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On Collision Local Time of Two Independent
Subfractional Brownian Motions

Jingjun Guo' and Yanping Xiao’

Abstract:  We study the existence of collision local time of two independent
subfractional Brownian motions with different coefficients in (—%, %) using an al-
ternative expression. We prove that the collision local time is a Hida distribution
based on the canonical framework of white noise analysis, and get chaos expan-
sions. Finally, we show that the collision local time exists in (L?) under appropriate

conditions.

Keywords: Subfractional Brownian motion, Collision local time, Hida distribu-
tion.

1 Introduction

Stochastic processes can make models in Biology, Physics, Engineering and so
on, which have become an important tool to master for scientific and technolog-
ical workers. In this paper, we mainly consider a self-similar Gaussian process -
subfractional Brownian motion (sfBm). Let Sf" (i = 1,2) be two independent sub-
fractional Brownian motions (sfBms) with different parameter k; € (—%, %) on R,

. ki - . . .
For eachi = 1,2, S;" is a centered Gaussian process with representation

Sk = / t— )5+ (t495)% —2(—s)1aw,, 1
t (k) R[( )L+ (t+9)2 (—s)3]dWs ey
where c(k;) = [2(f57 (14 s)k — k)2 + ﬁ)] 2ay = max{a,0},a_ = max{—a,0}
and W is a Brownian motion (Bm), which means that sfBm is an extension of Bm,
a rather special class of self-similar Gaussian process.

The object of study in this paper will be collision local time of S¥! and §*2, which
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is formally defined as
— ki ko
L= [ 8(st st @
I

where 8 (x) is a Dirac delta function,/ = [0,7] and T > 0. The intuitive idea of the
local time L for two processes Sf" (i =1,2) is that L; characterizes collision time
during the interval [0, T].

For k; =0 (i = 1,2), processes Skt and % are classical Brownian motions (Bms).
The local time of Bm has been studied by many authors. In recent years, some
authors focus on the research on fractional integral process and related problems,
e.g. fractional Brownian motion (fBm), due to its interesting properties and it-
s applications in various scientific areas such as telecommunications, turbulence
and finance [Biagin et. al (2008)]. Others have studied the numerical solution of
fractional-integral differential equations [Chen et. al (2014); Wang et. al (2015)].
In general, sfBm is intermediate between Bm and fBm. The local times of sfBm
have been studied by many authors as well, e.g.[Liu et. al (2012)] for the intersec-
tion case and [Yan et. al (2010)] for the collision case, where authors have proved
that the local time is smooth in the sense of Meyer and Watanabe.

In spite of sfBm has many properties analogous of fBm such as self-similar and
long-rang dependent, sfBm has non-stationary increments and weakly correlated
in comparing with fBm. On account of the complexity structure of sfBm, peo-
ple pay little attention on these process. Owing to sfBm be not semimartingale
(or Markov process), many classical methods in stochastic analysis can not deal
with the problems of sfBm. If we can get a continuous version of sfBm, it will
be effective to study the existence local time of sfBm through white noise analysis
approach. White noise is an original acoustic concept. In engineering technology,
engineers often use the term of white noise to represent a kind of random distur-
bance in the dynamic system. For a long time, in order to give strict and reasonable
mathematical meaning of white noise, Hida put forward infinite dimensional dis-
tribution theory similar to Schwart distribution theory -white noise analysis. Now
white noise analysis becomes an effective method to deal with the problems of
infinite dimensional space.

In this paper, motivated by [Oliveira et. al (2011); Liu et. al (2012)], we give
an alternative expression of sfBm by using odd extension and fractional integrals
operators, and study the existence of the collision local time of two independent
sfBms with the different coefficients in (—%, %) We prove that the collision time
is a Hida distribution and belongs to (L?), respectively. The paper is organized
as follows. In Section 2, we provide some background material from white noise

analysis. In Section 3, we present the main results and their demonstrations.
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2 White noise analysis

In this section, we briefly recall some notions and facts in white noise analysis, for
details see Refs [Bender (2003); Biagin et. al (2008); Oliveira et. al (2011)].

