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Multivariable Wavelet Finite Element for Plane Truss
Analysis

Xingwu Zhang1, Jixuan Liu2, Xuefeng Chen1,3 and Zhibo Yang1

Abstract: Plane truss is widely used in mechanical engineering, building engi-
neering and the aerospace engineering et al.. The precisely analysis of plane truss
is very important for structural design and damage detection. Based on the gener-
alized variational principle and B spline wavelet on the interval (BSWI), the mul-
tivariable wavelet finite element for plane truss is constructed. First, the wavelet
axial rod element and the multivariable wavelet Euler beam element are construct-
ed. Then the multivariable plane truss element can be obtained by combining
these two elements together. Comparing with the traditional method, the gener-
alized displacement and stress are treated as independent variables in multivariable
method, so differentiation and integration are avoided in calculation, the efficien-
cy and precision can be improved. Furthermore, compared with commonly used
Daubechies wavelet, BSWI has explicit expression and excellent approximation
property, which further guarantees satisfactory results. The efficiency of the con-
structed multivariable wavelet elements is validated through several numerical ex-
amples in the end.

Keywords: Multivariable, B-spline wavelet on the interval, Axial rod, Euler beam,
Plane truss.

1 Introduction

In mechanical engineering, building engineering and aerospace engineering, the
truss structures are widely used. As the key support component, precise numerical
analysis is very important for structural design and damage identification. Based
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on linear finite element method, Sedaghati developed a structural analysis and op-
timization method to find the optimal topology of adaptive determinate truss struc-
tures [Sedaghati, Suleman, Dost and Tabarrok (2001)]. Han analyzed prestressed
composite space truss and verified on a physical model test [Han, Yuan, Ying and
Liu (2005)]. Huang analyzed truss structures with random parameters utilizing
recursive stochastic finite element method [Huang, Suo and Mao (2007)]. Jiang
constructed rectangular truss element based on generalized finite element method
[Jiang, Huang and Cao (2007)]. Based on finite element model and the vibration
data, Huang proposed a damage detection method for plane steel truss [Huang and
yang (2010)]. Panda applied the meta-models in finite element based reliability
analysis for truss structure predication [Panda and Manohar (2008)]. Luo develope-
d a finite element method based on the self-defined truss element and analyzed the
dynamic characteristic of the corresponding model [Luo, Xu and Zhang (2010)].
Torkamani presented a methodology for the elastic large displacement analysis of
plane trusses [Torkamani and Shieh (2011)]. Song developed a three-dimensional
finite element method and studied the critical buckling load and lateral force of
metal-plate-connected wood truss assemblies [Song and Lam (2012)]. Noilublao
proposed a novel integrated design strategy to accomplish simultaneous topology
shape and sizing optimization of plane truss structures [Noilublao and Bureerat
(2013)].

In the above elements for truss structural analysis, traditional interpolating func-
tions are mainly used to discrete the solving field. Wavelet finite element method
is a new numerical method, which takes wavelet and scaling functions as inter-
polating function. Compared with traditional interpolating functions, wavelet has
many good properties, such as multiresolution, orthogonality, compact-supported
and so on, so wavelet finite element can do structural analysis with high efficien-
cy and good accuracy and is suitable for singularity problems. Therefore, wavelet
finite element method attracted many scholars in the area of numerical analysis,
structural analysis and fault diagnosis [Li and Chen (2014)].

In the area of numerical analysis, Gaur developed the wavelet based adaptive solver
for two dimensional advection dominating solution problem [Gaur and Singh (20
13)]. Wang proposed a new second-generation wavelet-based finite element method
for solving partial differential equations [Wang, Chen and He (2012)]. Jiwari con-
structed an efficient numerical scheme based on uniform Haar wavelets and the
quasilinearization process for time dependent nonlinear Burgers’ equation [Jiwari
(2012)]. Proppe studied the multiresolution analysis for stochastic finite element
problems with wavelet-based Karhunen-Loeve expansion [Proppe (2012)]. Based
on the modified Hellinger-Reissner variational principle and B-spline wavelet on
the interval, Liu derived the Hamilton canonical equation [Liu, Shi, Li and Qing
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(2011)]. Liu proposed a wavelet based method for solving a class of nonlinear time
dependent partial differential equations [Liu, Wang and Zhou (2013)]. Libre stud-
ied the wavelet based adaptive method for solving nearly singular potential PDEs
[Libre, Emdadi, Kansa, Shekarchi and Rahimian (2008)].

