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A Note on Solving the Generalized Dirichlet to Neumann
Map on Irregular Polygons using Generic Factored
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Abstract: A new transform method for solving boundary value problems in t-
wo dimensions was proposed by A.S. Fokas, namely the unified transform. This
approach seeks a solution to the unknown boundary values by solving a global re-
lation, using the known boundary data. This relation can be used to characterize
the Dirichlet to Neumann map. For the numerical solution of the global relation,
a collocation-type method was recently introduced. Hence, the considered method
is used for solving the 2D Laplace equation in several irregular convex polygon-
s. The linear system, resulting from the collocation-type method, was solved by
the Explicit Preconditioned Generalized Minimum Residual restarted method in
conjunction with the Modified Generic Factored Approximate Sparse Inverse ma-
trix. Numerical results indicating the applicability of the proposed preconditioning
scheme are provided, along with discussions on the implementation details of the
method.

Keywords: Laplace Equation, Dirichlet-Neumann map, Global Relation, Collo-
cation, Generic Factored Approximate Sparse Inverses, Preconditioned General-
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1 Introduction

Solving boundary value problems (BVPs) is an important topic in the area of ap-
plied mathematics. Exact solutions can be derived by considering analytical meth-
ods, although their implementation can be difficult for complicated problems. On
the contrary, numerical methods provide approximate solutions within given toler-
ance, even in cases where the analytical solution is not known. A novel approach
for solving a class of BVPs in two dimensions, namely the unified transform has
been introduced by Fokas, [Fokas (1997); Fokas (2002)]. The solution of the B-
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VP is initially expressed in integral form, in the complex k-plane, forming the so-
called global relation. This relation couples the known and the unknown values of
the solution and its derivatives on the boundary and additionally, it is valid for all
values of the complex parameter k. The global relation can be solved analytically
for a class of BVPs, however, for general problems numerical techniques should
be considered. Recently, a collocation-type method has been introduced, [Fulton,
Fokas and Xenophntos (2004); Sifalakis, Fokas, Fulton and Saridakis (2008)], for
the numerical solution of the global relation resulting in solving a dense linear
system, deriving an approximate solution to the unknown boundary values. The u-
nified transform has been used on several polygonal domains for the solution of the
Laplace equation, [Saridakis, Sifalakis and Papadopoulou (2008); Sifalakis, Fokas,
Fulton and Saridakis (2008)]. Furthermore, the condition number of the resulting
coefficient matrix can be improved by an appropriate choice of collocation points,
[Sifalakis, Fokas, Fulton and Saridakis (2008)]. Moreover, the characteristics of
the coefficient matrix, the convergence behavior and the computed error of the
method are affected by the choice of the basis functions [Saridakis, Sifalakis and
Papadopoulou (2008); Sifalakis, Fokas, Fulton and Saridakis (2008)]. Especially, it
was shown in [Sifalakis, Fokas, Fulton and Saridakis (2008)] that better computed
errors were obtained by choosing the Chebyshev basis functions, compared to the
sine basis functions. Hence, the unified transform method has been considered for
the solution of the Laplace equation in two space variables, on various irregular
polygonal domains, choosing the sine as well as the Chebyshev basis functions.
The resulting dense linear system is solved by the Explicit Preconditioned Gener-
alized Minimum Residual restarted (EPGMRES(m)), method, [Saad and Schultz
(1986)], in conjunction with the Modified Generic Factored Approximate Sparse
Inverse (MGenFAspI) matrix, [Filelis-Papadopoulos and Gravvanis (2015)].