The first real Gelfand triple is .%54(R) C L2(R,R*?) C .75,(R), where .%54(R) and
<5 (R) are the Schwartz spaces of the vector-valued test functions and tempered
distributions, respectively. Denote the norm | - | in L?(R,R??) and the dual pairing
between .75, (R) and .#24(R) by (-,-), respectively. We consider two-independent
d-tuple of Gaussian white noises w = (W, W), where w; = (wi1,- -, w;q4). For
every test function f = (f;,f2) on .#24(R), f; € .74(R), the characteristic function
of vector-valued white noise w is given by C(f) = E (i Zi-1 (/i) ) = =2 (£
Introduce the following notations:

n=(ny, -,ng), n= Zlen,-, n! = Hflzlni!.

Let (L?) = L*(%5;(R),du) be the Hilbert space of square integrable functionals
with respect to Lebesgue measure y on .5 (R). By the Wiener-It-Segal isomor-
phism theorem, we have chaos expansion

(W) = Emene Lkene ( Wi™ 1 @ W?k Hfmk),

for each f € (L?).

Let I'(A) be the second quantization of A, where A is defined by (Ag);(t) = (— j—; +
1>+ 1)g;(t). For each integer p, let (.#,) be the completion of DomI'(A)? with re-
spect to the Hilbert norm || - ||,=(| ['(A)? [[o. Let () =(,>¢(-*)) be the pro-
jective limit of {(-#}) | p > 0} and be ()" = U,>¢(-"-)) the inductive lim-
it of {(-”_p) | p > 0}, respectively. Thus, there is the second Gelfand triple:
(&) C (I*) C (&)*. Elements of (.%) (resp. (.#)*) are called Hida testing (re-
sp. generalized) functionals. For f € .%4(R,R??), the S-transform is defined by
SP(f) =< @, exp(-,f) > .

Definition 2.1. A mapping G : %4(R) — C is called a U-functional if

(1) G(Af, +1f,) is entire in A for any pair f; € S>4(R,R*?) of test functions;

(2) | G(zf) |< Crexp{Ca | z|*| APf |3} with Ci, p > O, for any complex z.

Lemma 2.2. Let {Gy }ren denote a sequence of U-functional with following prop-
erties:

(I)for all f € S24(R,R??) {Gx(f) }ren is a Cauchy sequence;

(2) there exist C; and p such that | Gi(zf) | < Crexp{Ca | z |*| APf |3} uniformly in
R.

Then, there is a unique ® € (.#)* such that S~' Gy, converges strongly to ®.
Lemma 2.3. Let (Q,B, 1) be a measure space, and let @, be a mapping defined

on Q with values in (.*)*. We assume S-transform of ®
(1) is an p-measurable function of A for f € /5q(R,R?*%); and
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(2) obeys a U-functional estimate

| 5P, (f) |< Ci(A)exp{C2(A) | 2 || AZS |3}

for some fixed p and for C; € L'(u), C; € L™ (u).
Then

Ja®rdu(A) € ()" and S(JoPadp(A))(f) = Jo(SP2)(Hdu(A).

3 Collision local time

In this section, our main aim is to study the existence of the collision local time of
two independent sfBms Sk = {S% (¢),z > 0}(i = 1,2) as (2). From now, we always
approximate the Dirac delta function by the heat kernel

pe(x) = \/ﬁeXp{ 28}
For any € > 0, we define

Lie = [ pe(s™ () =52 (1))t 3)

To get our main results, we give an alternative expression of sfBm S using frac-
tional integrals operators I k and odd extension.

Lemma 3.1. Let k € (— 2, 2) be given. Subfractional Brownian motion S* has a

continuous version of (-, - )I ]I[ )> where ]I[ 0.) denotes the odd extension of Tjg ;)
1

and c(k) = [2(fg (1 +5)" =) + 7))
proof: For f: RT — R, we define its odd extension f°(x) in [Tudor (2003)] as

follows:

{—f(—x), x<0

flx), x>0. @

For given o E (O 1), we obtain

(1%f)(x) = gy Jo F(O 0 —x)* Nt = g5 Jo" f e+ )14,

(IEf)(x )— NG f_mf( ) =0t = g Jo fle— 1),

if the integrals exist for all x € R. For an arbitrary parameter k € (0, %), using
fractional integrals of Weyl’s type an alternative representation of S is given by

k+1
sk = / 15 (15, 5)

where W is a Wiener process. Integrand in (5) yields

()09 = — 10—+ 495 ~2(=s4). ©)
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On the other hand, apart from fractional derivatives /¥, we shall also use fractional
derivatives operators. For o € (0,1) and € > 0, we have

(D% o f)(x) = gy Jo L ar,
The fractional derivatives of Marchaud’s type are given by D¢ f = lime_,04 DY . f,

if the integrals exist almost surely. In this case, the continuous version of S¥ is
(-, (1 D= kH‘[’O t)> Using 1% = D—%, we obtain the same form of continuous version.
From what we said above, we can safely see that a sfBm is given by a continuous
version of (-, ﬁlﬁﬂ[oo_’t)% for k € (0,3).

