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Abstract: Analysis of Buckley-Leverett solution in fractal porous medium does
prediction of water saturation profile a favor. On the approximation that porous
medium consists of a bundle of tortuous capillaries, a physical conceptual Buckley-
Leverett model of transient two-phase flow in fractal porous medium is developed
based on the fractal characteristics of pore size distribution. The relationship be-
tween water saturation and distance is presented according to Buckley-Leverett
solution, and the proposed Buckley-Leverett expression is the function of fractal
structural parameters (such as pore fractal dimension, tortuosity fractal dimension,
maximum and minimum diameters of capillaries) and fluid properties (such as vis-
cosity, contact angle and interfacial tension) in fractal porous medium The sensitive
parameters that impact on Buckley-Leverett expression are formulated and their
sensitivities on water saturation file are discussed.

Keywords: fractal theory, transient two-phase flow, porous medium, fractional
flow Buckley-Leverett analysis.

1 Introduction

Petroleum reservoir engineering problems especially in porous media are known to
be inherently nonlinear. Consequently, solutions to the complete multiphase flow
equations have been principally attempted with numerical methods. However, sim-
plified forms of the problem were solved some 60 years ago, when the Buckley-
Leverett formulation was introduced. The Buckley-Leverett displacement theory
was applied to petroleum reservoirs engineering consisting of a finite number of
layers [Snyder and Ramey (1967)]. Internal consistency requires that the param-
eters should be corrected for the removal of interfacial tension because capillary
pressure was ignored in the Buckley-Leverett analysis [Spanos, De La Cruz and
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Hube (1986)]. Mohsen (1985) found that a mass-conserving front would be locat-
ed farther down the flow direction for a nonzero initial condition and discussed the
implications of this finding for error analysis in comparing numerical solutions to
the analytical one. Larsen, Kviljo and Litlehamar (1990) examined the relationship
between backflow of water from the invaded zone and changed in skin owing to
reduced water saturation and the associated change in mobility for homogeneous
reservoirs with Buckley-Leverett methods. Langtangen, Tveito and Winther (1992)
studied the simultaneous one-dimensional flow of water and oil in a heterogeneous
medium modeled by the Buckley-Leverett equation. A variety of heterogeneity
profiles were studied with Buckley-Leverett methods Capillary heterogeneity sig-
nificantly affects the saturation distributions, which closely follow the heterogene-
ity variation [Chang and Yortsos (1992)] The geothermal saturation wave speed
under all conditions is formally identical with the Buckley-Leverett wave speed
when the latter is written as the saturation derivative of a volumetric flow [Young
(1993)]. A Buckley-Leverett-type analytical solution for one dimensional immisci-
ble displacement was presented in a linear composite porous medium [Wu, Pruess
and Chen (1993)]. Frid (1995) solved the initial boundary-value problem for the
regularized Buckley-Leverett system, which described the flow of two immiscible
incompressible fluids through a porous medium The measurement of three-phase
relative permeability using the extension of the Buckley-Leverett theory has both
sound theoretical and experimental bases [Siddiqui, Hicks and Grader (1996)]. An
experimental investigation was made to test the validity of the three-phase exten-
sion of the Buckley-Leverett (B-L) theory using three immiscible liquids [Siddiqui,
Hicks and Grader (1996)]. Method of characteristics (MOC) solutions to the three-
phase BuckleyLeverett problem was presented with and without gravity [Guzman
and Fayers (1997)]. Terez and Firoozabadi (1999) examined water injection in
water-wet fractured porous media and its modeling using the Buckley–Leverett
theory. A stochastic analysis of immiscible two-phase flow with Buckley–Leverett
displacement was presented in heterogeneous reservoirs [Dongxiao and Tchelepi
(1999)]. Kaasschieter (1999) derived an entropy inequality from a regularization
procedure, where the physical capillary pressure term is added to the Buckley-
Leverett equation. An extension of the Buckley–Leverett (BL) equation describing
two-phase flow in porous media was discussed by Van Duijn, Peletier and Pop
(2007). Mustafiz, Mousavizadegan and Islam (2008) used a semi-analytical tech-
nique and the Adomian decomposition method (ADM) to unravel the true nature of
the one-dimensional, two-phase flow. Sumnu-Dindoruk and Dindoruk (2008) have
solved the resulting nonisothermal two-phase convective flow equation in porous
media analytically, including a tracer component. A new approach was proposed to
the mathematical modeling of the Buckley–Leverett system, which describes two-
phase flows in porous media [Chemetov and Neves (2013)]. Wang and Kao (2013)
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extended the second and third order classical central schemes for the hyperbolic
conservation laws to solve the modified BuckleyLeverett (MBL) equation which is
of pseudo-parabolic type. Wang and Kao (2014) numerically verified that the con-
vergence rate is consistent with the theoretical derivation by BuckleyLeverett (BL)
equation.

