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Meshless Local Weak form Method Based on a Combined
Basis Function for Numerical Investigation of Brusselator

Model and Spike Dynamics in the Gierer-Meinhardt
System

Mohammad Ilati1 and Mehdi Dehghan2

Abstract: In this paper, at first, a new combined shape function is proposed.
Then, based on this shape function, the meshless local weak form method is applied
to find the numerical solution of time-dependent non-linear Brusselator and Gierer-
Meinhardt systems. The combined shape function inherits the properties of radial
point interpolation (RPI), moving least squares (MLS) and moving Kriging (MK)
shape functions and is controlled by control parameters, which take different values
in the domain [0,1]. The combined shape function provides synchronic use of
different shape functions and this leads to more flexibility in the used method. The
main aim of this paper is to show that the combined basis function can be used as a
shape function in meshless local weak form methods and leads to better results in
solving the system of non-linear partial differential equations especially Brusselator
and Gierer-Meinhardt systems. The numerical results confirm the good efficiency
of the proposed method for solving non-linear Brusselator and Gierer-Meinhardt
systems.

Keywords: Brusselator model, Gierer-Meinhardt (GM) model, Meshless local
weak form methods, Combined shape function, Cooperative processes in chemical
kinetics.

1 Introduction

Reaction-diffusion models frequently arise in the study of chemical and biological
systems and are naturally modeled by time dependent partial differential equations
(PDEs). The nonlinear system of reaction-diffusion equations is composed of two
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distinct terms: diffusion terms and reaction terms. Diffusion terms are involved
with the random motion of each constituent due to turbulent nature of the flow
field and reaction terms describe the interaction among the involved physical and
biological species [Bhatt and Khaliq (2015); Zhao, Ovadia, Liu, Zhang, and Nie
(2011)]. A two-component reaction-diffusion system with general reaction terms L
and N has the following form:

∂u(x,t)
∂ t = d1∇2u+L1(u,v)+N1(u,v),

∂v(x,t)
∂ t = d2∇2v+L2(u,v)+N2(u,v),

x ∈Ω⊂ R2, t ∈ [0,∞), (1)

subject to the no-flux boundary conditions

∂u(x, t)
∂n

=
∂v(x, t)

∂n
= 0, x ∈ ∂Ω, t ∈ [0,∞), (2)

and initial conditions

u(x,0) = u0(x), v(x,0) = v0(x), x ∈Ω, (3)

where u(x, t) and v(x, t) denote the concentration of two reactants, d1 and d2 (diffu-
sion coefficients) are constants, u0 and v0 are known functions. Here, Ω represents
the spatial domain of the equation with ∂Ω as the boundary and ∇2 denotes the
Laplacian associated with diffusion of the species. Based on many specific forms
of the reaction terms, various models have been proposed for the pattern forma-
tion. Here, we investigate Brusselator model [Nicolis and Prigogine (1977)] and
Gierer-Meinhardt (GM) model [Gierer and Meinhardt (1972)].

1.1 Brusselator model

One of the important reaction-diffusion equations is known as Brusselator sys-
tem. The Brusselator system is used to describe mechanism of chemical reaction-
diffusion with non-linear oscillations. The importance of oscillations in biochem-
ical systems has been emphasized by a number of authors. For instance, Turing
[Turing (1952)] showed that when certain reactions are coupled with the process of
diffusion, it is possible to obtain a stable spatial pattern (this laid the foundation of
the theory of morphogenesis). The so-called Brussels school [Lefever and Nicolis
(1971); Nicolis and Prigogine (1977); Prigogine and Lefever (1968); Tyson (1973)]
developed and analysed the behaviour of a non-linear oscillator associated with the
chemical system

δ →U,
ρ +U →V +D,
2U +V → 3U,
U → E,

(4)
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where δ and ρ are input chemicals, D and E are output chemicals and U and V
are intermediates. The chemical system (4), known as the “Brusselator” system, is
important in that it admits limit-cycle oscillations and yet contains only two depen-
dent variables (U and V ) thus enabling the use of two-dimensional mathematical
systems [Lefever and Nicolis (1971); Twizell, Gumel, and Cao (1999)]. Let u and v
be the concentrations of U and V , respectively, and assume that the concentrations
of the input compounds δ and ρ are held constant during the reaction process. Then
one obtains the following system of reaction-diffusion equations:

∂u
∂ t = α1∇2u+δ +u2v− (ρ +1)u,

∂v
∂ t = α2∇2v+ρu−u2v,

(5)

where δ , ρ , and diffusion coefficients α1 and α2 are positive constants. The param-
eter ρ is often chosen as a parameter for studying bifurcation. This model has been
referred to as the trimolecular model or Brusselator. It represents a useful model
for study of cooperative processes in chemical kinetics. Such a trimolecular reac-
tion step arises in the formation of ozone by atomic oxygen via a triple collision.
It arises also in enzymatic reactions, and in plasma and laser physics in multiple
couplings between certain modes [Adomian (1995); Tyson (1973)].
It is well known that from [Twizell, Gumel, and Cao (1999)], for small values of the
diffusion coefficients α1 and α2, the steady state solution of the Brusselator system
(5) converges to equilibrium point (δ , ρ

δ
) if 1−ρ +δ 2 > 0.