The case k € (—%,0) can be considered similarly.

The following lemma is very useful to prove our main results. [ Bender (2003);
Drumond et al. (2008)] have given the similar estimate in discussion the local time
of fBm, respectively.

Lemma 3.2. Letk € (—3,3) and f € #(R) be given. Then there exists a non-
negative constant Cy such that

| [ 70 o R T) Wx < Gl =511 £, ™

where c(k) = 2(f5 (1 + )k —s5)2 + ﬁ)]%,Ck is some constant independent of

fand || f = supyer | f(x) | +super [ f'(x) |-
proof: Recall that {S¥} has the average representation

sk = C<1k) /R [ =) + (4 5)F —2(—s)-Jaw,, ®

where {W;} is a Bm and c(k) = [2(f57((1+s)F — s%)2 + Tlﬂ)]% By Lemma 3.1,
(8) becomes

st=TUE) [ g saw. ©)

For s <t and given f € .](R), we obtain

/f 1) (x)d
/f YT, dx+/f (I Ty ) (x)dl]

‘wNAW ) +£(00) (Pl ) (3)d
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Since I* and I i are dual operators, note that

1 )
oL 0+ @) (0
:c(@[/s (I8 (f(=x) + f(x)) (x)dx)]

gi\t—s\ sup \Ik (f(=x)+f(x)) .
C() xeR+

Next we will discuss the estimation of the integral for different k.
Step 1. For 0 < k < 1, it has

1) = a
< [ 1) | x - a
= [ 1@ = al e [ ) | x - du

lu—x|<1 |u—x|>

=A1 4Ly,

where

AIE/ | Fl) || x—u | du
lu—x|<1

<max | f(x) |/ |x—u|'du

xeR
=r3€e1ﬂ§<|f<x>|[1 u [ du
2
% max | £(x) .

k xeR

For the second part, we have

AVIES f\u—x|21 | f(u) | du <] f ”L'(R)
As similar techniques in the proof of Lemma 6 in [ Drumond et. al (2008)] and
applying Schwartz inequality, another integral becomes

Szt | F@) [ u—x " du.

Therefore

°° _ 2
/O | () [ = x| lduﬁzr;le%lf(@lﬂlf\ly(m
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Next using similar methods, we estimate
| sl —u—x " du
0

g/ | F(—u) || utx [ ]du—i—/ | Fl=u) || utx " du
lutx|<1 lutx|>1
EA3—|—A4.

At the same time, we obtain
As :/ | F(—u) || utx <! du
Ju+x|<1
<max{f(— }/ |u S du

2
= max | f(—=x) |,

and
Ba=[ St x d
[u+x|<1
<max{f(— }/ |u[F1 du
2
= max | f(=x) |,
ForﬁxedxeRand0<k<%,Wehave
L1 = s [ ) ] da
0 0
2 2
<gmax [ fOo) |+ 1 lloey 7 max [ f(=2) [+ ]]f | w)
2
<2(Fmax | £() |+ f o))
Hence
) g T (e
2
<Ck1!f—S!( max [ f() [ +1|.f ),

where constant Ci1 =2(c(k)T'(k))~! depending on k.
Step 2. For —5 < k < 0, by the proof of Theorem 2.3 in [Bender (2003)] again, we
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have
supeg+ | (I5) (%) |< CeaZ supyere | f(¥) |+ SUPsery | /(%) |,x >0,

-2 1
supyers | (TLF) (=) |< a2 supyers | F(=2) | +5p7supsers | f/(—=) ,x >0,
where Cy»> and G 3 are both constants dependent on k. Thus we have shown that
there exists a constant Cy 4 such that

supyeg | (1££)(x) |< Cea 7 supyer | f(x) | ﬁ sup.eg | f'(x) |,x € R.
Therefore, for an arbitrary parameter k € (—3, ), we obtain

[0 g T e < Gl =51 7 )

where || f ||= supyer | f(x) | +sup,egr | f/(x) | and Cy is a constant independent
1. 0
Theorem 3.3. For each ki, ky € (— 2, 2) and every positive integer d > 1 such
that (min{ky,k>} + 3)d < 1, the collision local time of two independent sfBms Sk
and S* given by