In the area of structural analysis, Ren constructed wavelet-based stochastic finite
element method for thin plate bending analysis based on spline wavelet [Ren, Han
and Huang (2007)]. Diaz constructed Daubechies wavelet finite element method
for beam and plate analysis [Diaz, Martin and Vampa (2009)]. Zupan construct-
ed triangular Hermite wavelet finite element for 3D beam analysis [Zupan and
Saje (2009)]. Liu solved the 2D elastic problems based on quadratic B-spline
wavelet finite element method [Liu, Sun and Cen (2011)]. Yang analyzed the
free vibration of curved shell using B-spline wavelet on the interval and general
shell theory [Yang, Chen, Li, He and Miao (2012)]. Pahlavan proposed a novel
and generic formulation of spectral finite element approach based on Daubechies
compactly-supported wavelets for elastic wave propagation simulation [Pahlavan,
Kassapoglou and Gurdal (2013)]. Tanaka constructed a wavelet Galerkin method
based on B-spline wavelet bases for application to solid mechanics problems [Tana-
ka, Okada and Okazawa (2012)]. Chen applied Daubechies wavelet theory to an-
alyze beam of high stress gradient [Chen, Zhang and Dang (2012)]. Li adopted
adaptive element-free Galerkin method based on B-spline wavelet for rigid plastic
simulation [Li and Wang (2012)]. Tabrez studied wave propagation in degrad-
ed composite beam using wavelet based spectral finite element method [Tabrez,
Mitra and Gopalakrishnan (2007)], and developed a 2D wavelet based spectral fi-
nite element method in wave propagation analysis of an isotropic plate [Mitra and
Gopalakrishnan (2006)]. Zhao constructed the Daubechies wavelet finite elemen-
t for thermal stress distribution analysis of ceramic-coated pistons [Zhao (2012)].
Gopikrishna presented a new hierarchical finite element formulation for structural
dynamics problems [Gopikrishna and Shrikhande (2011)]. Based on the second
generation wavelets, He proposed a new beam element multiresolution method [He,
Chen and Zhang (2011)]. Zuo analyzed the free vibration and buckling problems
for functionally graded beam [Zuo, Yang, Chen and Xie (2014a)] and plate [Zuo,
Yang, Chen, Xie and Zhang (2014b)] by using B-spline wavelet on the interval
finite element method.

In the area of damage detection, Xiang did much work on it. Based on B-spline
wavelet on the interval, He constructed the multiple damage detection method for
beams based on multi-scale element [Xiang and Liang (2011)], achieved structural
damage detection by hybrid of interval wavelet and wavelet finite element model
[Xiang, Matsumoto, Wang and Jiang (2011)] and detected crack in plane structures
[Xiang, Wang, Jiang, Long and Ma (2012)] and conical shells [Xiang, Matsumoto,
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Wang and Jiang (2013)]. Li developed quantitative identification of multiple cracks
in a rotor utilizing wavelet finite element method [Li and Dong (2012)]. Wang stud-
ied the pipe model for crack detection based on Daubechies wavelet finite element
merhod and generic algorithm [Wang, Chen and He (2011)].