It’s well known that the microstructures of real porous medium are usually disor-
dered and extremely complicated. Fortunately, it has been shown that the micro-
structures of porous medium have the self-similarity and fractal characteristics
[Katz and Thompson (1985); Xiao, Jiang, and Chen (2010)]. The pore spaces
of several sandstones are fractal geometries by using the scanning electron mi-
croscopy and optical data [Katz and Thompson (1985)]. The pore-size distribu-
tion fractal model of unsaturated soils was derived and Hydraulic conductivity and
soil-water diffusivity of unsaturated soils could be expressed by two fractal param-
eters [Xu and Dong (2004)]. Completely multi-scale configurations can guide the
flowing in porous medium based on the application of tree-shaped fractal struc-
tures [Lorente and Bejan (2006)]. Deinert, Dathe, and Parlange (2008) presented
that the relationship between capillary pressure and saturation in a fractal porous
medium and exhibited a power-law. A fractal model for the relative permeability
of porous medium was presented by assuming that porous medium consists of a
bundle of tortuous capillaries, but the effects of capillary pressure was not consid-
ered[Yu and Liu (2004)]. Based on [Yu and Liu (2004)], the relative permeability
of unsaturated porous medium embedded with a fractal-like tree branched networks
was studied by considering the capillary pressure [Wang and Yu (2011)]. Xu, Qiu,
Yu, and Jiang (2013) investigated the relative permeability in unsaturated porous
medium by assuming that all capillaries with the radius less than a critical radius
are saturated, and the others with the radius larger than the critical radius are un-
saturated. Recently, a generalized fractal model was developed for spontaneous
imbibition in porous medium with shapes of pores included [Cai, Perfect, Cheng,
and Hu (2014)]. Based on the fractal characteristics of pore size distribution and on
the approximation that porous medium consists of a bundle of tortuous capillaries a
relative permeability model for transient two-phase flow in fractal porous medium
was derived [Tan, Li, and Liu (2014)]. For fractal systems, the pore or solid may
be fractal. For pore fractal, mass fractal and pore-solid fractal, recent review work
is helpful to understand [Cai, Luo, and Ye (2015)].

But it is difficult to apply Buckley-Leverett equation to solve petroleum reservoir
engineering problems in porous medium saturated with multiphase fluid because
the microstructures of real porous medium are usually disordered and extreme-
ly complicated. However, quite a few scholars have done excellent job to study
petroleum reservoir engineering problems using Buckley-Leverett equation and re-
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search the microstructure of porous media with fractal theory in recent few decades.
Thus, we pay close attention to Buckley-Leverett model based on fractal theory in
porous media.

In this thesis, we continue a line of research on Buckley-Leverett analysis for
transient two-phase flow in fractal porous media based on fractional flow analy-
sis which is our previous work entitled “Analysis of the fractional flow for transient
two-phase flow in fractal porous media” (under review). The purpose of the present
paper is to derive an analytical expression for Buckley-Leverett solution based on
the fractal geometry theory for porous medium, and it is expected the proposed
fractal expression for the front position to compute water saturation profile.

This paper is organized as follows. In Sect. 2, the relevant theoretical bases which
mainly include velocity and flow rate of transient two-phase flow in a single cap-
illary are introduced. In Sect. 3, on the approximation that porous media consists
of a bundle of tortuous capillaries, an analytical expression for Buckley-Leverett
solution is derived based on the fractal characteristics of pore size distribution The
results and discussion are shown in Sect. 4. Eventually, we summarize the conclu-
sions in Sect. 5