Lie= / drpe (S (1) — 5%(1) / dt( 27:8

is a Hida distribution. Moreover, Ly ¢ has the following chaos expansion
. Co
Lk,g = ZZ< Wi@m R W? .,Gm7l>,
m
where the kernel functions

G iUy, tp, Vi, )

1 d 1 m+l
2

)
()

1 1
m+l ! m!'l! /d 2 02k t2k1+1+(2 22k2)t2k2+1)

T
]
Fi o Tl 15,0

d+m+l

form+k #0, m+1 even, and zero otherwise.

proof: In order to prove the result, we only apply Lemma 2.3 to the S-transform of
the integral with respect to Lebesgue measure df on 1.

Denote

Dy e (Wi, w2) = (
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By the definition of S-transform, we know that

1 d

(27:[8+(2_22k1)t2k1+1 (2 22k2>t2k2+]])2

(S dst(3) [y 12T ) 5) = (g 205, (1)
2[e 4 (2 —2%)2kt] 4 (2 — 2%k 2kat 1] ’

S(I)k7€ (f)

exp{—

For any complex number z and f € .7;(R), it implies

1 d
| SPre(ef) | < (27r[e + (2= 2% 2kt 4 (2= 22k2)t2kz+1])2
e PO by T )0~ s T, 60 P
p 2[e + (2 — 221 2k+1 1 (2 = 2% )2k ] :
To check the boundary condition in Lemma 2.3, introduce norm || - || in .4(R)
defined by

QU

HM—Zwmﬁ\Hgm@WﬁfﬂthEﬂﬁl

i=1

By Lemma 3.2 we obtain

1
/dsf le[Ot s)f/dsf(s)( sz[Ot))( ) I?
<%/ﬁﬁ ywm P ([ dsto)( ﬂ%m<W}
<2ACi I+ G H £
<Crot” ”f||27

where Cy o, Cy, and Cy, are not negative constants.
So
1
(271'[8 + (2 — 22k )t2k1+1 + (2 _ 22k2)t2k2+1] )

ot 2P G £ \

(ST

| Sq)k,e(zf) | <

where the first part is integrable on I if (min{ky,k>»}+ 3)d < 1, and the second part
is bound.

To get the kernel functions of Gy, 1, we consider the S-transform of Ly .. Compar-
ing with the general form of the chaos expansion, we find the kernel functions. [J
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On account of the local time, it is desirable to be regularized by sequences of Gaus-
sian, and renormalized functions of local time need be subtracted since the func-
tions in hight dimensions fail to exist without subtractions [ Nualart et. al (2007)].
We are now ready to prove that collision local time L; is as well as its subtracted

counterpart L(N) where N > 0.

Proposition 3.4. For each ki, k> G (— 2, 2) every positive integer d > 1 and N > 0
such that (d +2N)min{ky,k»} + ¢ —N < 1, the Bochner integer

L™ = /I 1™ (54 (1) — $% (1))

is a Hida distribution.

proof: Let us denote the truncated exponential series by expy(x) = }¥,_y ;. For
each r > 0, the Bochner integral
1
S(Sk1(r)—sk@) = (7)(1/ d2 exp{il (S — 5%)} (10)
2w JRrd
is a Hida distribution. Its S-transform is given by
1

[S1EW

S(8(8% (1) — 82(1)))(f) E(zn[(z_zzkl)t2k1+l+(2 22k2)t2k2+1])

(S dsE(S) (510 ) ()i 12Ty ) ()])
2[(2_22k1)t2k1+1 (2_22k2)t2k2+1] }

-exp{—

for all f € 74 (R).
In fact, since S (¢) and S*(¢) are independent of sfBms, then
Ny ei/l(Skl (1)—S*2(z) (f)
_E (ei?u(wl +f, ﬁzﬁl I ) \E (e_m (wa+Hf, @1&211[00‘,9)
:exp{—%\ A 2((2 = 22) 2R+ 4 (2 92k 2kt )
_ - -
-exp{il / dsf(s)[(——I2'Tf 12T DY
p{R( dot(5)]( 5 (5) — (i P 0

We can verity that the S-transform of the integrand satisfies the conditions of Lem-
ma 2.3.