The analytical solution of the reaction-diffusion Brusselator system is not yet known
and therefore it got interest from numerical point of view. In recent years, much
attention has been paid in literature to the development of numerical schemes for
the numerical solutions of reaction-diffusion Brusselator system such as second-
order finite difference scheme [Twizell, Gumel, and Cao (1999)], decomposition
method of Adomian [Adomian (1995); Wazwaz (2000)], dual-reciprocity boundary
element method [Ang (2003)], Runge-Kutta-Chebyshev method [Verwer, Hunds-
dorfer, and Sommeijer (1990)], collocation method using the radial basis func-
tions [Siraj-ul-Islam and Haq (2010)], differential quadrature method [Mittal and
Jiwari (2011a,b)], modified cubic B-spline differential quadrature method [Jiwari
and Yuan (2014)], homotopy perturbation method [Kumar, Khanm, and Yildirim
(2012)], alternating direction implicit (ADI) orthogonal spline collocation (OS-
C) method [Fernandes and Fairweather (2012)], local integral equation method
[Shirzadi, Sladek, and Sladek (2013a)], moving finite element method [Hu, Qiao,
and Tang (2012)], method of lines [Mohammadi, Mokhtari, and Schaback (2014)]
and locally extrapolated exponential time differencing LOD scheme [Bhatt and
Khaliq (2015)].
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1.2 Gierer-Meinhardt model

Among the reaction-diffusion models, Gierer-Meinhardt model is the most well-
known reaction-diffusion system of activator-inhibitor type [Qiao (2008)]. It has
been widely used to model localization processes in nature, such as cell differenti-
ation and morphogenesis [Harrison and Holloway (1995); Meinhardt (1982)], and
the formation of sea-shell patterns [Meinhardt (1995)]. This model not only gener-
ates spatial patterns but also exhibits size regulation, a phenomenon that occurs in
many developmental systems such as head development in the Hydra [Gierer and
Meinhardt (1972); Ward, Mcinerney, and Houston (2002)]. The dimensionless GM
model can be written as [Fernandes and Fairweather (2012); Qiao (2008)]

∂u
∂ t = ε2∇2u+ up

vq − [1+V (x)]u,

µ
∂v
∂ t = κ∇2v+ ε−m ur

vs −λ (x)v,
(6)

where u, v, ε , κ , λ (x), V (x) and µ represent the scaled activator concentration,
inhibitor concentration, activator diffusivity, inhibitor diffusivity, inhibitor decay
rate, activator decay rate, and inhibitor time constant, respectively [Qiao (2008)].
The exponents (p,q,r,s) are assumed to satisfy [Qiao (2008)]

p > 1, q > 0, r > 1, s≥ 0,
p−1

q
<

r
s+1

. (7)

Numerical studies by Meinhardt [Meinhardt (1982)] have revealed that when ε is
small and κ is finite, GM seems to have stable stationary states with the property
that the activator is mainly concentrated in K peaks which are each placed near K
different points in Ω whose locations satisfy suitable conditions [Wei and Winter
(2001)]. Moreover, for ε� 1, many studies of GM model have shown the spike pat-
terns become narrower and narrower when ε→ 0 [Meinhardt (1982); Qiao (2008);
Wei and Winter (2001)]. In fact, their spatial extension is of the order O(ε). And
the spike patterns also have various dynamical behaviors, such as the drift of the
center of the spikes, the oscillation of the height of the spikes, even the splitting
of the spikes. So, in the mesh based methods, very fine meshes over the spatial
extension of the spikes are needed to resolve this problem [Qiao (2008)].
For two-dimensional GM model, some analysis works can be found in [Chen and
Kowalczyk (2001); Kolokolnikov and Ward (2004); Wei and Winter (1999, 2001)].
However, because of the extremely large computational cost, there are only a few
works in numerical simulations for spike dynamics in 2D, see [Fernandes and Fair-
weather (2012); Harrison and Holloway (1995); Kolokolnikov, Sun, Ward, and Wei
(2006); McCourt, Dovidio, and Gilbert (2008); Qiao (2008); Ward, Mcinerney, and
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Houston (2002)]. Numerical difficulties in simulating two-dimensional GM mod-
el also lie in that there are different orders of errors: the error in spike height is
O( 1

log 1
ε

), the error in spike location is O(ε), the critical threshold for κ is O(log 1
ε
)

and the time evolution for spikes is O( 1
ε2 log 1

ε

) [Qiao (2008)]. As mentioned in
[Qiao (2008)], the traditional finite element method (FEM) can not resolve the
spike dynamics for very small ε [Qiao (2008)].