There exist several other methods for the solution of the Laplace equation, name-
ly the Finite Difference Method (FDM), the Finite Element Method (FEM), the
Boundary Element Method (BEM), the Trefftz method, the Method of Fundamental
Solutions (MFS), [Golberg and Chen (1999)], the Meshless Local Petrov-Galerkin
method, [Atluri and Zhu (1998)] and many more. There are plenty of advantages as
well as limitations that characterize each of the above methods. Particularly, both
the FDM and the FEM, although well established, suffer from the computational
costs associated with the generation of the computational mesh, while the FDM
presents difficulties for handling complicated geometries. On the other hand, the
BEM is a mesh reduction method, decreasing the dimensions of the considered B-
VP by one and consequently, lowering the overall computational costs. However
the BEM makes use of a fundamental solution of the PDE, which is not always
available. Additionally, the computation of singular integrals is often required. The
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MFS uses a fundamental solution of the considered PDE as a basis function for
the approximation of the solution. Again, the success of this method lies on the
availability of a fundamental solution, which is not always guaranteed for compli-
cated problems. The Trefftz method can be classified as a boundary-type procedure,
where the solution is approximated by the superposition of T-complete functions,
which satisfy the corresponding PDE. It presents several advantages over the above
methods such as the avoidance of computing singular integrals, the high accuracy
due to the use of particular solutions as well as its high efficiency. However, the
major drawbacks of the Trefftz method are the lack of explicit particular solutions
for complicated PDEs, the large condition number of the associated coefficient ma-
trix and the limited theoretical analysis compared to other methods (such as BEM).
A detailed review of Trefftz and other boundary-type methods can be found in [Li,
Lu, Huang and Cheng (2007)]. In the last years efforts have been made toward-
s the development of more efficient, modified schemes, in order to overcome the
aforementioned difficulties. In [Liu (2007b), (2007c)], a modified Trefftz method
was developed, by considering the domain’s characteristic length. This method
can be applied to more complicated domains and it is highly accurate. In [Liu
(2007a)], a modified Trefftz method was developed for the solution of the mixed
boundary value problem of the Laplace equation, overcoming the ill-conditioning
of the regular Trefftz method. Furthermore, in [Liu, Yeih and Atluri (2009)], pre-
conditioning techniques were developed for tackling the problem of ill-conditioned
matrices arising in Trefftz boundary-collocation methods, presenting computation-
al efficiency and high accuracy. Besides the above methods, it has been realized that
suitable coupling techniques can be considered for more complicated PDEs. In this
direction the Hybrid-Trefftz Finite Element, [Jirousek and Guex (1986)], method
has become an efficient computational tool for the solution of complex BVPs. Re-
cently, a novel method namely T-Trefftz Voronoi Cell Finite Elements (VCFEM),
[Dong and Atluri (2011a), (2011b)] has been developed. This method utilizes the
characteristic length presented in [Liu (2007b)], avoids domain integrations and
does not suffer from LBB conditions.

This paper is organized as follows: In section 2 the unified transform method
leading to the derivation of the Dirichlet-to-Neumann map is reviewed. In sec-
tion 3 the collocation-type method for the approximation of the derived Dirichlet-
to-Neumann map is also reviewed. In section 4 the MGenFAspI preconditioning
scheme is presented. In section 5 numerical results and discussions concerning the
details of the proposed schemes are provided, as well as possible advantages over
existing numerical methods.
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2 The Unified Transform Method

Let us consider the 2D Laplace equation in complex coordinates, [Sifalakis, Fokas,
Fulton and Saridakis (2008)], and the real-valued function q(z, z̄), satisfying the
Laplace equation in a simply bounded domain D with boundary ∂D. Then, consid-
ering the complex form of Green’s theorem, the following global condition, [Fokas
(2001)], can be derived:∫

∂D

e−ikz ∂q
∂z

dz = 0, k ∈C, ⇒
n

∑
j=1

∫
S j

e−ikz ∂q
∂ z

dz = 0, k ∈C, (1)

where S j denotes the side of the polygon from vertex z j to vertex z j+1, j=1,2,. . . ,n
(the endpoints are not included).

If the real-valued function q(z, z̄) satisfy the Laplace PDE in the interior D of a
convex bounded polygon with vertices z1, z2, . . . , zn, the following equations hold:

g( j) = cos(β j)q
( j)
s + sin(β j)q

( j)
n , f ( j) = − sin(β j)q

( j)
s + cos(β j)q

( j)
n ,

z ∈ S j, 1≤ j ≤ n,
(2)

where q( j)
s and q( j)

n denote the tangential and normal components of ∂q
∂ z along the

side S j, respectively, g( j) denotes the derivative of the solution in the direction
making an angle β( j), 0 ≤ β j ≤ π , with the side S j and f ( j) denotes the derivative
of the solution in the direction normal to the above direction.