Hence the S-transform of 8®V) is given by
1
k k: _
()84 0) = S O) () =03 =gy 1 g~y

(fRde(s)[( (1 )Iﬁ]H[OOz))( 5)—( (1 )I]QH[OO t))( )])2
PN (@ 2B (2 2Ry )

(ST
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which is a measurable function. To prove the bounded condition, we consider

| S@EM (1) =52 (1)) D) |
< 1
_(271.((2 _ 22k1 )[2k1+1 + (2 _ 22k2)t2k2+1) )
(Colep I
*CXPy1Lk,0 | < ‘ (2 — 22k )t2k1+l 4 (2 _ 22k2)t2k2+1 }7

(ST

estimating the function exp, by

2

2 2
eXPN{Ck,O | < | (2 22k )l‘2k1+1 + (2_ 22k2)t2k2+1 H f H }
t2

N 2 ¢12
5((2_22k1)t2k1+1+(2_22k2)t2k2+1) exp{Cro |z "l £1]}-

12N

Then TR e is integral on I if (d +2N)min{ki,kr} + % —

N<1. g
Theorem 3.5. For each ki, k, € (— 2, 2) every positive integer d > 1 and N > 0

satisfied (d +2N)min{ky,ky} +% —N < 1, the truncated local times L,(CAQ converges
(N)
i

strongly to truncated local times L;,

proof: By S-transform of L,(CAQ given by

n ()" when € tends to zero.

Mgy — 1
Shes () = /1dt(27r(8+(2—22k1)t2k1+1+(2 22’<2)t2’<2+1))

U dst(6) (g 2 ) (5) — (i 22T, 9)))°

[T

“CXPy1T 2[e 4 (2 —2%k)2ki+1 (2 — 22k2) 2k +1] ’
and
| S(pe(S (1) =S (1))) (<) |
| ] N 2 2
<(L) exp{Cio | 2P £1°}.

277 (2 =222+l 4 (2 22k2)t2k2+1)’§l+N

it is to see that L,((AQ is a Hida distribution. For each complex number z and f €
Za(R), we have

| SLY () |

<Gt e(Guol PITIP) [ar

d N
2

(2 — 22k1)p2kitl 4 (2 — zzkz)t2k2+1]%+N .
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On the other hand, there is

Mgy — !
SLk (f) - /]dt(zﬂ((z—ZZkl)t2k1+l + (2 22k2)t2k2+1))

(i d58(5) (gt T ) (5) = (i 2Ty ) (5))°
"€Xpy1— 2[(2 — 22k 2+l 4 (2 — 22k 2k ] }-

(ST

It follows from the above inequality with z =1 and by a dominated criterion, the
SL,(:_? (f) converges to SL,EN) (f), when € tends to zero. Applying Lemma 2.2, we
obtain the required convergence. g
To study the existence of local time of sfBms in (L?), we need verify the following

lemmas.

Lemma 3.6. For each u € (3,1), f(k) is a decreasing function of k € (—%,1),

where

flk) = (2_22k)2(;)2k+1 (H—( )2k+1 2[(1+ )2k+1_|_|1 |2k+1])2.(11)

proof: Making change variance u = 7, (11) can be written as

FK) = (2 — 229224 (] 42T %[(1 )R PR,

We discuss the properties of f(k). The derivative of f(k) is given by

) = 2212 - 2%k 22— 2222
(1P - %[(1 )2 (1= ) )) 202 g
(1P %[(1 F )P 4 (1= )P (14 ) (1 u)
(1t %[(1 Fu) P 4 (1= )P (1 — ) (1 — u).

Introduce the following notations

Ay = 2% (2 22 [ndu?k 1 <0, Ay =2(2—2%) 2 nu < 0,

Az = —2(1+ 1 — (1 4+ w)®* 1 - (1 — ) 1)) 20> nu > 0,

Ay = =214+ = S[(1+u) 4+ (1= w)? 1) (1 +u)*Fin(1+u) <0,
As =214+ — 2[(1+u)* T+ (1= w)* 1)) (1 —w)*Fin(1—u) < 0.
In order to verify f’(k) < 0, we prove

B=[—u® " nu— (14 w)* in(1 4+ u)] + [ nu+ (1 — u)* in(1 —u)] < 0.
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Now we show that the first part is negative. In fact

By = M+ (14 u)* Un(1+u)
2k+1
= Wi Z C 1t (1 4 u)
n=0

2%k+1
= M+ n (1 +u) + Z W0 (1 4 u).

n=1

Notice that y = Inu is an increasing function, and there exist

W 4w in(1+u) = u®*(Inu+-In(1 +u)) > 0,

Y2 (1 4 u) > 0.

