracy spherical harmonic gravity series
at each evaluation point. Towards the end of the iteration process, when MCPI has
converged in position/velocity accuracy to seven or more digits, the trajectory itself
is not spatially changing very much from iteration to iteration, but higher accuracy
in acceleration is required to converge further. The essence of the multiple fideli-
ty force model strategy is to calculate local perturbation forces (in the vicinity of
each node) only as accurately as is required to keep MCPI smoothly converging, or
about one to two digits more precisely than the local solution accuracy. This ap-
proach is generally valid for all smooth and continuous environmental perturbation
force models, but we focus here on gravitational forces because in many cases they
are often the most computationally expensive.

The multiple fidelity gravity method is shown in Fig. 8. Three gravity models of
varying complexity are utilized throughout the process of Picard iteration, the sim-
plest being the first five zonal harmonics J2 through J6, which are computationally
trivial to calculate in comparison to full order spherical harmonic gravity. Dur-
ing the Picard iteration in which a higher fidelity force model is used for the first
time, a local Taylor series correction at each node is calculated that locally approx-
imates the higher fidelity model to sufficient precision without requiring further
“full” force evaluations. Subsequent Picard iterations do not require the calcula-
tion of the higher fidelity gravity model, merely an evaluation of the J2 through
J6 model to which the Taylor correction is added, therefore accounting locally for
the difference between the approximate and the high-order gravity model. An a
priori study can rigorously establish the validity of these approximations as a func-
tion of the local displacement from the nodal coordinates where the Taylor series
approximation is calculated.

The full-order gravitational acceleration gggFFF(rrr) at a point rrr = [x,y,z]T is a spherical
harmonic series with some conservatively specified maximum degree and order.
Typically the maximum degree/order value is chosen based upon prior insights into
the desired fidelity of the output solution, the computational resources available,
and the orbital regime of interest. The methods underlying the radially adaptive
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gravity method can be invoked to make these traditionally heuristic decisions more
rigorous. For the present discussion, we adopt a low order approximate gravity
model: the gravitational acceleration due to two-body Keplerian motion plus the
contributions of the first five zonal harmonic gravity terms J2 through J6, which
we designate gggzzz(rrr). The difference between whatever full-order gravitational ac-
celeration model is selected and the zonal approximate gravitational acceleration is
Taylor expanded at an arbitrary point rrr111 near the initial point rrr000 as

[gggFFF(rrr111)−gggzzz(rrr111)]' [gggFFF(rrr000)−gggzzz(rrr000)]+∇∇∇ [gggFFF(rrr000)−gggzzz(rrr000)] [rrr111− rrr000]+H.O.

(37)

Re-arranging the above equation and neglecting the higher-order terms provides an
approximation of the full-order gravity gggFFF(rrr111) as

gggFFF(rrr111) = gggzzz(rrr111)+ ccc000 +[A0][∆rrr]+Truncation Error (38)

where ccc000 = [gggFFF(rrr000)−gggzzz(rrr000)] is a constant vector quantity evaluated at the Tay-
lor series expansion point, A0 = ∇∇∇ [gggFFF(rrr000)−gggzzz(rrr000)] is the gradient matrix at the
expansion point, and ∆rrr = [rrr111− rrr000] is the position difference vector. For a given
Picard iteration process, Eq. 38 will be applied at each node along the approximate
trajectory to enable subsequent Picard iterations. A zeroth order Taylor approx-
imation may be applied by considering only the terms gggFFF(rrr111) = gggzzz(rrr111) + ccc000 in
the approximation of full order gravity, whereas a first order Taylor approximation
method utilizes all the terms in Eq. 38. In all cases, a priori computations can
bound worst-case truncation errors as a function of |rrr000| and |∆∆∆rrr|.
Remarkably, MCPI is able to achieve a large computational speedup by using a
zeroth order Taylor series approximation in the multiple fidelity gravity method,
while still being able to achieve arbitrarily high accuracy. This is because ∆∆∆rrr is
small, and over small regions the discrepancy between gggzzz(rrr) and gggFFF(rrr) is approxi-
mately constant at each node. Fig. 9 shows a comparison of computation time and
function evaluation count for MCPI and other state of practice numerical propaga-
tors, applied to an eccentric orbit with a perigee radius in LEO [Probe, Macomber,
Kim, Woollands, and Junkins (2014)]. In these plots, MCPI without the multiple
fidelity gravity method is labeled “MCPI”, and MCPI with the zeroth order Taylor
series multiple fidelity method is labeled “TCA-MCPI”. The zeroth order Taylor
approach is also generally useful during the analogous convergence process of Im-
plicit Runge Kutta propagators [Bradley, Jones, Beylkin, Sandberg, and Axelrad
(2014); Jones (2012); Aristoff and Poore (2012)].