2 Theoretical Bases

We approximate that porous media is comprised of a bundle of tortuous capillaries
with different diameters. According to this approximation, a single fractal capillary
with transient two-phase flow is proposed here, as shown in Fig. 1 The fractal
capillary is only saturated with oil (red) initially, but later water (blue) intrudes into
the capillary and displaces oil with a constant pressure difference between points a
and b. Therefore, the fractal capillary is separated by a two-phase flow interface at
point c. The constant pressure difference between points a and b is ∆P. The fractal
capillary diameter, the straight distance of the capillary, and the straight distance
between points a and c are λ , L, and X respectively. 
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Figure 1: a single fractal capillary with transient two-phase flow 
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where σ is surface tension, θ is contact angle. 
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From Eq. (5), we can get the expression of the two-phase flow rate, qt, in a single 

tortuous capillary: 
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In Eq. (6), when σ=0, X=L, the two-phase flow rate can be regarded as 

single-phase flow rate, qs, which is expressed as 

Figure 1: A single fractal capillary with transient two-phase flow.
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Tan, Li, and Liu (2014) presented a theoretical analytical expression for the tran-
sient twophase flow velocity in a single capillary

v =
λ 2(∆P+PC)

32 [(µw−µo)XT +µoLT ]
(1)

where µw and µo are the viscosity of water and oil, respectively. λ is the capillary
diameter, XT is the actual length of the capillary between points a and c, and LT is
the actual length of the capillary. ∆P is the constant pressure difference between
points a and b, and PC is capillary pressure.

The fractal scaling law for tortuous capillaries in porous medium is given by Yu
and Cheng (2002)

LT = LDT λ
1−DT (2)

and

XT = XDT λ
1−DT (3)

where DT is the tortuosity fractal dimension.

The capillary pressure function can be expressed as:

PC =
4σ cosθ

λ
(4)

where σ is surface tension, θ is contact angle.

Substituting Eqs. (1)–(2) into Eq. (4) the expression of two-phase flow velocity v
can be obtained as:

v =
λ 1+DT ∆P+4λ DT σ cosθ

32 [(µw−µo)XDT +µoLDT ]
(5)

From Eq. (5), we can get the expression of the two-phase flow rate qt , in a single
tortuous capillary:

qt =
πλ 2

4
v =

λ 3+DT π∆P+4λ 2+DT πσ cosθ

128 [(µw−µo)XDT +µoLDT ]
(6)

In Eq. (6), when σ = 0, X = L, the two-phase flow rate can be regarded as single-
phase flow rate, qs, which is expressed as

qs =
λ 3+DT π∆P
128µwLDT

(7)
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Equation (7) is the same as the expression of the single-phase flow rate in a single
fractal capillary by Yu and Cheng (2002).

It is known that

v =
dXT

dt
(8)

Combining Eq. (5) and Eq (8), we get the expression of the two-phase flow velocity
in a single capillary

dXT

dt
=

λ 1+DT ∆p+4λ DT σ cosθ

32 [(µw−µo)XDT +µoLDT ]
(9)

From Eq. (3), we get

dXT = d(XDT λ
1−DT ) = DT XDT−1

λ
1−DT dX (10)

Substituting Eq. (10) into Eq. (9), we can yield

32DT XDT−1
λ

1−DT
[
(µw−µo)XDT +µoLDT

]
dX = (λ 1+DT ∆p+4λ

DT σ cosθ)dt

(11)

Taking an integration of Eq. (11) with initial condition t=0 and X=0, and after
rearranging, we get the relationship between the two-phase interface position, X ,
and relevant displace time t

X2DT +
2µoLDT

µw−µo
XDT −

(
λ 2DT ∆P+4λ 2D

T
−1σ cosθ

)
t

16(µw−µo)
= 0 (12)

From Eq. (12) we can see that when X=0 and t=0 the capillary is only saturated
with oil. 0< X < L represents the flow regime in capillary is transient two-phase
flow. When X = L, oil is completely displaced by water. Substituting X = L into
Eq. (12), the expression for completely displacing time, td , can be written as

td =
16(µw +µo)L2DT

λ 2DT ∆P+4λ 2DT−1σ cosθ
(13)

Eq. (13) reveals that the completely displacing time is greatly affected by fractal
parameters and fluid properties. Since the fractal porous medium is assumed to
be comprised of a bundle of tortuous capillaries with different diameters, we only
discuss the influence of the capillary diameter on the completely displacing time.
Assuming other parameters (viscosities of water and oil, tortuosity fractal dimen-
sion, the difference pressure, contact angle and interfacial tension) are constant, a
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bigger capillary diameter corresponds to a smaller value of displacement time. That
is to say, it will take less time for water to displace oil completely in a capillary with
bigger diameter.