Therefore By > 0. Foru € (3,1), we getu > 1 —u. For a =2k+1 € (0,2), y = u®
is also an increasing function. Then

By = nu— (1 —u)*in(1—u) > (1—u)**inds > 0.

Note that B is negative. Thus f’(k) < 0, which means that f(k) is a decreasing

function of k € (—1, ). O
Lemma 3.7. For each k € (—3,%) and € > 0, there exists 0 < s < 1, where

(12k1+]_,’_[/21<1+1_%[(l+t/)2kl+l+|t_[/|2kl+l]+t2k2+l+[/2k2+1_%[(t+t/)2k2+l+|t_t/|2k2+l])2
(8+(2—22k1 )t2k1+1+(2_22k2)t2k2+1)(£+(2_22k1 )t/2kl+l+(2_22k2)l/2k2+l)
proof: For k € (0,1), according to results in [ Bojdecki(2004)], there is Cj,(s,7) <
Ry (s,t), where G, (s,7) and R, (s,t) denote the covariance of sfBm and fBm, respec-

tively. We obtain

A5E

%[Z%I_H +t’2k1+1— | t—t’ ‘2k1+1] + [t2k2+1 —|—t’2k2+1— ‘ t—t’ ’2k2+1]

1
2
0<A5< ((2 _ 22k1 )t2k1+1+(2 _ 22k2)t2k2+1)((2 _ 22k1 )t/2k1+1+(2 _ 22k2)t/2k2+1) S :

On the other hand, for k € (—%, 0), we rewrite the A5 as follows

(E[S;Sp'] + E[S532))?

(e +Var(Sy") +Var(S2)) (e + Var(Sk!) + Var(s))
(E[S;' k'] + E[S;>S7))?
(e+E[(S)2]+E[(S)2) (e + E[(S4)?] + E[(S)?])
(E[S)'Sp'] + E[S2837))?
(E[(S5)2]+E[(S2)2) (E(S5)2] + E[(57)2])

Ns =

for Ve > 0. To finish the proof, we need verify

(E[S' Sy +EISS2)* < (EI(S)*] +ELSP) D E(SH )]+ E[(S2))-
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In fact, the last inequality above is tested by following fact (xy +zy)? < (x* +
2)(y? +h?), for x,y,z,h € R*. O
Lemma 3.6 and Lemma 3.7 imply the following theorem

Theorem 3.8. For any pair of k1 ,ky € (— 2, 2) and every positive integer d > 1 such

that d < m, Ly converges to Ly in (L?) as € tends to zero.

proof: By Theorem 3.3 and Proposition 3.4, we consider chaos expansion of
Li, ky.e-Liy k, € (L?). We need show that the sums

szm ’ lesk2787mal |%L2(R))®(m+l)>zzm!l! | Gkh
m ] m ]

converge, when € tends to zero.

2
(L2(R))®(m+1)

Step 1. Let us consider the convergence of the first sum in (L?).

h = sz!l! | Gme ’%LZ(]R))@(WH»I)

1 !
_szm 271: (+)l‘)2(2)m+l(( T 2/ dt/ di'

2

1

d

)mj-‘rl_/-‘rl

1 k Lo vmy U | R I
. I8 ——10 T )™ (12218, —— 1215 1)
<c(k1) 0 (k) T [OJ]> <c(k2) =0 (k) [O,I]>
Fori=1,2, there is
[ L Uit | 2k 1 : :
JiTe ——_Jhpe y=¢ i+ ¢ i+l Py 2ki+1 F—t 2ki+1
<C(kl‘) - [O’I)’C(kl') - [0,t)> + 2[( +1') + | | I,

Hence
1 T T
(—)d / dt / dr'
0
1 _
8+ 2_22k1 t2k1+1+(2_22k2 )t2kl‘H ) (8+(2 _ 22k1 )l—/Zkl +1+(2_22/{2 )t/2k2+1) )

1 4 (2n;)
Zn H’,
Jj=

n_04”n!nl!, N 1! nd' n;!