Within a single instance of MCPI, utilizing a first order Taylor approximation does
not provide much improvement over the zeroth order approximation because the n-
odal corrections between iterations are generally small, especially at the end of the
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convergence process when the highest approximation accuracy is required. How-
ever, an important benefit of the first order Taylor method is that it can increase
the domain of validity of the Taylor approximation beyond that of the zeroth order
method. This means that after having calculated the local Taylor approximation to
the gravity field once, neighboring trajectories within the domain of validity may be
propagated essentially “for free”. This is ideal for propagating particle trajectories
in the vicinity of a reference trajectory, for instance within Monte Carlo analysis or
uncertainty propagation, or within a particle or Sigma-Point filter. There is, how-
ever, a moderate computational penalty when propagating the reference trajectory,
as the gradient A0 matrix must be calculated.

A0 can be computed analytically during the propagation of the reference trajectory
(within the MCPI convergence loop) by taking partial derivatives of the spherical
harmonic series, which adds an additional computational penalty beyond the cost of
the series itself (estimated 15-20% extra computation time). These analytic partial
derivatives are the same computations that are required to numerically propagate
the perturbed state transition matrix [Read, Junkins, and Bani-Younes (2015)]. In
this case, the position difference vector ∆∆∆rrr comes from the nodal corrections be-
tween Picard iterations.

Alternatively, the gradient matrix A0 may be computed numerically by performing
manual perturbations away from a reference trajectory and solving the system of
equations [Macomber, Probe, Woollands, and Junkins (2015a)].

To numerically solve for the gradient matrix, MCPI is first used to propagate a high-
fidelity reference trajectory rrr(t). A Taylor expansion about time-sampled positions
rrr000 along the reference trajectory is given by Eq. 38, which can be rearranged to
give

[gggFFF(rrr111)−gggzzz(rrr111)]− ccc000 = [A0][∆rrr] (39)

Evaluating the full-order gravity function gggFFF(rrr) and the zonal gravity function
gggzzz(rrr) at the point rrr111 means the left hand side of Eq. 39 is a known quantity, which
is renamed [∆ggg111]. This gives

[∆ggg111] = [A0][∆rrr] (40)

where [∆ggg111] and [∆rrr] are known (3×1) vectors, and the gradient matrix [A0] is an
unknown (3×3) symmetric matrix. The matrix system in Eq. 40 can be transmuted
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in terms of the six unknown elements of the [A0] gradient matrix:

∆gx1
∆gy1
∆gz1

=

∆x1 ∆y1 ∆z1 0 0 0
0 ∆x1 0 ∆y1 ∆z1 0
0 0 ∆x1 0 ∆y1 ∆z1




A11
A12
A13
A22
A23
A33

 (41)

Eq. 41 is a matrix system of the form ∆ggg = Baaa, where the terms ∆x1, ∆y1, and ∆z1
forming the B matrix are the elements of the [∆rrr] vector. Three independent offsets
from the reference trajectory to positions rrr111, rrr222, and rrr333 are performed. Stacking
the transmuted system of Eq. 41 from the three offsets gives ∆ggg= [∆gggT