Here we define the critical capillary diameter, λ cr, to be the capillary diameter [Xu,
Qiu, Yu, and Jiang (2013)], at which oil is just right displaced by water completely
at a given time. Substituting td = t into Eq. (13), we obtain the following equation
for the critical diameter as:

λ
2DT
cr +

4σ cosθ

∆P
λ

2DT−1
cr − 16(µw +µo)L2DT

∆Pt
= 0 (14)

From Eq. (14), we can see that the critical capillary diameter is affected by flu-
id properties (such as contact angle, viscosities, pressure difference and interfacial
tension) and the fractal dimension DT . Here, we particularly emphasize on ana-
lyzing how time impacts the critical capillary diameter. It is easily to see that the
critical capillary diameter becomes smaller with the increase of displacement time
and more and more capillaries will change its flow regime from transient two-phase
flow to single-phase flow. Thus, if λ ≥ λ cr, oil is displaced by water completely
and water flows out point b of the capillary. Otherwise, oil is not displaced by water
completely and oil flows out point b of the capillary.

3 A Model for Buckley-Leverett solution

It has been shown that the cumulative size-distribution of capillary sizes which are
greater than or equal to the capillary diameter, λ , follows the fractal scaling law
[Yu and Cheng (2002)]:

N(l ≥ λ ) =

(
λmax

λ

)D f

(15)

where λ max is the maximum diameter of capillary, and D f is pore fractal dimension.
Generally, 0< D f <2 denotes two dimensional space, and 0< D f <3 refers to three
dimensional space.

Since there are numerous pores in a sample porous medium, Eq. (15) can be ap-
proximately considered as a continuous and differentiable function. Then, taking
derivative with respect to diameter in Eq. (15) yields the number of pores whose
diameters are within the infinitesimal range of λ and λ+dλ .

−dN = D f λ
D f
maxλ

−(D f +1)dλ (16)

Based on the approximation that porous medium consist of a bundle of tortuous
fractal capillaries with variable diameters and on the fractal characteristics of pore
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Figure 2: Transient two-phase flow in a porous medium with tortuous capillaries at a given time. Figure 2: Transient two-phase flow in a porous medium with tortuous capillaries at
a given time.

size distribution in porous medium, we can derive Buckley-Leverett solution model
of transient two-phase flow in a fractal porous medium as shown in Fig. 2.

As is shown in Fig. 2, water flows out of cross-section B in fractal capillaries whose
diameters are larger than the critical capillary diameter and it is single-phase flow
in these capillaries. On the contrary, if capillary diameter is smaller than the critical
capillary diameter, oil flows out of cross-section B (or water cannot flow out cross-
section B) and it is transient two-phase flow.

We can get the total flow rate, Q by summing up the flow rates through all the
capillaries at the cross-section B.

The total flow rate of water, Qw, at across-section B can be obtained by integrating
Eq. (14) from critical capillary diameter to maximum diameter.

Qw =−
∫

λmax

λcr
qswdN

=
πD f ∆Pλ 3+DT

max

128µwLDT

∫
λmax

λcr
λ

2+DT−D f dλ

=
πD f ∆Pλ

D f
max

128µwLDT (3+DT −D f )

[
λ

3+DT−D f
max −λ

3+DT−D f
cr

] (17)

While oil flows out of across-section B in fractal capillaries whose diameters are
smaller than the critical capillary diameter. Because oil is not completely displaced
by water, flow pattern is still two-phase flow The total flow rate of oil, Qo at section
plane B can be obtained by integrating Eq. (13) from minimum diameter to critical
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capillary diameter.

Qo =−
∫

λcr

λmin

qtdN

=
πD f λ

D f
max∆P

128

∫
λcr

λmin

λ 2+DT−D f

(µw−µo)XDT +µoLDT
dλ

+
πD f λ

D f
maxσ cosθ

32

∫
λcr

λmin

λ 1+DT−D f

(µw−µo)XDT +µ2LDT
dλ

(18)

where λ cr is the critical capillary diameter. Based on the fractal theory, the total
pore volume in the fractal porous medium can be expressed as

VP =−
∫

λmax

λmin

πλ 2

4
LT dN

=
πD f LDT λ

D f
max

4(3−DT −D f )

[
λ

3−DT−D f
min −λ

3−DT−D f
max

] (19)

As is seen from Fig. 2, the pore volume of the fractal porous medium saturated with
water is composed of two portions: the whole capillary volume whose flow regime
is single-phase flow and the back part of capillary volume whose flow regime is
transient two-phase flow.