The relation between f ( j) and g( j) is represented by the generalized Dirichlet-
Neumann map, which is given by the following equation, [Sifalakis, Fokas, Fulton
and Saridakis (2008)]:

n

∑
j=1

∣∣h j
∣∣

|hp|
ei(β j−βp)e−(i`/hp)(mp−m j)

∫
π

−π

ei`(h j/hp)s( f ( j)(s)− ig( j)(s))ds = 0,

` ∈ℜ
+, p = 1, ...n,

(3)

where

h j :=
1

2π
(z j+1− z j), m j :=

1
2
(z j+1 + z j), zn+1 = z1, j = 1,2, ...,n, (4)

and

kp =−
`

hp
, ` ∈ℜ

+, p = 1,2, ...,n. (5)

If the set
{

g( j)
}n

j=1 is the known component of the derivative of the solution, the

set
{

f ( j)
}n

j=1 is then valid for all values of the complex parameter k and can be
approximated by collocation-type methods.
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3 The collocation-type method

Let us consider the generalized Dirichlet-Neumann map, defined by equation (3),
and the known set

{
g( j)
}n

j=1. The set
{

f ( j)
}n

j=1 is then approximated, [Sifalakis,
Fokas, Fulton and Saridakis (2008)], by

f ( j)
N (s) = f ( j)

∗ (s)+
N

∑
r=1

u j
rφr(s), (6)

and

f ( j)
∗ (s) =

1
2π

[
(s+π) f ( j)(π)− (s−π) f ( j)(−π)

]
, j = 1, . . .,n, (7)

where φr(s) represent the basis functions and N is an even integer.

The real coefficients u j
r are approximated by the following set of equations:

n

∑
j=1

∣∣h j
∣∣

|hp|
ei(β j−βp)e−(i`/hp)(mp−m j)

N

∑
r=1

u j
rFr

(
`h j

hp

)
= Gp(`), ` ∈ℜ

+, p = 1, ...n, (8)

Gp(`) = i
n

∑
j=1

∣∣h j
∣∣

|hp|
ei(β j−βp)e−(i`/hp)(mp−m j)

∫
π

−π

ei`(h j/hp)s(g( j)(s)+ i f ( j)
∗ (s))ds,

` ∈ℜ
+, p = 1, ...n,

(9)

Fr(`) =
∫

π

−π

ei`s
φr(s)ds, r = 1, ...,N. (10)

For the imaginary part of equation (8), the parameter ` is chosen as ` = 1,2, ..., N
2 ,

while for the real part of equation (8), the parameter ` is chosen as `= 1
2 ,

3
2 ...,

N−1
2 .

Moreover, the sine and Chebyshev basis functions are given in [Sifalakis, Fokas,
Fulton and Saridakis (2008)].

The end values of the unknown functions f ( j) can be derived by the continuity
requirements, [Fulton, Fokas and Xenophonos (2004); Sifalakis, Fokas, Fulton and
Saridakis (2008)], q( j)

z (z j) = q( j−1)
z (z j). This is accomplished by considering the

following identity, [Sifalakis, Fokas, Fulton and Saridakis (2008)]:

∂q( j)

∂ z
=

1
2

e−ia j(q( j)
s + iq( j)

n ) and
∂q( j)

∂ z
=

1
2

e−i(a j−β j)(g( j)+ i f ( j)). (11)

Using the continuity requirements, the following expressions are derived:

f ( j)(π) =
cos(δ j+1−δ j)g( j)(π)−g( j+1)(−π)

sin(δ j+1−δ j)
, (12)
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f ( j)(−π) =
g( j−1)(π)− cos(δ j−δ j−1)g( j)(−π)

sin(δ j−δ j−1)
. (13)

Let us now consider the following equation:

A jrp(`) =

∣∣h j
∣∣

|hp|
ei(β j−βp)e−(i`/hp)(mp−m j)Fr

(
`h j

hp

)
j,r = 1, ...,N, p = 1, ...,n ` ∈ℜ

(14)

Then equations (8), (9) and (10) can be rewritten in the following form:

n

∑
j=1

N

∑
r=1

A jrp(`)u j
r = Gp(`) ⇒ Au = s (15)

Equation (15), represents a dense linear system Au=s, where A is the coefficient
matrix, u is the solution vector (coefficients of the collocation method) and s is the
right hand side [Saridakis, Sifalakis and Papadopoulou (2012)].