1.3 The main aim of the current paper

In this paper we propose a meshless local weak form method based on new com-
bined shape function for numerical solution of reaction-diffusion Brusselator and
Gierer-Meinhardt systems. The meshless local weak form method is a truly mesh-
less method, which requires no elements or background cells, for either the in-
terpolation or the integration purposes. This concept was first proposed by Atluri
and Shen [Atluri and Zhu (1998)], and later discussed in depth in [Atluri and Shen
(2002a,b)]. The most significant difference between this method and the finite el-
ement method or any other meshless method is that the local weak forms are gen-
erated on overlapping local sub-domains, instead of using the global weak form.
Integration of the weak form is performed in local sub-domains with simple ge-
ometrical shapes, therefore no elements or background cells are necessary either
for interpolation purposes or for integration purposes. For other investigations on
the meshless local weak form methods we refer to [Atluri and Zhu (2000); De-
hghan, Abbaszadeh, and Mohebbi (2014); Dehghan and Mirzaei (2008, 2009); De-
hghan and Salehi (2013, 2014); Dong, Alotaibi, Mohiuddine, and Atluri (2014);
Mirzaei and Dehghan (2010); Shirzadi, Sladek, and Sladek (2013b); Sladek, S-
ladek, and Hon (2006); Sladek, Sladek, Zhang, and Schanz (2006); Sladek, Stanak,
Han, Sladek, and Atluri (2013); Taleei and Dehghan (2014); Zhang, He, Dong, Li,
Alotaibi, and Atluri (2014)].
It is well-known that, in the classical MLPG, the moving least squares approxi-
mation is used as a shape function. In the present paper, a new shape function
is developed as a linear interpolating function of radial point interpolation (RPI),
moving least squares (MLS) and moving Kriging (MK) shape functions. This new
combined shape function inherits the properties of RPI, MLS and MK shape func-
tions and is controlled by control parameters, which take different values in the
domain [0,1]. Therefore this shape function is used as a shape function in the pro-
posed meshless local weak form method.
The main aim of this paper is to show that the new combined basis function can
be used as a shape function in meshless local weak form methods and leads to
flexibility of the method from the perspective of concurrent use of different shape
functions. In this paper, the combined basis function is used with different values
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of control parameters and it is showed that better results can be obtained by using
suitable values for control parameters.
The organization of the rest of this paper is as follows: in Sections 2, the new shape
function is introduced. A time stepping method is described in Section 3. In Section
4, full discritization based on meshless local weak forms is provided. In Section
5, results of numerical experiments are presented. Finally Section 6 completes the
structure of this paper with a brief conclusion.

2 Development of a new combined shape function

In this section, a new shape function, which interpolates the radial point interpola-
tion (RPI), moving least squares (MLS) and moving Kriging (MK) shape function-
s, is presented. Consider a local support domain with a set of arbitrarily scattered
points xi, i = 1, ...,n, where n is the number of nodes in the local support domain.
The approximation of a function u(x) in support domain can be defined by

uh(x) =
n

∑
i=1

ψi(x)ui, (8)

where ψi(x) stands for the shape function and is defined as follows

ψi(x) = µ1φ
R
i (x)+µ2φ

M
i (x)+µ3φ

K
i (x), (9)

where φ R
i , φ M

i and φ K
i are RPI, MLS and MK shape functions, respectively. µ1,

µ2 and µ3 are controlling parameters which can take different values in the domain
[0,1] such that µ1 +µ2 +µ3 = 1.
A brief description of RPI, MLS and MK shape functions is as follows:

Φ
R(x) = [φ R

1 (x), ...,φ
R
n (x)] =

[
rT (x) pT (x)

][ R0 P
PT 0

]−1

, (10)

Φ
M(x) = [φ M

1 (x), ...,φ M
n (x)] = pT (x)(PT W(x)P)−1PT W(x), (11)

Φ
K(x) = [φ K

1 (x), ...,φ K
n (x)] = pT (x)A+qT (x)B, (12)

where

rT (x) = [r1(x),r2(x), ...,rn(x)], (13)

pT (x) = [p1(x), p2(x), ..., pm(x)], (14)

qT (x) = [R(x1,x),R(x2,x), ...,R(xn,x)], (15)
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R0 =


r1(x1) r2(x1) · · · rn(x1)
r1(x2) r2(x2) · · · rn(x2)

...
...

. . .
...

r1(xn) r2(xn) · · · rn(xn)

, (16)

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

 , (17)

W(x) =


w(x−x1) 0 · · · 0

0 w(x−x2) · · · 0
...

...
. . .

...
0 0 · · · w(x−xn)

 , (18)

R =


1 R(x1,x2) · · · R(x1,xn)

R(x2,x1) 1 · · · R(x2,xn)
...

...
. . .

...
R(xn,x1) R(xn,x2) · · · 1

 , (19)

A = (PT R−1P)−1PT R−1, (20)

B = R−1(I−PA). (21)

In the above relations, ri(x) is radial basis function (RBF), p j(x) is the monomial
in the space coordinates x = [x,y]T , m is the number of monomial basis functions
and R(xi,x j) is the correlation function between any pair of nodes located at xi and
x j. In the present work, RBFs and correlation function are defined as follows:

ri(x) = (
∥∥x−x j

∥∥2
+(αcdc)

2)q, (22)

R(xi,x j) = e−θ‖xi−x j‖2

, (23)

where dc is the average nodal spacing near the point of interest x, αc and q are two
arbitrary real numbers of dimensionless shape parameters as suggested by Liu [Liu
(2002)], and θ is correlation parameter. As mentioned in [Liu and Gu (2005)], the
recommended shape parameters for the MQ-RBF are q = 1.03 and 1≤αc ≤ 7. The
quality of the shape function is heavily influenced by the correlation parameter θ .
As mentioned in [Zheng and Dai (2011)], the optimal θ is dependent on the number
of nodes in the compact support, empirical formula is obtained

θ = ω
/

h2, (24)
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where ω is a constant, h is the average distance of the nodes in the support domain.
It is a good choice to take ω ∈ [0.03,0.2]. For more details about RPI, MLS and
MK shape functions we refer to [Atluri and Zhu (1998); Bui, Nguyen, and Zhang
(2011); Chen and Liew (2011); Dehghan, Abbaszadeh, and Mohebbi (2016); De-
hghan and Ghesmati (2010); Lancaster and Salkauskas (1981); Liu and Gu (2005);
Mirzaei and Dehghan (2010); Salehi and Dehghan (2013); Taleei and Dehghan
(2015); Zheng and Dai (2011)].
The proposed shape function inherits the properties of RPI, MLS and MK shape
functions. A key property of the combined shape function is that the proposed
shape function can reproduce any function in the basis exactly. In particular, if a
linear basis is employed to construct the shape functions, all constants and linear
terms can then be reproduced exactly, i.e.

n
∑

i=1
ψi(x) = 1,

n
∑

i=1
ψi(x)xi = x.