111 ;∆gggT
222 ;∆gggT

333 ]
T

which is a (9×1) vector, B which is a (9×6) matrix, and a which is a (6×1) vector
containing the unknown elements of the A0 matrix. This system can be solved using
the normal equations of least squares

aaa = (BT B)−1BT
∆ggg (42)

to find the best estimate of the unknown elements ai of the A0 matrix. It would
seem that two offsets away from the reference trajectory would provide a (6×6) B
matrix that could be inverted directly to solve for the aaa vector, but in practice this
(6×6) B matrix is singular and non-invertible. This is easily cured by introducing
one or two additional evaluations and using a least square inverse.

This first order Taylor series gravity approximation is ideal for propagating trajec-
tories in the vicinity of the reference trajectory, such as in a Monte Carlo analysis
or during the process of uncertainty propagation. The gradient matrix along the
reference trajectory can be calculated ahead of time, thereby allowing neighboring
trajectories to be propagated without performing any high-fidelity gravity evalua-
tions during the MCPI iteration process. This means that using MCPI to propagate
trajectories near the reference trajectory can be done to within the accuracy limit
of the local first order Taylor approximations significantly more quickly. Figs. 10
and 11 show a trajectory propagated using the first order Taylor approximation near
a GEO reference trajectory of the Telemetry Data Relay Satellite (TDRS-11) over
a period of 20 days (20 orbits). Fig. 10 is the spatial deviation of the orbit away
from the reference orbit, which varies between roughly two to ten kilometers, start-
ing from an initial deviation of roughly 3.5 kilometers. This orbit was propagated
using TCA-MCPI but the high-fidelity gravity evaluations were replace by the Tay-
lor series approximation with respect to the reference trajectory. Fig. 11 shows the
Hamiltonian preservation of the numerically propagated reference trajectory, and
of the neighboring trajectory propagated using the first order Taylor series gravity
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approximation. The Taylor series solution is able to conserve the Hamiltonian to a
precision of about 10−12 for this near-GEO case.

Using the same initial deviation of roughly four kilometers for a LEO orbit similar
to that of the International Space Station, the first order Taylor series gravity is
able to preserve the Hamiltonian to a precision of about 10−9 over 20 orbits (1.25
days). Note that for the Low-Earth Orbit ISS-like case, an initial deviation of 3.5
kilometers is a much larger relative deviation when normalized by the orbital radius
than it is for the GEO orbit which has a semi-major axis of about 42 thousand
kilometers. Furthermore the LEO case gravity model is much more nonlinear than
the GEO case.

The Hamiltonian preservation is not a perfect measure of the obtainable solution
accuracy of a numerical propagator (especially for these near circular reference or-
bits), but it is a reasonable metric to show that high fidelity solutions can be attained
with vastly reduced computational cost. If more precision is required from the fi-
nal propagated solution after the first order Taylor series gravity has converged to
its achievable accuracy limit, further MCPI iterations using the zeroth order Taylor
series may be performed to achieve arbitrarily accurate trajectories.
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Figure 10: Spatial deviation of first order Taylor series trajectory in neighborhood
of TDRS-11 reference orbit.
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Figure 11: Hamiltonian preservation of reference orbit and neighboring trajectory
with first order Taylor gravity approximation.

2.3 Cold/Warm/Hot Start

MCPI, when applied to the problem of perturbed orbit propagation, has been shown
to be able to converge for segment lengths of up to several orbital periods, even with
a completely uninformed initial approximation [Bai and Junkins (2011a)]. Typical-
ly, if no a priori approximation of the system state trajectories is available, the value
of the states at all CGL nodes is initially set equal to the boundary conditions. This
method is called the “cold-start” method. However, any initial approximation to
the true dynamics will allow MCPI to converge to the true solution in fewer itera-
tions. If the initial approximation is sufficiently good (with, say, 10−4 or smaller
relative errors) then we can immediately invoke the force approximation ideas from
the previous section, and typically need only one full force evaluation per node to
achieve final convergence.