Wavelet finite element method attracted many scholars to do research both in nu-
merical calculation, structural analysis and fault diagnosis. However, the above
constructed wavelet elements are mainly single variable element, that is, only gen-
eralized displacement can be solved directly while generalized stress and strain
should be calculated secondary by displacement. So the calculation precision and
efficiency will be affected. Atluri et al., solved this problem by mixed finite element
method in which the displacement and strain vectors are all treated and interpolat-
ed as independent variables. Several mixed finite elements had been constructed,
especially Meshless Local Petrov Galerkin (MLPG) mixed method, including 4-
node mixed collocation element [Dong, EI-Gizawy, Juhany and Atluri (2014a)],
8-node mixed collocation element [Dong, EI-Gizawy, Juhany and Atluri (2014b)]
etc., which were applied in solving several practical problems, such as macro- &
micromechanics [Dong and Atluri (2011)], vortex mixing flow [Ruben, Han and
Atluri (2011)], heat transfer [Zhang, He, Dong, Li, Alotaibi and Atluri (2014)] and
laminated structures [Dong, EI-Gizawy, Juhany and Atluri (2014a)] et al.. Sev-
eral numerical and experimental results proved the efficiency and accuracy of the
constructed mixed method. Multivariable wavelet finite element method takes ful-
l advantages of mixed finite element method and wavelet interpolation functions,
in which the generalized displacement, stress and strain will be interpolated in-
dependently by wavelet functions, so the precision and efficiency can be further
enhanced and improved. Han proposed multivariable wavelet finite element for
Reissner-Mindlin plate static analysis [Han, Ren and Huang (2005)]. However,
the interpolating wavelet function was taken as interpolating function in his study,
which did not have explicit expression, so took many troubles to the differentiation
and integration calculation. B-spline wavelet on the interval has explicit expres-
sions and very good approximation properties, Zhang constructed multivariable
wavelet finite element method and applied in 1D beam structural analysi [Zhang,
Chen, He and Cao (2012)], Reissner-Mindlin plate analysis [Zhang, Chen and He
(2011)] and shallow shell analysis [Zhang, Chen, He and Yang (2012)], though
numerical examples, the efficiency and precision were verified.

In this study, based on generalized variational principle and B-spline wavelet on
the interval, the multivariable wavelet finite element for plane truss is constructed.
First, based generalized energy functions, the BSWI axial rod multivariable BSWI
Euler beam elements are proposed. Then combining these two elements together,
the multivariable BSWI plane truss element is developed. In order to verify the
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efficiency and advantages of the constructed elements, many numerical examples
are proposed in the end.

In section 2, the BSWI scaling functions which are the interpolating functions are
presented. According to generalized principle, the multivariable FEM formulations
of plane truss are derived in Section 3. Section 4 gives some numerical examples
to verify the method proposed in this paper.

2 B-spline wavelet on the interval [0,1]

Chui and Quak constructed B-spline wavelet on the interval [Chui and Quak (1992)],
and gave its decomposition and reconstruction algorithm in 1994 [Quak and Nor-
man (1994)]. In order to have at least one inner wavelet, the following condition
must be satisfied.

2 j ≥ 2m−1 (1)

Where m and j are the order and scale of BSWI respectively. While 0 scale mth or-
der B-spline scaling functions and the corresponding wavelets are given by Goswa-
mi J.C. in Ref. [Goswami, Chan and Chui (1995)], j scale mth order BSWI (sim-
ply denoted as BSWImj) scaling functions φ

j
m,k(ξ ) and the corresponding wavelets

ψ
j

m,k(ξ ) can be evaluated by the following formulas.

φ
j

m,k(ξ ) =



φ l
m,k(2

j−lξ ) , k =−m+1, · · · ,−1
(0 boundary scaling functions)
φ l

m,2 j−m−k(1−2 j−lξ ) , k = 2 j−m+1, · · · ,2 j−1
(1 boundary scaling functions)
φ l

m,0(2
j−lξ −2−lk), k = 0, · · · ,2 j−m

(inner scaling functions)

(2)

ψ
j

m,k(ξ ) =



ψ l
m,k(2

j−lξ ) , k =−m+1, · · · ,−1
(0 boundary wavelets)
ψ l

m,2 j−2m−k+1(1−2 j−lξ ) , k = 2 j−2m+2, · · · ,2 j−m
(1 boundary wavelets)
ψ l

m,0(2
j−lξ −2−lk), k = 0, · · · ,2 j−2m +1

(inner wavelets)

(3)

For the need of the following element construction, the scaling functions and wavelet-
s of BSWI43 are given in Fig. 1.

The vector form of scaling functions in the lower resolution approximation space
Vj are given by

ΦΦΦ =
[
ϕ

j
m,−m+1(ξ ) ϕ

j
m,−m+2(ξ ) . . . ϕ

j
m,2 j−1(ξ )

]
(4)
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Figure 1: BSWI43 on the interval [0,1].