=

s T 77

| Ny

+t2k2+l +t12k2+1 . %[(t+t/)2k2+l_’_ | l—tl |2k2+1])2nj.
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As similar as the proof of Theorem 12 in [Oliveira et. al (2011)] and by Lemma
3.7, the integrand of /; can be rewritten as

oo nnfl

3 CE 50

n=0 i=0

(t2k1+1+t'2k1+17%[(H»t’)Zkl+l+|tft/|2k1+l}+t2k2+l+t’2k2+17%[(t+t/)2k2+l+|t7t"2k2+1})2
(8+(2—22k1 )t2k1+1+(2_22k2)t2k2+1)(8+(2_22k1 )t12kl+l+(2_22k2 )I/2k2+1)

Comparing with the Taylor expansion of the function [1 — As] _%, I} becomes

where A5 =

1 T T
(ﬁ)d / / drdr'[(e + (2 — 2% )2l 4 (o o2k 2kt
JO 0
(e (2 2%yl 4 pkayg2ketly g2kl g2kl %[(i Lt
F—f Patl] et latl %[(t+t/)2k2+1+ [ Pl
< oo,

which implies that Ly, t, ¢ € (L?).
Step 2. Let us consider the convergence of the second sum in (L?).

Similarly, we take € = 0 and obtain Gy, x, m,1 equal to G, k, em1- As a result, we
obtain

ZZm‘l' | G [F12g) @040
7)”1/ / dide'[((2 — 2212k 4 (2 — 92k ) ket (2 — 92k )2k
o Jo
(2 22y kil g kil %[(I+t/)2kl+1_|_ = Plat]
4 2t | pkotl %[(t+t/)2k2+1_|_ = PRt

When replace 6 function with Gaussian sequence, similar techniques in [ Nualart
et. al (2007); Oliveira et. al (2011)] allow us to consider singular points.

It is easily to see that
a2kiN 2k H1y (m A2k N\ 2kaF1N [ (m A2k S2kiH1 A2k 21N [ 2k 41 2Kk +1
((2=27")r 1T (227 )t )((2—27")e +(2—2)t )= 4

1 1
- E[(t+t/)2kl+l+| t—t/ |2k1+1] +t2k2+1 +t/2k2+1 o E[(t+t/)2k2+l+ | t—t/ |2k2+1]]2
> (2_22k1)(tt/)2k|+1 + (2 _ 22k2)(tt/)2k2+1) o (t2k1+l +t/2k1+l _ %[(l+t/)2k|+l

+ | t—l‘l |2k1+1])2+ (t2k2+l +t/2k2+l . %[(t+t/)2k2+l_’_ | l—tl |2k2+1])2'
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Denote

1
ou(s,t) = (2=2%)2 () = (P = (50X o [ P2,
which is a homogeneous function with respect to s and ¢ with the order 4k +2 . For

O<s<t<T,

ou(s,1) =F+2((2 - 22k)2(;)2k+1_(1 n (;)2k+1_1

2[(1+ )2k+1+ ’ 1— |2k+1])2)
=21 (k).

Using Fubini’s theorem and the fact

d 1 T a4
7 — dze lzzz ]’

A r'(4)Jo

and taking 7' = 1 for simplicity, the multiple integral in I becomes

T / dzd- //dtdt/ 2l (1) 4y (1), (12)
i

As for all z € [0, 1], the integral in (12) is convergent in a neighborhood of zero. By
Lemma 3.6, we get the following fact

Pr, (tvt/) + (sz(tvt/)

Py Y / Y
_ t4k1+2(2_22k1)2[(;)2k1+1 _ (1 + (?)Zkﬁrl _ 5[(1 + ?)2k1+1+‘ 1—— ‘2k1+1])2]

4 Hat2(g 22 [(%)2k2+1 (1+( )2k2+1 ;[(1+ Yty 1 — |2k2+1])2]

E1‘4161-1—2( 22k1)2f( ) 4k2+2(2_22k2)2f(k2)
> 2min{ (2 — 2712, (2 — 2202} HRVRIH2 £ (k) k).

Therefore
L /22 / /dtdtexp{ 2z(min{ (2 —2%1)2, (2 — 2% )2 ) AHVRIF2 £k v ey ) ).