Vw =−
∫

λcr

λmin

πλ 2

4
XT dN−

∫
λmax

λcr

πλ 2

4
LT dN

=
πD f λ

D f
max

4

∫
λcr

λ min

XDT λ
2−DT−D f dλ

+
πD f LDT λ

D f
max

4(3−DT −D f )

[
λ

3−DT−D f
cr −λ

3−DT−D f
max

]
(20)

The pore volume of the fractal porous medium saturated with oil is only the front
part of capillary volume whose flow regime is transient two-phase flow.

Vo =−
∫

λcr

λmin

πλ 2

4
(LT −XT )dN

=
πD f LDT λ

D f
max

4(3−DT −D f )

[
λ

3−DT−D f
cr −λ

3−DT−D f
min

]
−

πD f λ
D f
max

4

∫
λcr

λ min

XDT λ
2−DT−D f dλ

(21)
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Combining Eqs. (19)-(21), saturation of water, Sw, and saturation of oil So can be
respectively expressed as:

Sw =
Vw

VP
=

(3−DT−D f )

LDT

∫
λcr
λmin

XDT λ 2−DT−D f dλ +
(

λ
3−DT−D f
max −λ

3−DT−D f
cr

)
(

λ
3−DT−D f
max −λ

3−DT−D f
min

) (22)

So =
Vo

VP
=

(
λ

3−DT−D f
cr −λ

3−DT−D f
min

)
− (3−DT−D f )

LDT

∫
λcr
λmin

XDT λ 2−DT−D f dλ[
λ

3−DT−D f
max −λ

3−DT−D f
min

] (23)

In Eqs. (20) and (23), when X = L and λ cr=λ max, oil is completely displaced by
water, so Sw =1 and So=0 While X=0 and λ cr=λ min in Eqs. (20) and (23), the fractal
porous medium is only saturated with oil, thus Sw=0 and So=1.

Fractional flow of water, fw, can be defined as the proportion of flow rate of water
in the total flow rate. So fractional flow of water can be expressed as

fw =
Qw

Qw +Qo
(24)

Substituting Eqs (17) and (18) into Eq. (24), fractional flow of water can be ex-
pressed as:

fw(Sw)=

∆P
µwLDT (3+DT−D f )

(
λ

3+DT−D f
max −λ

3+DT−D f
cr

)
∆P

µwLDT(3+DT−D f )

(
λ

3+DT−D f
max −λ

3+DT−D f
cr

)
+∆P

λcr∫
λmin

λ
2+DT−D f

(µw−µo)XDT+µoLDT
dλ+4σcosθ

λcr∫
λmin

λ
1+DT−D f

(µw−µo)XDT+µoLDT
dλ

(25)

From Eq. (25), we can see that fractional flow of water relates to not only fractal
structural parameters (such as tortuosity fractal dimension, pore fractal dimension,
maximum and minimum diameters of capillaries) but also fluid properties (such as
contact angle, viscosity and interfacial tension). That is to say, both fractal porous
medium and relevant fluid properties may have important impacts on fractional
flow of water. Fractional flow of water is the proportion of flow rate of water in
the total flow rate. So if water dominates the flow in a fractal porous medium, the
fractional flow value of water is larger. More details will be shown in Sect. 4

In this paper, we use weighted method to differentiate fractional flow of water. The
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derivative of fractional flow of water can be expressed as:

f ′w(Sw) =
∂ fw j

∂Sw j

=

[
fw j−fw j−1

Sw j−Sw j−1
(Sw j+1−Sw j)+

fw j+1− fw j

Sw j+1−Sw j
(Sw j−Sw j−1)

]
/(Sw j+1−Sw j−1)

(26)

where fw j is the fractional flow of water at the jth time step. fw j−1 is the fractional
flow of water at the (j-1)th time step. fw j+1 is the fractional flow of water at the
(j+1)th time step. Sw j is the saturation of water at the jth time step. Sw j−1 is the
saturation of water at the (j-1)th time step. Sw j+1 is the saturation of water at the
(j+1)th time step.

Eq. (26) represents first order-derivative of fractional flow of water with respect to
independent variable saturation of water. f ′w(Sw) is the rate of change in fractional
flow of water with saturation of fluid and it can help us to determine the frontal
advance equation.