Semi-orthonormal wavelets in detail space Wj are

ΨΨΨ =
[
ψ

j
m,−m+1(ξ ) ψ

j
m,−m+2(ξ ) · · · ψ

j
m,2 j−m(ξ )

]
(5)

3 The construction of multivariable wavelet finite element for plane truss

The multivariable wavelet plane truss element can be constructed by combining
BSWI axial rod element and multivariable Euler beam element together. The solv-
ing domain and nodes displacement of plane truss are shown in Fig. 2. Where
(X ,Y ) is local coordinate and (X̄ ,Ȳ ) is global coordinate. From Fig. 2, it can be
seen that there are three degrees of freedom (DOF) at every node, and the total
DOFs are 3× (2 j +3), where j is the scaling of BSWI scale functions.
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Figure 2: The solving domain and nodes displacement of plane truss.
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The physical DOFs of multivariable plane truss element in local coordinate are:

δδδ
e = (u1 w1 M1 u2 w2 M2 · · ·un−1 wn−1 Mn−1 un wn Mn)

T (6)

while the corresponding DOFs in global coordinate are:

δδδ
e
= (u1w1M1u2w2M2 · · ·un−1wn−1Mn−1unwnMn)

T (7)

The relationship between global and local coordinates in Fig. 2 is shown in the
following equation. ui

wi

Mi

= gi

 ui

wi

Mi

 , i = 1, ...,n (8)

where,

gi =

 cosα sinα 0
−sinα cosα 0

0 0 1

 , i = 1, ...,n (9)

Therefore, the transformation matrix Ge between local coordinate and global coor-
dinate can be obtained.

Ge =


g1

g2
. . .

gn−1
gn

 (10)

Then,

δδδ
e = Ge

δδδ
e

(11)

The corresponding transformation equation of element load is:

Pe = GePe (12)

Therefore, the finite element function of plane truss in local coordinate is:

Ke
δ

e = Pe (13)

Taking equation (7) into (13), and considering transformation matrix, the finite
element formula in global coordinate can be obtained.

Ke
δ

e
= Pe (14)
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Where,

Ke
= (Ge)T Ke(Ge) (15)

The generalized finite element function of plane truss has been obtained, while
how to constructed the multivariable wavelet plane truss element, BSWI axial rod
element and multivariable BSWI Euler beam element are needed. Therefore, these
two elements will be constructed in the following.

3.1 BSWI axial rod element

The nodes displacement of standard axial rod element is shown in Fig. 3.
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Figure 3: Nodes displacement of axial rod.

The governing equation of axial rod is:

EA
d2u
dx2 + f (x) = 0 (16)

where, E is elastic modulus, A is section area, u is axial displacement and f is the
external axial force.

Introducing bilinear functional

B(u,v) =
∫ le

0
EA

du
dx

dv
dx

dx (17)

and linear functional,

F(v) =
∫ le

0
f (x)v(x)dx (18)

the weak form solution can be obtained by Galerkin or Ritz variational principle.

B(u,v) = f (v), u,v ∈Vh (19)

Where, Vh is the finite dimensional subspace.
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By using scaling functions in equation (4) to discrete the field functions, the dis-
placement field function can be obtained as following.

u = ΦΦΦTTT eue (20)

v = ΦΦΦTTT eve (21)

Where, ue = {u1 u2 . . .un+1}T and ve = {v1 v2 . . .vn+1}T .

Taking equations (20)-(21) into equation (19),

B(ΦΦΦTTT eue,ΦΦΦTTT e) = f (ΦΦΦTTT e) (22)

and taking equations (14)-(15) into equation (22), the solving function for BSWI
axial rod finite element can be achieved.

{EA
le

∫ 1

0
(Te)T dΦΦΦ

T

dξ

dΦΦΦ

dξ
Tedξ}ue = le

∫ 1

0
(Te)T f ΦΦΦ

Tdξ (23)

Where, the elemental stiffness matrix is:

Ke =
EA
le

∫ 1

0
(Te)T dΦΦΦ

T

dξ

dΦΦΦ

dξ
Tedξ (24)

and the elemental load vector for distributed load is:

Pe = le
∫ 1

0
(Te)T f ΦΦΦ

Tdξ (25)

and the elemental load vector for concentrated load can also be acquired.