Comparing with the homogeneity properties of

gult,1') = exp{—2(min{(2— 2%1)2, (2 — 2%2)2} ) Vi) 2 £, v )}
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with respect to ¢ and ¢/, the further estimation is obtained

4
L < / ”1/ /dtdt’ —28k(t.1")
| A2
— / dzzf_l_z(kl\/kz)Jrl (/
1 0

1 1
Using that {(x,y) : 0 < x < %7272 0 <y < x} C {((x,y) : x> +y? < 2z7vk)2}
and making a polar change of coordinates, we get

b
4(k| Vk2)+l

After taking x = r

/ dydxe 8,

klvA2)+2

% \fz4(k1vk2)+2
/ dydxe 8) </ / drd@rexp{—r*t1V)+2g, (9)}
0o Jo

gk(0), the last integral is equal to

1
4(ky Vky)+2

Z
/ / dydxe8%Y)
0
1
(klvk2+1/ dOgi(8) TR (4K Vha) +2) 7!, 21V 2204(8)),

where y(a,x) = [ e7y*~'dy. Applying Lemma 2 in [ Nualart et. al (2007)], for
all € < o, > 0 and x > 0, we obtain y(ct,x) < K(a)xf, where K(a) = 1 VI(«)
and I'(a) = (o, +e0).

Therefore, for € < 1

2(/{1 \/k2)+1 ’
1 28[2(k|vk2)+1]

< K?
- (2(k1Vk2)—|—1)4(k1\/k2)—|—2
o0 d_|
dzz?

~ Tt / ! d0gi(cosb, sin@)E T (13)
1 0

The integral in z converges when € < min{ (0 vlkz) g % (k|Vk2 +1)- Another in-

tegral with respect to 6 is also convergence. Thus (13) is convergence. ([

Acknowledgement: The project is supported by the National Natural Science

Foundation of China (No.71561017), Natural Science Foundation of Gansu Province
(No.145RJZA033), Foundation of Research Center of Quantitative Analysis of

Gansu Economic Development (No.SLYB201202).



536 Copyright © 2015 Tech Science PressCMES, vol. 109-110, no.6, pp.519-536, 2015

References

Bender, C. (2003): An It6 formula for generalized of a fractional Brownian mo-
tions with arbitrary Hurst parameter. Stoc. Proces. Appl., vol.104, pp. 81-106.

Biagin, F.; Hu, Y.Z.; ®ksendal B.; Zhang, T.S. ( 2008): Stochastic calculus for
fractional Brownian motion and applications. London: Springer-Verlag.

Bojdecki, T.; Gorostiza, L.; Talarczyk, A. (2004): Sub-fractional Brownian mo-
tion and its relation to occupation times. Statis. Proba. Letters, vol. 69, pp.
405-419.

Chen, Y.; Han, X.; Liu, L. (2014): Numerical solution for a class of linear system
of fractional differential equations by the Haar wavelet method and the convergence
analysis. Compu. Model. Engin. Scien., vol. 97, No. 5, pp. 391-405.

Drumond, C.; Oliveira, M.; Silva, J. (2008): Intersection local times of fractional
Brownian motions with H € (0, 1) as generalized white noise functionals.5th Jagna
Inte. Workshop Stoch. Quan. Dyna. Biom. Syst., vol.1021, pp. 34-45.

Hu, Y.; Nualart, D. (2007): Regularity of renormalized self-intersection local time
for fractional Brownian motion. Commun. Inf. Syst, vol. 7, pp. 21-30.

Jiang, Y.; Wang, Y. (2007): On the collision local time of fractional Brownian
motions. Chin. Ann. Math., vol. 28, pp. 311-320.

Liu, J.; Peng, Z.; Tang, D.; Cang, Y. (2012): On the self-intersection local time
of subfractional Brownian motion. Abstr. Appl. Analy., vol. 2012, pp. 1-27.
Nualart, D.; Ortiz-Latorre, S. (2007): Intersection local time for two independent
fractional Brownian motions. J. Theor. Prob., vol. 20, pp. 759-767.

Oliveira, M.; Silva, J.; Streit, L. (2011): Intersection local times of independent
fractional Brownian motions as generalized white noise functionals. Acta Appl.
Math., vol. 113 ,pp. 17-39.

Tudor, C. (2008): Inner product spaces of integrands associated to subfractional
Brownian motion. Statis. Proba. Letters, vol. 78, pp. 2201-2209.

Yan, L.; Shen, G. (2010):On the collision local time of sub-fractional Brownian
motions.Statis. Proba. Letters, vol. 80, pp. 296-308.

Wang, J.; Liu, L.; Chen, Y.; et. al (2015): Numerical study for a class of variable
order fractional integral-differential equation in terms of Bernstein polynomials.
Compu. Model. Engin. Scien., vol. 104, No. 1, pp. 69-85.

Wang, X. J.; Guo, J. J.; Jiang, G. (2011): Collision local times of two indepen-
dent fractional Brownian motions. Front. Mathe. in China, vol. 6, pp. 325-338.