(25)

Eq. (25) is well known as the consistency property.

3 Discretizing the temporal space

For discretization of time variable, we need to some preliminary. We define

tk = kτ, k = 0,1,2, ...,M,

where τ = T
/

M is the step size of time variable and T is final time.
To deal with the time derivative, a time-stepping method based on famous Crank-
Nicolson scheme [Dehghan (2006)] is employed.

uk+1−uk

τ
= d1

∇2uk+1+∇2uk

2 +L1(
uk+1+uk

2 , vk+1+vk

2 )+N1(uk,vk),

vk+1−vk

τ
= d2

∇2vk+1+∇2vk

2 +L2(
uk+1+uk

2 , vk+1+vk

2 )+N2(uk,vk),

(26)

where uk = u(x,kτ) and vk = v(x,kτ).
Since L1 and L2 are linear functions, they can be decomposed as follows

L1(
uk+1+uk

2 , vk+1+vk

2 ) = c1
1uk+1 + c1

2vk+1 + c1
3uk + c1

4vk + c1
5,

L2(
uk+1+uk

2 , vk+1+vk

2 ) = c2
1uk+1 + c2

2vk+1 + c2
3uk + c2

4vk + c2
5,

(27)
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where c1
i , c2

i , 1≤ i≤ 5, are constant coefficients. By substituting Eqs. (27) in (26),
the simplified form can be written as:



uk+1−β1∇2uk+1− τc1
1uk+1− τc1

2vk+1 =

uk +β1∇2uk + τc1
3uk + τc1

4vk + τN1(uk,vk)+ τc1
5,

vk+1−β2∇2vk+1− τc2
1uk+1− τc2

2vk+1 =

vk +β2∇2vk + τc2
3uk + τc2

4vk + τN2(uk,vk)+ τc2
5,

(28)

where β1 =
d1τ

2 and β2 =
d2τ

2 .

4 Full discritization based on meshless local weak form

The weak forms are used to derive a set of algebraic equations through a numerical
integration process over the domain of the problem, globally or locally. The use of
the global weak-form requires the system of equations in the global integral form
to be satisfied over the entire problem domain, and hence, a set of background cells
has to be used for the numerical integration. Therefore these methods are not truly
meshless methods. To avoid the use of global background cells, the so-called local
weak-form methods have been developed. When a local weak-form is used for a
field node, the numerical integrations are carried out over a local quadrature domain
defined for the node. Therefore, no global background mesh is required [Liu and
Gu (2005)].
In the local weak form methods, around each xi a small sub-domain Ωi

q ⊂ Ω̄ is
chosen such that integrations over Ωi

q are comparatively cheap. The local sub-
domains overlap each other, and cover the whole global domain Ω. The local sub-
domains could be of any geometric shape and size. For simplicity they are taken
to be of circular shape. The local weak form of the approximate equations (28) for
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x ∈Ωi
q can be written as



∫
Ωi

q

[uk+1−β1∇2uk+1− τc1
1uk+1]θ ∗(x)dΩ−

∫
Ωi

q

τc1
2vk+1θ ∗(x)dΩ =

∫
Ωi

q

[uk+β1∇
2uk+τc1

3uk]θ ∗(x)dΩ+
∫

Ωi
q

τc1
4vkθ ∗(x)dΩ+

∫
Ωi

q

[τN1(uk,vk)+τc1
5]θ
∗(x)dΩ,

∫
Ωi

q

[vk+1−β2∇2vk+1− τc2
2vk+1]θ ∗(x)dΩ−

∫
Ωi

q

τc2
1uk+1θ ∗(x)dΩ =

∫
Ωi

q

[vk+β2∇2vk+τc2
4vk]θ ∗(x)dΩ+

∫
Ωi

q

τc2
3ukθ ∗(x)dΩ+

∫
Ωi

q

[τN2(uk,vk)+τc2
5]θ
∗(x)dΩ,

(29)

where θ ∗ is a test function. Using

[∇2u]θ ∗ = u,llθ ∗ = [u,lθ ∗],l−u,lθ ∗,l , (30)

and the divergence theorem, Eqs. (29) yield the following expression



∫
Ωi

q

[
1− τc1

1
]