The equation of generally perturbed orbital motion is r̈rr =− µ

r3 rrr+aaaddd . The dominant
acceleration force acting on an object in Earth orbit at instantaneous position rrr is
the Keplerian gravity term r̈rr =− µ

r3 rrr. Added to this are other disturbance forces aaaddd
caused by the gravitation potential of the non-spherical Earth, atmospheric drag,
third body gravitational effects from the Sun and Moon, solar radiation pressure,
and other complex forces due to the physics of motion in the space environment.
Approximate solutions to the generally perturbed Earth-orbiting satellite problem
are available. It is logical to invoke these and other insights to establish a bet-



MCPI Enhancements for Orbit Propagation 57

ter starting orbit approximation than the cold-start method. Implicit Runge Kutta
(IRK) algorithms have previously utilized analytic and semi-analytic methods to
provide an initial estimate for perturbed orbit propagation [Jones (2012); Aristoff,
Horwood, and Poore (2012)].

A two-stage initial orbit approximation method can greatly reduce the amount of
required MCPI computation for propagation of more than one orbit period. The
first step is to “warm-start” MCPI at the CGL nodes during the first lap around
the orbit using the analytic Keplerian solution, or a semi-analytic solution for per-
turbed motion. This won’t be perfect because the perturbation forces will cause the
true motion to deviate from the approximate solution, however typically a starting
estimate accurate to three or more significant digits will result. Allowing MCPI to
converge and then saving the difference between the warm start estimate and the
final converged solution gives an Encke-type description of the deviation (at the
nodes) of the true motion from the starting approximation. The next lap around the
orbit, MCPI can be warm started with the same approximate solution (re-osculated
with perigee position and velocity at the start of the second orbit), and then the
deviation from the previous warm start can be applied on top of that to give the
“hot-start”.

The motivation for this idea is that the non-two-body perturbations are highly cor-
related on successive orbits. Asking the question “How did the previous warm start
differ from the final convergence?” is useful to trend-sense a correction for the next
pass through a neighboring part of the force field. While not rigorous, it is easy to
verify that this “previous Encke departure motion” gives a significantly improved
starting iterative. In LEO, the short orbital period means that perturbations are very
similar on each trip around the orbit relative to the longer timescale of the Earth
rotation. Near GEO, the dominant perturbation terms are the first few zonal har-
monic gravity terms, which are symmetric with respect to Earth rotation. Typically
the hot-start process gives a starting approximation with errors in the 5th significant
figure or better. This process is illustrated heuristically in Fig. 12. Note that this
figure is not drawn to scale; the deviations are many orders of magnitude smaller
than the orbit radius in practice.

A reasonable starting approximation to the true dynamics can be obtained by the
analytic solution to the problem of Keplerian motion, the Lagrange/Gibbs analyti-
cal F and G solution [Schaub and Junkins (2014)]. A better approximation to the
dynamics of perturbed orbit approximation may be obtained with a semi-analytic
solution, which takes into account the time-averaged secular effects of a subset of
the disturbing accelerations [Hoots and Roehrich (1980); Hoots, Schumacher Jr.,
and Glover (2004); Vallado, Crawford, and Hujsak (2006); Martinusi, Dell’Elce,
and Kerschen (2015)].
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Figure 12: Heuristic schematic of cold/warm/hot-start methods for MCPI perturbed
orbit propagation.