From Eq. (24), we can get

fw =
vw

vw + vo
(27)

So

vw = (vw + vo) f w = vt fw (28)

where vt is the total velocity of water and oil

Differentiating Eq. (28) with respect to x, we yield

∂vw

∂x
= vt

∂ fw

∂x
= vt

d fw

dSw

∂Sw

∂x
(29)

∂vwx

∂x
=−φ

∂Sw

∂ t
(30)

Combining Eq. (29) and Eq. (30), we can get the following expression after ar-
ranging:

vt

φ

d fw

dSw
=−

∂Sw
∂ t

∂Sw
∂x

(31)

If we ignore the compressibility of rock and fluid, the total velocity is constant and
fw is the function of Sw when the flow regime is steady. i.e Sw=C and dSw=0

dSw =
∂Sw

∂x
dx+

∂Sw

∂ t
dt (32)
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After arranging, we can get the following expression:

dx
dt

=−
∂Sw
∂ t

∂Sw
∂x

(33)

Combining Eq.(32) and Eq.(33)

dx
dt

=
vt

φ

d fw

dSw
(34)

Eq. (34) is single phase flow equal saturation plane moving equation which is also
called Buckley-Leverett equation.

It is known that

vt = q(t)
/

A (35)

where q(t) is the feed water rate of injection.

Substituting Eq. (35) into Eq. (34), we get

dx
dt

=
q(t)
φA

d fw

dSw
(36)

Taking an integration of Eq. (36), we yield

x∫
x0

dx =
1

φA
d fw

dSw

t∫
0

q(t)dt (37)

where x is the beginning location of transient two phase flow, and x is any location
of transient two phase flow.

From Eq. (37), we can see that

x− x0 =
1

φA
d fw

dSw

t∫
0

q(t)dt (38)

Based on the fractal theory, the total area of pore can be expressed as the following:

A =−
λmax∫

λmin

πλ 2

4
dN =

πD f

4(2−D f )
λ

2
max

[
1−
(

λmin

λmax

)2−D f
]

(39)

and porosity can be expressed as follows[Yu and Li (2001)]:

φ =

(
λmin

λmax

)2−D f

(40)
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Substituting Eqs. (39) and (40) into Eq. (38), we get the expression of water
saturation profile:

x f − x0 =
d fw

dSw

4(2−D f )
t∫

0
q(t)dt

πD f λ
2
max

(
λmin
λmax

)2−D f
[

1−
(

λmin
λmax

)2−D f
] (41)

4 Results and Discussion

Figure 3 shows a typical plot of fractional flow and its derivative curve based on the
predictive model of Eq. (25) and Eq. (26). Figure 3 shows an increase in fractional
flow of water fw(Sw) when the saturation of water, Sw, goes up
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Figure 3: Fractional flow curve.
(µw=1×10−3Pa.s, µo=1.2×10−3Pa.s, σ=0.06N/m, θ=0.5, L=1×10−2m,
λ max=1.5×10−4m, λ min=0.2×10−7m, ∆P=5×105Pa, DT =1.14, D f =1.7)

The determination of the water saturation at the front is shown graphically in Fig.
4.

Using the expression for the front position, and plotting water saturation vs. dis-
tance, we get the Fig. 5.

Clearly, the plot of saturation is showing an impossible physical situation, since we
have two saturations at each x-position. However, this is a result of the discontinuity
in the saturation function, and the Buckley-Leverett solution to this problem is to
modify the plot by defining a saturation discontinuity at x f and balancing of the
areas ahead of the front and below the curve, as shown in Fig. 6.
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The final saturation profile thus becomes Fig. 7.

 

 14 

 

Figure 6: Balancing of areas. 

 

Figure 7: Final water saturation profile. 

From Eq. (41), we can see that water saturation profile is affected by fractal 

structural parameters (such as pore fractal dimension, tortuosity fractal dimension, 

maximum and minimum diameters of capillaries) and fluid properties (such as 

viscosity, contact angle and interfacial tension) in fractal porous medium. we 

emphatically analysis the affection of pore fractal dimension, tortuosity fractal 

dimension, maximum and minimum diameters of capillaries on water saturation 

profile. 

Figures 8-11 show that water saturation vs. distance at different pore fractal 

dimensions, Df, and tortuosity fractal dimension, DT, respectively. 

Figure 6: Balancing of areas.