uk+1θ ∗dΩ−β1

[ ∫
∂Ωi

q

uk+1
,l nlθ

∗dΓ−
∫

Ωi
q

uk+1
,l θ ∗,l dΩ

]
−
∫

Ωi
q

τc1
2vk+1θ ∗dΩ =

∫
Ωi

q

[1+ τc1
3]u

kθ ∗dΩ+β1

[ ∫
∂Ωi

q

uk
,lnlθ

∗dΓ−
∫

Ωi
q

uk
,lθ
∗
,l dΩ

]
+

∫
Ωi

q

τc1
4vkθ ∗dΩ+

∫
Ωi

q

[τN1(uk,vk)+ τc1
5]θ
∗dΩ,

∫
Ωi

q

[1− τc2
2]v

k+1θ ∗dΩ−β2

[ ∫
∂Ωi

q

vk+1
,l nlθ

∗dΓ−
∫

Ωi
q

vk+1
,l θ ∗,l dΩ

]
−
∫

Ωi
q

τc2
1uk+1θ ∗dΩ =

∫
Ωi

q

[1+ τc2
4]v

kθ ∗dΩ+β2

[ ∫
∂Ωi

q

vk
,lnlθ

∗dΓ−
∫

Ωi
q

vk
,lθ
∗
,l dΩ

]
+

∫
Ωi

q

τc2
3ukθ ∗dΩ+

∫
Ωi

q

[τN2(uk,vk)+ τc2
5]θ
∗dΩ,

(31)
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where Ωi
q is a local sub-domain associated with the point i, i.e., it is a circle centered

at xi of radius rq, and ∂Ωi
q is the boundary of Ωi

q. If the Heaviside step function

θ
∗(x) =

{
1, x ∈Ωq,
0, x /∈Ωq,

(32)

is chosen as the test function in each sub-domain, then the local weak forms (31)
are transformed into the following simple local integral equations



(
1− τc1

1
) ∫

Ωi
q

uk+1dΩ−β1
∫

∂Ωi
q

uk+1
,l nldΓ− τc1

2
∫

Ωi
q

vk+1dΩ =

(
1+ τc1

3
) ∫

Ωi
q

ukdΩ+β1
∫

∂Ωi
q

uk
,lnldΓ+ τc1

4
∫

Ωi
q

vkdΩ+ τ
∫

Ωi
q

[N1(uk,vk)+ c1
5]dΩ,

(
1− τc2

2
) ∫

Ωi
q

vk+1dΩ−β2
∫

∂Ωi
q

vk+1
,l nldΓ− τc2

1
∫

Ωi
q

uk+1dΩ =

(
1+ τc2

4
) ∫

Ωi
q

vkdΩ+β2
∫

∂Ωi
q

vk
,lnldΓ+ τc2

3
∫

Ωi
q

ukdΩ+ τ
∫

Ωi
q

[N2(uk,vk)+ c2
5]dΩ.

(33)

For boundary point xi, ∂Ωi
q and Ωi

q are replaced by Li
q ∪Γi

q and Ω
′i
q , respectively,

where Γi
q is a part of the local boundary located on the global boundary and Li

q is the
other part of the local boundary over which no boundary conditions are specified,
i.e., Γi

q = Ω
′i
q ∩ ∂Ω and Li

q = ∂Ω
′i
q −Γi

q. Therefore the local weak form equations
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for boundary points are

(
1− τc1

1
) ∫

Ω
′i
q

uk+1dΩ−β1

[∫
Γi

q

uk+1
,l nldΓ+

∫
Li

q

uk+1
,l nldΓ

]
− τc1

2
∫

Ω
′i
q

vk+1dΩ =

(
1+ τc1

3
) ∫

Ω
′i
q

ukdΩ+β1

[∫
Γi

q

uk
,lnldΓ+

∫
Li

q

uk
,lnldΓ

]
+

τc1
4
∫

Ω
′i
q

vkdΩ+ τ
∫

Ω
′i
q

[N1(uk,vk)+ c1
5]dΩ,

(
1− τc2

2
) ∫

Ω
′i
q

vk+1dΩ−β2

[∫
Γi

q

vk+1
,l nldΓ+

∫
Li

q

vk+1
,l nldΓ

]
− τc2

1
∫

Ω
′i
q

uk+1dΩ =

(
1+ τc2

4
) ∫

Ω
′i
q

vkdΩ+β2

[∫
Γi

q

vk
,lnldΓ+

∫
Li

q

vk
,lnldΓ

]
+

τc2
3
∫

Ω
′i
q

ukdΩ+ τ
∫

Ω
′i
q

[N2(uk,vk)+ c2
5]dΩ.

(34)

By imposing the natural boundary conditions, we obtain∫
Γi

q

uk+1
,l nldΓ =

∫
Γi

q

uk
,lnldΓ =

∫
Γi

q

vk+1
,l nldΓ =

∫
Γi

q

vk
,lnldΓ = 0. (35)

By substituting Eqs. (35) into (34), the local weak form for boundary points sim-
plified as follows

(
1− τc1

1
) ∫

Ω
′i
q

uk+1dΩ−β1
∫
Li

q

uk+1
,l nldΓ− τc1

2
∫

Ω
′i
q

vk+1dΩ =

(
1+ τc1

3
) ∫

Ω
′i
q

ukdΩ+β1
∫
Li

q

uk
,lnldΓ+ τc1

4
∫

Ω
′i
q

vkdΩ+ τ
∫

Ω
′i
q

[N1(uk,vk)+ c1
5]dΩ,

(
1− τc2

2
) ∫

Ω
′i
q

vk+1dΩ−β2
∫
Li

q

vk+1
,l nldΓ− τc2

1
∫

Ω
′i
q

uk+1dΩ =

(
1+ τc2

4
) ∫

Ω
′i
q

vkdΩ+β2
∫
Li

q

vk
,lnldΓ+ τc2

3
∫

Ω
′i
q

ukdΩ+ τ
∫

Ω
′i
q

[N2(uk,vk)+ c2
5]dΩ.
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(36)