Pe
j = ∑

j
Pj(Te)T

ΦΦΦ
T(ξ j) (26)

3.2 Multivariable BSWI Euler beam element

The DOFs displacement of multivariable Euler beam element is shown in Fig. 4.
There are two DOFs at every node: displacement and moment.

The multivariable generalized potential energy functional is [Shen (1997)]:

ΠΠΠ2p(w,M) =−
∫ L

0
M

d2w
dx2 dx−

∫ L

0

M2

2EI
dx−

∫ L

0
qwdx (27)

where, EI is flexural rigidity, w is the displacement field function, M is the moment
field function and q is the load vector.
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Figure 4: The DOFs displacement of multivariable Euler beam element.

BSWI scaling functions in equation (4) is used to discrete the displacement and
moment field functions.

w(ξ ) = ΦΦΦT ewe (28)

M(ξ ) = ΦΦΦT eMe (29)

Where, we = {w1 w2 . . .wn+1}T and Me = {M1 M2 . . .Mn+1}T .

According to the multivariable generalized variational principle, ∂ ∏2p
∂MMMe = 0 and

∂ ∏2p
∂wwwe = 0, the multivariable finite element formulation for Euler beam can be achieved

as follows.[
0 −Γ20

−Γ02 − 1
EI Γ00

][
we

Me

]
=

[
Pe

0

]
(30)

Where, to distributed load, the load vector is Pe = le
∫ 1

0 q(ξ )ΦΦΦT dξ and Pe =∑
j

PjΦΦΦ
T (ξ j)

to concentrated load.

The integral terms in equation (30) are shown as following.

Γ
2,0 =

1
le

∫ 1

0

d2
ΦΦΦ

T

dξ 2 ΦΦΦdξ,

Γ
0,0 = le

∫ 1

0
ΦΦΦ

T
ΦΦΦ dξ,

Γ
0,2 = (Γ0,2)T .

4 Numerical examples

BSWI axial rod element and multivariable BSWI element are constructed first, then
combining them together, the multivariable BSWI plane truss element is achieved
in section 3. In order to illustrate and prove the efficiency and accuracy of the con-
structed elements, some numerical examples are given blow in this section, while
the constructed multivariable BSWI Euler beam element and plane truss element
will also be included.



Multivariable Wavelet Finite Element for Plane Truss Analysis 415

4.1 Euler beam

As shown in Fig. 5, cantilever Euler beam with variable cross section under con-
centrated load on the free end, the corresponding parameters are: elastic modulus
E=1.2×106N/m2, beam width B=0.1m, beam height h(x), beam length L=1m, con-
centrated load P=1N/m, respectively.
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Figure 5: Cantilever Euler beam with variable cross section.

The solving results to cantilever Euler beam with variable beam height changing
in first law function h(x) = (1− 0.9(x/L))/10 is shown in Fig. 6. The results
of multivariable wavelet finite element based on B-spline wavelet on the interval
(MBSWI) are compared with theoretical solution. It can be seen that the MB-
SWI results are in consistent with theoretical solution. Table 1 shows the solving
results of cantilever beam with variable beam height changing in secondary law
h(x) = (1+0.9(x/L)−1.8(x/L)2)/10. The solving results of MBSWI to displace-
ment, slope and moment are compared with BSWI element and theoretical solu-
tion. To displacement solution, MBSWI and BSWI all has good solution precision.
However, to slope and moment, MBSWI is better than BSWI element, and MBSWI
element results are more close to the theoretical solution. Therefore, the calculation
advantages of the constructed MBSWI Euler element are proved.

4.2 plane truss

Example 1: as shown in Fig. 7, the plane truss is simply supported with horizontal
distributed load. The corresponding parameters are: EA=10kN, EI=10/12kN/m2,
and L=1m respectively. and q=1kN.