4 Modified Generic Factored Approximate Sparse Inverse Preconditioning

Let us consider the Incomplete LU factorization, A=LU+E, of the coefficient ma-
trix A, where L and U are the lower and upper factors respectively, while E is the
error matrix. It should be stated that, the U factor retains the diagonal elements.
Computing the GenFAspI (M=GH) matrix requires the “a priori”, [Chow (2000);
Filelis-Papadopoulos (2014)], knowledge of the sparsity patterns of the upper tri-
angular, G and lower triangular, H factors. The sparsity patterns are obtained by
the sparsification of the L and U factors, using a prescribed drop tolerance (droptol)
and are then raised to a predetermined power (level of fill), i.e. lfill. The process
for computing the GenFAspI matrix is explained as follows:

A = LU ⇔ A−1 =U−1L−1⇔M = GH, (16)

whereM = A−1, G = U−1 and H = L−1. The GenFAspI matrix is then computed
by solving the systems:

M = Gl f ill
droptolH

l f ill
droptol ⇔

{
UGl f ill

droptol = I
H l f ill

droptolL = 0
, (17)

where Gl f ill
droptol is the upper triangular sparse inverse matrix factor and Hl f ill

droptol is
the lower triangular sparse inverse matrix factor. The process for computing the



A Note on Solving the Generalized Dirichlet to Neumann Map 511

GenFAspI matrix can be modified to improve performance, based on a decoupled
column-wise approach, as follows:

M = Gl f ill
droptolH

l f ill
droptol ⇔

{
Ug:, j = e:, j
Lh:, j = e:, j

,0≤ j < m, (18)

where g:, j are the elements of G, h:, j are the elements of H, e:, j are the elements of
the identity matrix and m is the order of the coefficient matrix of the linear system.
The Modified GenFAspI (MGenFAspI) matrix, [Filelis-Papadopoulos and Grav-
vanis (2015)], is used to compute each column of the factors of the approximate
inverse, independently, by a restricted solution process only for the elements in-
cluded in the respective sparsity patterns of the factors, [Filelis-Papadopoulos and
Gravvanis (2015)]. The elements that do not belong to the sparsity patterns of either
G or H are set to zero while solving the linear systems, explicitly.

This modified scheme is used to avoid searches for elements of the factors G and H
or L and U, required during the computation of an approximate inverse by the Gen-
FAspI matrix, [Filelis-Papadopoulos and Gravvanis (2015)], thus enhancing perfor-
mance. The complexity of the MGenFAspI matrix is O((nnz(L)nnz(H)+nnz(U)nnz
(G))/m), where nnz(:) operator denotes the nonzero elements of a matrix and m
is the matrix dimension, [Filelis-Papadopoulos and Gravvanis (2015)]. The al-
gorithms for computing the Generic Factored Approximate Sparse Inverse matrix
(GenFAspI) as well as the Modified Generic Factored Approximate Sparse Inverse
matrix (MGenFAspI) are given in [Filelis-Papadopoulos and Gravvanis (2015)].

5 Numerical Results

In this section the applicability of the proposed schemes is presented. The unified
transform method was used for the solution of the Laplace equation in two space
variables, for several convex irregular polygonal domains. The considered poly-
gons were arbitrarily selected and their vertices lie on the ellipse defined by the
following equation, [Fokas (2008)]:( x

5

)2
+
( y

2

)2
= 1 (19)

The polygons are rotated by an angle of 1/5 to avoid alignment with the coordinate
axes, [Fokas (2008)].

For the collocation-type numerical method, both the sine and the Chebyshev basis
functions were considered. It should be noted that, the same boundary conditions
(Dirichlet: β=0, Neumann: β = π/2, Mixed: β = π/3) were imposed on every side
of each polygon. The unknown coefficients u j

r are computed by an ((N×n)×(N×n))
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dense linear system which is formed by considering equations (8)-(10). The N
parameter represents the number of collocation points while the n parameter is
the number of the sides of the polygon. The error is computed with reference
to the exact solution of the Laplace equation, q(x,y)=sinh(3x)sin(3y), [Saridakis,
Sifalakis and Papadopoulou (2008); Sifalakis, Fokas, Fulton and Saridakis (2008)].
The exact values of

{
f ( j)
}n

j=1,
{

g( j)
}n

j=1 can be derived by considering the exact
solution along with the equation (11). Furthermore, the relative error is given by
E∞ = ‖ f − fappr‖∞

/‖ f‖
∞

. Additionally, the Gauss-Kronrod, [Kronrod (1965)],
quadrature method was used for the computation of the right hand side of the dense
linear system.