The analytic solution of Keplerian motion, or any of the semi-analytic methods,
may be used to warm- and hot-start MCPI by providing an initial trajectory esti-
mate. Fig. 13 demonstrates the effectiveness of the warm- and hot-start methods
using the F&G analytic solution. In this figure, the orbit being propagated is a cir-
cular GEO orbit, with spherical harmonic gravity as the only perturbation. With
no a priori information (“cold-start”), MCPI is able to converge in 14 iterations,
from a large normalized relative nodal error (normalized by the initial conditions)
on the order of 1 (since the initial boundary condition values is used at all nodes).
This is indicated by the black curve in the figure. Warm-starting each node along
the trajectory with the analytic F and G solution brings the initial error down three
orders of magnitude, to around 10−3. MCPI is able to converge in 11 iterations, as
indicated by the blue curve. After propagating all the way around the orbit a sin-
gle time, the initial trajectory estimates on the subsequent orbit can be hot-started.
This provides an initial error on the order of 10−5 and allows MCPI to converge in
9 iterations, as indicated by the red curve. Eliminating iterations means eliminating
expensive force function evaluations and computational overhead. It also means
that the local force approximations (from Sec. 2.2) can be invoked to make all sub-
sequent iterations extremely inexpensive. Warm-starting on the first trip around the
orbit is able to reduce computational cost by roughly 20%, and hot-starting on sub-
sequent trips around the orbit reduces cost by roughly 35%. Invoking local force
approximations greatly reduces the cost further.
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Figure 13: MCPI cold/warm/hot-start convergence trends using F&G analytic so-
lution on GEO orbit.

If the error tolerance for the results shown in Fig. 13 is set to 10−8 (sub-meter
precision) instead of 10−12, hot-started MCPI converges in 5 or 6 iterations. As
discussed in Sec. 2.2, this can readily be accomplished with only one expensive
“full” gravity evaluation per node due to the fixed point nature of MCPI conver-
gence. For the implemented force model, the utilization of local force approxima-
tions dramatically accelerates all of the computations after a relative error of 10−5

is achieved, and the hot-start process usually allows this approximation on the very
first iteration. Thus in Fig. 13 we see that the hot start process converges to engi-
neering precision (sub-meter orbit: ∼ 10−8 relative error) in only 6 iterations, and
only the first of these requires a full force evaluation at each node. This is the key
to computational efficiency.

The F&G analytic (Keplerian) solution does not take into account any perturbation-
s. The semi-analytic solutions, for instance SGP4 [Hoots and Roehrich (1980)],
take into account a time-averaged effect of zonal harmonic gravity, simple drag,
and third-body sun and moon effects. Depending upon the perturbation models
considered in the numerical integration, and the orbital regime of interest, the semi-
analytic methods can provide better warm/hot start initial approximations than the
analytic method. However, the analytic method is much simpler to work with. The
semi-analytic methods require careful transformation between osculating states (in
which the numerical integrator works) and the time-averaged states (in which the
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semi-analytic methods work). Additionally, different semi-analytic methods work
with different time-averaged elements. For reasons of simplicity, the F&G analytic
warm/hot start is preferable for stand-alone numerical integration tools. However,
if working with (for instance) a legacy toolset that already includes semi-analytic
(general perturbations) code, the existing semi-analytic methods may be used to
warm/hot start MCPI with better initial estimates than the F&G two-body warm
start would provide.

3 Conclusion

This paper presented a set of improvements to basic Modified Chebyshev Picard
Iteration for increasing the computational performance of perturbed orbit propaga-
tion. Numerically propagating high-fidelity orbits requires evaluation of compu-
tationally expensive perturbation force models, and generally these force function
evaluations account for the vast majority of computation time. Typically the spher-
ical harmonic gravity series is the most costly to calculate. Modified Chebyshev
Picard Iteration is an iterative numerical method, and the force functions must be
evaluated on every iteration. Therefore, the total computational cost may be de-
creased by either reducing the computational cost per iteration, or by reducing the
required number of iterations to achieve convergence. A radially adaptive spherical
harmonic gravity model, and a multiple fidelity Taylor series approach for evaluat-
ing gravity perturbations between iterations, are two methods presented that reduce
cost per iteration. A multi-tiered algorithm to establish an initial estimate of per-
turbed orbit trajectories, especially when propagating for more than one orbital
period, is presented and serves to reduce the required number of iterations.
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