First, the plane truss with regular distributed horizontal load (q=1kN) is investi-
gated. The solving results of plane truss deformation and slope along OAB are
shown in Fig. 8. MBSWI solution is compare with ANSYS BEAM3 element. In
this example, the plane truss is discretized with 1 MBSWI element and 32 ANSYS
BEAM3 elements, and the analysis results are highly in consistent with each other.
However, MBSWI has 63 DOFs and ANSYS BEAM3 has 99 DOFs in solving this
problem.
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Fig. 4 The DOFs displacement of multivariable Euler beam element 3 
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Fig. 5 Cantilever Euler beam with variable cross section 7 

 8 

 9 

 10 

Fig. 6 Solving results of cantilever Euler beam with variable cross section 11 
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Figure 6: Solving results of cantilever Euler beam with variable cross section
(Beam height h(x) = (1−0.9(x/L))/10).
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(a) Plane truss structure     (b) Coordinates and bar numbers 3 

Fig. 7 Plane truss under horizontal distributed load 4 
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Fig. 8 Analysis results of plane truss with horizontal distributed load (q=1kN) 9 
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Figure 7: Plane truss under horizontal distributed load.
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(a) Plane truss structure     (b) Coordinates and bar numbers 3 

Fig. 7 Plane truss under horizontal distributed load 4 
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Fig. 8 Analysis results of plane truss with horizontal distributed load (q=1kN) 9 
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 11 

 12 

Figure 8: Analysis results of plane truss with horizontal distributed load (q=1kN).

Then, the horizontal distributed load is increased to be 10kN (q=10kN), and the
analyzed results of this large deformation case is shown in Fig. 9. Similar to the
case with regular load, the results are compared between MBSWI and ANSYS
element. It can be seen clearly from Fig. 9 that MBSWI element can achieve
similar accuracy with ANSYS, while only one element is used by MBSWI and
32 elements are used by ANSYS. Therefore, the constructed MBSWI element is
suitable for both regular deformation and large deformation analysis with good
solving efficiency and accuracy.

Example 2: as shown in Fig. 10, the plane truss is simply supported with vertical
distributed load. The corresponding parameters are: EA=10kN, EI=10/12kN/m2,
L=1m, respectively.

Similar as example 1, the plane truss with regular load (q=1kN) is investigated first.
Fig. 11 shows the solving results of plane truss with vertical distributed load. The
analysis solution of MBSWI element are also compared with ANSYS BEAM3
element. It can be seen that the results of MBSWI element (63DOFs) coincides
with ANSYS BEAM3 element (99DOFs), while solving efficiency of MBSWI is
better.

Then, the plane truss with increased load (q=10kN) is investigated to simulate the
large deformation case. It can be seen from the results in Fig. 12 that MBSWI can
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Fig. 9 Analysis results of plane truss with horizontal distributed load (q=10kN) 4 
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(b) Plane truss structure     (b) Coordinates and bar numbers 7 

Fig. 10 Plane truss under vertical distributed load 8 
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Figure 9: Analysis results of plane truss with horizontal distributed load (q=10kN).
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Fig. 9 Analysis results of plane truss with horizontal distributed load (q=10kN) 4 
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Fig. 10 Plane truss under vertical distributed load 8 
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Figure 10: Plane truss under vertical distributed load.
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Fig. 11 Analysis results of plane truss with vertical distributed load (q=1kN) 3 

 4 

 5 

Fig. 12 Analysis results of plane truss with vertical distributed load (q=10kN) 6 

Figure 11: Analysis results of plane truss with vertical distributed load (q=1kN).
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Fig. 11 Analysis results of plane truss with vertical distributed load (q=1kN) 3 
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Fig. 12 Analysis results of plane truss with vertical distributed load (q=10kN) 6 

Figure 12: Analysis results of plane truss with vertical distributed load (q=10kN).
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still achieve accurate analysis results with only 2/3 computational amount com-
pared with ANSYS. Therefore, the advantages of multivariable wavelet plane truss
element is proved by these two examples under two different load conditions.

5 Conclusion

Based on B spline wavelet on the interval and the generalized variational principle,
the multivariable wavelet plane truss element is constructed in this paper. First, the
wavelet axial rod element and the wavelet Euler beam element based on B-spline
wavelet on the interval are constructed. Then combining these two constructed
elements, the multivariable wavelet plane truss element is obtained. In the con-
struction process, the generalized displacement and the generalized stress are inter-
polated by BSWI scaling functions, so the secondary calculation is avoid and the
calculation precision is improved. Through several numerical examples, it proved
that the constructed multivariable BSWI Euler beam element and the multivariable
BSWI plane truss element has very good calculation efficiency and precision, and
is suitable for mechanical structural analysis.
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