Applying the new combined approximation (8) for the unknown functions, the lo-
cal integral equations (33) and (36) are transformed into a system of algebraic e-
quations with unknown quantities. We suppose that, the unknowns u and v are
approximated as follows:

uk(x) =
n

∑
j=1

ψ j(x)uk
j, (37)

vk(x) =
n

∑
j=1

ψ j(x)vk
j. (38)

Substituting the approximations (37) and (38) into the local integral equations (33)
and (36) yields:

n
∑
j=1

[
(1− τc1

1)Ai j−β1Bi j
]

uk+1
j −

n
∑
j=1

[
τc1

2Ai j
]

vk+1
j =

n
∑
j=1

[
(1+ τc1

3)Ai j +β1Bi j
]

uk
j +

n
∑
j=1

[
τc1

4Ai j
]

vk
j +b(1)i ,

n
∑
j=1

[
−τc2

1Ai j
]

uk+1
j +

n
∑
j=1

[
(1− τc2

2)Ai j−β2Bi j
]

vk+1
j =

n
∑
j=1

[
τc2

3Ai j
]

uk
j +

n
∑
j=1

[
(1+ τc2

4)Ai j +β2Bi j
]

vk
j +b(2)i ,

(39)

where

Ai j =


∫

Ωi
q

ψ jdΩ, xi ∈ int(Ω),

∫
Ω
′i
q

ψ jdΩ, xi ∈ ∂Ω,
(40)

Bi j =


∫

∂Ωi
q

ψ j,lnldΓ, xi ∈ int(Ω),

∫
Li

q

ψ j,lnldΓ, xi ∈ ∂Ω,
(41)
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b(1)i =


τc1

5
∫

Ωi
q

dΩ+ τ
∫

Ωi
q

N1(uk,vk)dΩ, xi ∈ int(Ω),

τc1
5
∫

Ω
′i
q

dΩ+ τ
∫

Ω
′i
q

N1(uk,vk)dΩ, xi ∈ ∂Ω,
(42)

b(2)i =


τc2

5
∫

Ωi
q

dΩ+ τ
∫

Ωi
q

N2(uk,vk)dΩ, xi ∈ int(Ω),

τc2
5
∫

Ω
′i
q

dΩ+ τ
∫

Ω
′i
q

N2(uk,vk)dΩ, xi ∈ ∂Ω.
(43)

The second integrals in (42) and (43) are approximated using the combined approx-
imation formula (8) and then the accuracy of these approximations becomes better
by applying the predictor-corrector algorithm.
A brief description of predictor-corrector algorithm is as follows.

Predictor-corrector algorithm
switch := 1;

Solve linear system (39) and obtain
[

Uk+1

V k+1

]
;

Let
[

U∗

V ∗

]
:=
[

Uk+1

V k+1

]
;

while switch > 1 do
solve linear system (39) as follows:[

M(1) M(2)

M(3) M(4)

][
Uk+1,†

V k+1,†

]
=

[
M(5) M(6)

M(7) M(8)

][
Uk

V k

]
+

[
Ñ1(U∗,V ∗)
Ñ2(U∗,V ∗)

]
;

if
∥∥∥∥[ Uk+1,†

V k+1,†

]
−
[

U∗

V ∗

]∥∥∥∥≤ ε then

switch :=−1;
else[

U∗

V ∗

]
:=
[

Uk+1,†

V k+1,†

]
;

end
end

Save
[

Uk+1,†

V k+1,†

]
as a solution in step k+1.

It should be noted that, in the current section, the no-flux boundary conditions (2)
are considered as boundary conditions. In the case of Dirichlet boundary condition,
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we can employ a penalty parameter to impose the Dirichlet boundary conditions
[Atluri and Zhu (1998)] or impose it directly.

5 Numerical results

In numerical results, we use the quartic spline weight function in the constructing
MLS shape function.

w(x,xi) = w(δi) =

{
1−6δ 2

i +8δ 3
i −3δ 4

i , δi ≤ 1,
0, δi > 1,

(44)

where δi =
‖x−xi‖

rs
and rs is the radius of the local support domain. The parameter

rs should be large enough to ensure the regularity of the moment matrix PWPT in
MLS approximation [Dehghan and Mirzaei (2008)]. Then the support size rs is a
very important parameter in meshless methods. It is related to both accuracy of the
solution, as well as the computational efficiency.
In this section, all of the numerical solutions are obtained by means of new com-
bined shape function. Furthermore, the computational results are compared for dif-
ferent values of controlling parameters µ1, µ2 and µ3. These comparisons show
that, the new combined shape function allows to get better results. All of the
computations are carried out with parameters q = 1.03, ω = 0.12, rq = 0.75h and
rs = 2.7h.

5.1 Brusselator model

5.1.1 Test problem 1

Consider the Brusselator system (5) together with the Dirichlet boundary condition-
s on the unit square domain Ω = [0,1]× [0,1]. Let the parameter values be ρ = 1,
δ = 0 and α1 = α2 = 0.25 . The initial and boundary conditions are extracted from
the exact solutions [Ang (2003)]{

u(x,y, t) = exp(−x− y−0.5t),
v(x,y, t) = exp(x+ y+0.5t).

(45)

In this example, the numerical solutions are obtained with h = 1/20, τ = 0.001 and
αc = 7. The maximum error norm L∞ for the components u and v with various
values of the controlling parameters are shown in Tab. 1.