In Figure 1, various shapes of irregular polygons used are given. In Table 1, the
convergence behavior, the computed errors and the number of nonzeros, nnz(), of
the G and H factors of the MGenFAspI matrix are given for various values of the
parameters N, ILUTfill, lfill and droptol with ILUTtol=0.001, for several irregu-
lar polygons, using the sine basis functions and various boundary conditions. In
Table 2, the convergence behavior, the computed errors and the number of nonze-
ros, nnz(), of the G and H factors of the MGenFAspI matrix are given for various
values of the parameters N, ILUTfill, lfill and droptol with ILUTtol=0.001, for sev-
eral irregular polygons, using the Chebyshev basis functions and various boundary
conditions. The parameters ILUTfill and ILUTtol refer to the level of fill-in and
magnitude of discarded elements respectively, during the ILU factorization. In
both cases the EPGMRES(10) method in conjunction with the MGenFAspI matrix
was used.

Saad, Y.; Schultz, M.H. (1986): GMRES: A generalized minimal residual 

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 

Vol. 7, pp. 856-869. 

Saridakis, Y.G.; Sifalakis, A.G.; Papadopoulou, E.P. (2012): Efficient 
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2515–2528. 

Sifalakis, A.G.; Fokas, A.S.; Fulton, S.; Saridakis, Y.G. (2008): The 

generalized Dirichlet–Neumann map for linear elliptic PDEs and its numerical 

implementation. J. Comput. Appl. Math. Vol. 219, No 1, pp. 9-34. 
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Figure 1: Various shapes of irregular polygons used 

 

 

 

 

 

 

Figure 1: Various shapes of irregular polygons used.
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Table 1: Convergence behavior, number of non-zero elements and computed error
of the EPGMRES(8) in conjunction with MGenFAspI, using sine basis functions,
for several irregular polygons and various boundary conditions.

n N ILUTfill lfill droptol Iter. nnz(G)
+nnz(H)

Error Boundary
Conditions

3 16 1 1 0.1 3 61+62 4.9743E-02 Dirichlet
4 16 1 1 0.1 2 74+69 1.5231E-02 Dirichlet
5 16 1 1 0.1 3 94+95 2.3403E-03 Neumann
6 16 1 1 0.1 3 122+131 8.0101E-03 Mixed
8 16 1 1 0.1 5 212+192 1.2186E-03 Dirichlet

10 16 3 1 0.1 6 598+551 2.500E-03 Mixed
12 16 19 2 0.1 13 3724+5153 7.500E-03 Mixed
16 16 28 2 0.1 22 9733+9358 4.600E-03 Neumann

Table 2: Convergence behavior, number of non-zero elements and computed er-
ror of the EPGMRES(8) in conjunction with MGenFAspI, using Chebyshev basis
functions, for several irregular polygons and various boundary conditions.

n N ILUTfill lfill droptol Iter. nnz(G)+nnz(H) Error Boundary
Conditions

3 16 2 0 0 8 141+141 8.2083E-06 Dirichlet
4 16 2 0 0 6 189+189 2.0168E-06 Dirichlet
5 16 2 0 0 7 237+237 1.0401E-07 Neumann
6 16 2 0 0 8 285+285 2.6915E-08 Mixed
8 16 8 1 0.1 8 1423+1699 1.0021E-10 Dirichlet

10 16 16 1 0.1 6 2654+3759 1.4334E-10 Mixed
12 16 50 2 0.1 8 6419+9550 1.9922E-08 Mixed
16 16 59 3 0.1 10 13235+193456.5279E-11 Neumann