 

 14 

 

Figure 6: Balancing of areas. 

 

Figure 7: Final water saturation profile. 

From Eq. (41), we can see that water saturation profile is affected by fractal 

structural parameters (such as pore fractal dimension, tortuosity fractal dimension, 

maximum and minimum diameters of capillaries) and fluid properties (such as 

viscosity, contact angle and interfacial tension) in fractal porous medium. we 

emphatically analysis the affection of pore fractal dimension, tortuosity fractal 

dimension, maximum and minimum diameters of capillaries on water saturation 

profile. 

Figures 8-11 show that water saturation vs. distance at different pore fractal 

dimensions, Df, and tortuosity fractal dimension, DT, respectively. 

Figure 7: Final water saturation profile.
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From Eq. (41), we can see that water saturation profile is affected by fractal struc-
tural parameters (such as pore fractal dimension, tortuosity fractal dimension, max-
imum and minimum diameters of capillaries) and fluid properties (such as viscosity,
contact angle and interfacial tension) in fractal porous medium. we emphatically
analysis the affection of pore fractal dimension, tortuosity fractal dimension, max-
imum and minimum diameters of capillaries on water saturation profile.

Figures 8-11 show that water saturation vs. distance at different pore fractal dimen-
sions, D f , and tortuosity fractal dimension, DT , respectively.
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Figure 8: Computed water saturation profile affected by Df. 
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Figure 8: Computed water saturation profile affected by D f .

D f represents the cross-sectional distribution of pores in porous medium. The het-
erogeneity of porous medium increases and the distributions of fluids 1 and 2 in
fractal porous medium become more complex with the increase of D f . Thus the
value of two-phase position is smaller at the same water saturation with the increase
of D f as is shown in Fig. 9. This implies it becomes harder for water to displace
oil completely with the increase of D f .

DT represents the tortuosity of capillaries in porous medium. The flow path length
of fluid in a porous medium increases with the increase of DT , which indicates
a higher flow resistance in a fractal porous medium. Thus the heterogeneity of
a porous medium enhances and the distributions of oil and water in fractal porous
medium become more complicated. Thus the value of two-phase position is smaller
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at the same water saturation with the increase of DT as is shown in Fig. 11. This
implies it becomes harder for water to displace oil completely with the increase of
DT .

Based on Eq. (41), figures 12-15 show that water saturation vs. distance at different
minimum pore diameter, λ min, and maximum pore diameter λ max, respectively.

For a given λ min, fractal porous medium is better in permeability if the value of
λ max is bigger. Because of higher value of permeability, the position of two-phase
is bigger at the same water saturation with the increase of λ max as is shown in Fig.
13. This implies it becomes more easily for water to displace oil completely with
the increase of λ max.

Similarly, fractal porous medium is better in permeability if the value of λ min is
bigger. Because of higher value of permeability, the position of two-phase is bigger
at the same water saturation with the increase of λ max as is shown in Fig. 15.
This implies it becomes more easily for water to displace oil completely with the
increase of λ min.
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Figure 13: Final water saturation profile affected by λ max.
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Figure 15: Final water saturation profile affected by λ min.
(µw=1×10−3Pa.s, µo=1.2×10−3Pa.s, σ=0.06N/m, θ=0.5, L=1×10−2m
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5 Conclusions

On the approximation that a porous medium consist of a bundle of tortuous capil-
laries with different diameters, we have derived a Buckley-Leverett model based on
the fractal characteristics of pore size distribution in porous medium. The proposed
model connects any location of transient two phase flow with the structural param-
eters (e.g. tortuosity fractal dimension, pore fractal dimension, and maximum and
minimum pore diameters) and fluid properties (e.g. interfacial tension, contact an-
gle, viscosities and so on) of fractal porous medium In this work, we emphatically
exhibit the process how to predict the fluid saturation profile based on fractal theory
and Buckley-Leveret analysis.

Some conclusions have been obtained as follows:

1. Based on the fractional flow model using fractal theory, we derive Buckley-
Leverett solution to analyze water saturation profile for transient two-phase flow in
porous medium.

2. With the increase of D f and DT , the value of two-phase position is bigger when
at the same water saturation. The permeability of porous media is better and it will
take a shorter time for water to completely displace oil.

3. The permeability of porous media is better with the increase of λ max and λ min,
the value of two-phase position is bigger at the same water saturation. It’s much
easier for water to completely displace oil.
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