5.1.2 Test problem 2

In this example we solve the Brusselator system (5) on the unit square domain
Ω = [0,1]× [0,1] with no-flux boundary conditions for both u and v. Initial condi-
tions are taken as follows [Hu, Qiao, and Tang (2012); Verwer, Hundsdorfer, and
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Table 1: L∞ errors for different values of controlling parameters

µ1 µ2 µ3 Lu
∞ Lv

∞ max{Lu
∞,L

v
∞}

0.00 1.00 0.00 1.8271×10−5 3.6837×10−4 3.6837×10−4

1.00 0.00 0.00 2.0162×10−5 3.3473×10−5 3.3473×10−5

0.00 0.00 1.00 1.8754×10−5 2.9934×10−5 2.9934×10−5

0.90 0.10 0.00 1.6706×10−5 2.6256×10−5 2.6256×10−5

0.40 0.10 0.50 1.6021×10−5 2.6140×10−5 2.6140×10−5

0.60 0.00 0.40 1.9600×10−5 2.2505×10−5 2.2505×10−5

0.40 0.00 0.60 1.9318×10−5 1.9028×10−5 1.9318×10−5

0.60 0.05 0.35 1.7940×10−5 1.7860×10−5 1.7940×10−5

Sommeijer (1990)]{
u(x,y,0) = 0.5+ y,
v(x,y,0) = 1+5x.

(46)

Let the parameter values be given by ρ = 3.4, δ = 1, α1 = α2 = 0.002. In this
example, the numerical solutions are obtained with h = 1/30, τ = 0.001, µ1 =
0.60, µ2 = 0.05, µ3 = 0.35 and αc = 1. The time evolution of the concentration of
activator u and v at different times is shown in Fig. 1, Fig. 2 and Fig. 3. It is found
that the concentration profiles of u and v are similar to [Hu, Qiao, and Tang (2012);
Verwer, Hundsdorfer, and Sommeijer (1990)].

5.1.3 Test problem 3

Consider the Brusselator system (5) on the unit square domain Ω = [0,1]× [0,1]
with no-flux boundary conditions for both u and v. Initial conditions are considered
as [Mohammadi, Mokhtari, and Schaback (2014)]{

u(x,y,0) = 2+0.25y,
v(x,y,0) = 1+0.8x.

(47)

In this example, the numerical solutions are obtained with h = 1/20, τ = 0.001,
µ1 = 0.6, µ2 = 0, µ3 = 0.4 and αc = 1. The concentration profiles of u and v at
T = 0 and T = 5 with the parameters ρ = 1, δ = 2, and α1 = α2 = 0.002 are shown
in Fig. 4 and Fig. 5. From Fig. 5, it can be seen that the numerical values of u
and v at each collocation point approach to 2 and 0.5, respectively. These results
show an agreement that for small values of the diffusion coefficients α1 and α2,
(u,v)→ (δ , ρ

δ
) as t increases, whenever 1−ρ +δ 2 > 0. The plots of the values of

u and v at the collocation point (0.3,0.3) versus time are shown in Fig. 6. It can
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Figure 1: Time evolution of the activator u at different times with parameter values
ρ = 3.4, δ = 1, α1 = α2 = 0.002.
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Figure 2: Time evolution of the activator v at different times with parameter values
ρ = 3.4, δ = 1, α1 = α2 = 0.002.
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Figure 3: Time evolution of the activator v at different times with parameter values
ρ = 3.4, δ = 1, α1 = α2 = 0.002.
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Figure 4: Initial concentration profiles of u and v.

be noted from Fig. 6, that (u(0.3,0.3),v(0.3,0.3))→ (2,0.5) as t → ∞. The re-
sults show an agreement with the results of [Mohammadi, Mokhtari, and Schaback
(2014)].
The algorithm is repeated with ρ = 3.4 and δ = 1 up to time T = 40. The concen-
trations profiles of u and v at T = 40 are shown in Fig. 7. The plots of the values
of u and v at the collocation point (0.3,0.3) versus time are shown in Fig. 8. The
computed results reveal that whenever the parameters ρ and δ are chosen such that
1− ρ + δ 2 > 0, the concentration profiles of u and v converge to the fixed point
(u,v) = (δ , ρ

δ
), and for values of ρ and δ such that 1−ρ + δ 2 < 0, the numerical

method is seen not to converge to any fixed concentration. The results show an
agreement with the results of [Mohammadi, Mokhtari, and Schaback (2014)].

5.1.4 Test problem 4

In this example, we consider the Brusselator system (5) on the unit square domain
Ω = [0,1]× [0,1] with no-flux boundary conditions for both u and v. Initial condi-
tions are taken as follows [Ang (2003)]{

u(x,y,0) = 1
2 x2− 1

3 x3,

v(x,y,0) = 1
2 y2− 1

3 y3.
(48)

Let the parameter values be given by ρ = 0.5, δ = 1, α1 = α2 = 0.002. In this
example, computations are carried out with the parameters h = 1/20, τ = 0.001,
µ1 = 1, µ2 = µ3 = 0 and αc = 1. The concentration profiles of u and v at T = 0
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Figure 5: Time evolution of the activators u and v at T = 5 with ρ = 1, δ = 2,
α1 = α2 = 0.002.
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Figure 6: Plots of u(0.3,0.3) and v(0.3,0.3) versus time with ρ = 1, δ = 2, α1 =
α2 = 0.002.
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Figure 7: Plots of u and v at T = 40 with ρ = 3.4, δ = 1, α1 = α2 = 0.002.
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and T = 10 are shown in Fig. 9. Also the plots of the values of u and v at the
collocation point (0.5,0.5) versus time are shown in Fig. 10. It is well known that
for small values of the diffusion coefficients, if 1−ρ +δ 2 > 0 then the steady state
solution of the Brusselator system converges to equilibrium point (δ , ρ

δ
). This fact

is confirmed by Fig. 9 and Fig. 10. The results show an agreement with the results
of [Ang (2003)].
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Figure 9: Plots of u and v at T = 0 and T = 10 with ρ = 0.5, δ = 1, α1 =α2 = 0.002.