It should be stated that, the computed errors are much better when choosing the
Chebyshev basis functions compared to the sine basis functions, [Sifalakis, Fokas,
Fulton and Saridakis (2008)]. Furthermore, the number of iterations is not in-
creased noticeably for a larger number of polygonal sides independently of the
basis functions used. When choosing the Chebyshev basis functions and while
n<8, better results were obtained by keeping lfill=0 and droptol=0. In all cases
and for n<16, it should be mentioned that, a good sparsity pattern is achieved for
the G and H factors minimizing the memory requirements. For larger values of n,
the factors G and H tend to be denser because of the larger value of the parameter
lfill required in order to obtain small errors. It should be noted that, in all cases,
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the convergence behavior as well as the computed errors are comparably better to
those presented in [Sifalakis, Fokas, Fulton and Saridakis (2008); Sifalakis, Fulton,
Papadopoulou and Saridakis (2009)].

In Figure 2, the condition number of the coefficient matrix is given for both the
sine and the Chebyshev basis functions, for various irregular polygons. It should
be stated that, for matrices of the same order, the condition number grows consid-
erably for a higher value of n, compared to a higher value of N. Near a vertex z j

the behavior of the solution depends on the interior angle ω j, [Fulton, Fokas and
Xenophontos (2004)], and the problem is singular when ω j > π . As n→ ∞ then
ω j→ π , reaching the borderline case where the problem is ill-posed, thus increas-
ing the condition number of the coefficient matrix. When ω j = π , the end values
f( j)(π), f( j)(-π) cannot be computed using the continuity requirements (12), (13),
since δ j+1 = δ j and sin(δ j+1− δ j)=0. In this case the end values must be cou-
pled with the unknown coefficients u j

r , [Fulton, Fokas and Xenophontos (2004)].
A numerical treatment for the case of corner singularities can be found in [Forn-
berg and Flyer (2011)]. It should be noted that, the convergence behavior of the
proposed preconditioning scheme is in qualitative agreement with theoretical es-
timates, [Filelis-Papadopoulos and Gravvanis (2015)]. Moreover, the memory re-
quirements are minimized because of the low number of nonzero elements kept
with the G and H factors. For the choice of the basis functions, it should be men-
tioned that, the Chebyshev basis function leads to better computed errors with ad-
ditional computational work and memory requirements, in comparison to the sine
basis.  

 

 

 

Figure 2: Condition number of the coefficient matrix for both the sine and 

Chebyshev basis functions, with various values of n (irregular polygons) 

 

Figure 2: Condition number of the coefficient matrix for both the sine and Cheby-
shev basis functions, with various values of n (irregular polygons).
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The unified transform is a hybrid method, combining analytical information in the
complex Fourier plane instead of the physical plane, along with a numerical ap-
proximation. Thus, it provides the spectral analogue of the classical Green’s rep-
resentations. The main advantage of the method is the derivation of exact solu-
tions for problems for which the usual methods fail, [Fokas and Kalimeris (2014)].
Furthermore, it has been realized that the automatic production of a generalized
Dirichlet-to-Neumann map is not present in other boundary integral methods, [Ful-
ton, Fokas and Xenophontos (2004)]. Additionally, the method does not make use
of fundamental solutions, which are not always available or simple, [Fulton, Fokas
and Xenophontos (2004)]. The unified transform is a boundary-type method, de-
creasing the dimensionality of the considered BVP, thus minimizing the compu-
tational cost. Moreover, in contrast to the BEM, the unified transform does not
involve the computation of singular integrals. Future research will be focused on
addressing various issues concerning the method. Firstly, the method needs to be
extended to three dimensions by developing computationally efficient numerical
schemes; a first attempt has been made in [Ambrose and Nicholls (2014)]. Further-
more, effective algorithms should be developed for the solution of more complicat-
ed PDEs with non-constant coefficients and source terms. As mentioned in [Davis
and Fornberg (2014)], a comprehensive list of PDEs with their associated global
relations should be created in order to facilitate further research. Additionally, cou-
pling techniques with existing methods should be considered, in order to bring out
the advantages of the new formulation, for solving more practical problems arising
in engineering and science.

Finally, it should be noted that current research efforts are focused on an alterna-
tive approach, that is using the finite Fourier transform of Legendre polynomials,
which can be expressed in terms of modified Bessel function, cf. [Fornberg and
Flyer (2011); Hashemzadeh, Fokas and Smitheman (2015)] and efficient solvers
are sought for the resulting system.
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