5.1.5 Test problem 5

Consider the diffusion-free Brusselator system corresponding to α1 = α2 = 0 on
the unit square domain Ω = [0,1]× [0,1] with no-flux boundary conditions for both
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Figure 10: Plots of u(0.5,0.5) and v(0.5,0.5) versus time with ρ = 0.5, δ = 1,
α1 = α2 = 0.002.

u and v. Computations are carried out with parameters h = 1/20, τ = 0.001, µ1 =
µ2 = 0, µ3 = 1 and αc = 1. Parameters ρ and δ take different values and algorithm
is tested up to time T = 60 with various values of the initial conditions taken from
−8 ≤ u0,v0 ≤ 8. Phase portraits for δ = 0.5 with ρ = 2.5,2,1.2,0.2 are depicted
in Fig. 11, Fig. 12, Fig. 13 and Fig. 14, respectively. From Fig. 11 and Fig.
12, it can be noted that the limit cycles do not exist as t increases. It can also be
noted form Fig. 13 and Fig. 14 that limit cycle exists and the solution sequence
converges to the fixed point (δ , ρ

δ
) as t increases. The results show an agreement

with the results of [Twizell, Gumel, and Cao (1999)] that limit cycle does not exist
whenever 1−ρ +δ 2 < 0 and limit cycle exists if 1−ρ +δ 2 > 0.

5.2 Gierer-Meinhardt model

For (p,q,r,s) = (2,1,2,0), m = 1, V (x) = 0 and λ (x) = 1, we solve the system
(6) on the Ω = [−1,1]× [−1,1] with no-flux boundary conditions applied to both
u and v. Let the parameter values be given by ε = 0.04 and µ = 0.1. The initial
conditions are chosen as [McCourt, Dovidio, and Gilbert (2008)]

u0(x,y) = 1
2

[
1+0.001

20
∑

k=1
cos( kπy

2 )

]
sech2(

√
x2+y2

2ε
),

v0(x,y) =
cosh(1−

√
x2+y2)

3cosh(1) .

(49)
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Figure 15: Contour plots of time evolution of the activator u at different times with
κ = 0.0128.
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Figure 16: Contour plots of time evolution of the activator u at different times with
κ = 0.0128.

The numerical solutions are obtained with h = 2/40, τ = 0.0001, µ1 = 0.5, µ2 = 0,
µ3 = 0.5 and αc = 3.

5.2.1 Test problem 6

In this example, we let κ = 0.0128. Contour plots of time evolution of the activator
u at different times are shown in Fig. 15 and Fig. 16. From the numerical simula-
tions, we found that the spike at the center will be splitting and the domain will be
filled with spikes as t increases. In Fig. 15 and Fig. 16, we can find that the spike
begins with a ring when t = 20. The ring becomes bigger and bigger. Then the
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Figure 17: Contour plots of time evolution of the activator u at different times with
κ = 0.0152.
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κ = 0.0152.



Meshless local weak form method 355

ring becomes almost square and subsequently the four edges of the square become
sunken in the middle and then the whole annulation splits to spikes which fill the
domain with some symmetry. It is clear from our graphs that the dynamics of u
follow the same general pattern displayed in [Fernandes and Fairweather (2012);
McCourt, Dovidio, and Gilbert (2008)].

5.2.2 Test problem 7

In this example, we let κ = 0.0152. Contour plots of time evolution of the activa-
tor u at different times are shown in Fig. 17 and Fig. 18. From Fig. 17 and Fig.
18, we can find that, the spike splits into two spikes spreading in the x direction
and becomes symmetric (t = 140). Then, each of the spikes splits, spreading in
the y direction, and maintains symmetry (t = 220). Next, each of the four spikes
splits into two along the x direction, and the eight spikes arrange themselves sym-
metrically about the center (t = 520). Finally, at t = 570, the inner spikes split
and the 12 spikes arrange themselves symmetrically about the center. It is clear
from our graphs that the dynamics of u follow the same general pattern displayed
in [McCourt, Dovidio, and Gilbert (2008)].

6 Conclusion

In this paper, we have proposed a new combined shape function. Based on this
shape function, the meshless local weak form method has been applied for solv-
ing two-dimensional time-dependent non-linear Brusselator and Gierer-Meinhardt
systems. The new combined shape function is developed as a linear interpolating
function of radial point interpolation (RPI), moving least squares (MLS) and mov-
ing kriging (MK) shape functions. This new shape function inherits the properties
of RPI, MLS and MK shape functions and is controlled by control parameters,
which take different values in the domain [0,1]. The results show that good accura-
cy can be obtained with using different values for controlling parameters. Finally,
we believe that the new combined shape function provides the opportunity of using
different shape functions, simultaneously and this leads to flexibility of the method.

Acknowledgement: The authors thank the reviewers for their useful comments
and suggestions that improved the paper.
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