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A RIM-based Time-domain Boundary Element Method
for Three-Dimensional Non-homogeneous Wave

Propagations

Liu Liqi1 and Wang Haitao1,2

Abstract: This paper presents a three-dimensional (3-D) boundary element method
(BEM) scheme based on the Radial Integration Method (RIM) for wave propa-
gation analysis of continuously non-homogeneous problems. The Kelvin funda-
mental solutions are adopted to derive the boundary-domain integral equation (B-
DIE). The RIM proposed by Gao (Engineering Analysis with Boundary Elements
2002; 26(10):905-916) is implemented to treat the domain integrals in the BDIE
so that only boundary discretization is required. After boundary discretization, a
set of second-order ordinary differential equations with respect to time variable are
derived, which are solved using the Wilson-θ method. Main advantages of the
proposed method are that 1) it can treat wave propagations in non-homogeneous
domains with only boundary mesh required, and that 2) coefficient matrices aris-
ing from the BEM are evaluated and stored only once so that solving large-scale
problems with huge time steps is possible. In the numerical examples, the present
method is tested in terms of accuracy, capacity to treat non-homogeneous problems
and large-scale potentials.

Keywords: Boundary element method, Radial integration method, Time domain,
Non-homogeneous problems, Wave propagation.

1 Introduction

The boundary element method (BEM) offers an efficient way to solve wave prop-
agation problems. When establishing the integral equations, the dynamic funda-
mental solutions, transformed-domain fundamental solutions or static fundamen-
tal solutions can be used. The first approach, generally represented as TD-BEM

1 Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Min-
istry of Education, Tsinghua University, Beijing 100084, China.

2 Corresponding author. Tel.: +86 10 6279 7882; fax: +86 10 6279 7136;
E-mail: wanght@tsinghua.edu.cn



304 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.4, pp.303-324, 2015

(TD for time-domain), can preserve the causality condition. Since the radiation
condition is satisfied automatically, it is suitable for infinite and semi-infinite prob-
lems, see Beskos (1987, 1997), Manolis and Beskos (1988). However, the storage
of matrices generated at each time-step should be mentioned as one of the main
bottlenecks against implementing this method to solve large-scale problems. In
order to improve its efficiency, several fast algorithms have been implemented in
this field. Of particular interest are the fast multipole method (FMM) [Rokhlin
(1985); Greengard and Rokhlin (1997a, 1997b)] and the adaptive cross approxi-
mation method (ACA) [Bebendorf and Rjasanow (2003); Kolk, Weber and Kuhn
(2005); Kolk and Kuhn (2006); Benedetti, Aliabadi and Dav (2008); Benedetti, Mi-
lazzo and Aliabadi (2009)]. Furthermore, the conventional dynamic fundamental
solutions employed in TD-BEM are limited on linear elastic homogeneous prob-
lems [Sohrabi-Bidar, Kamalian and Jafari (2010); Wang and Yao (2013); Galvin
and Romero (2014a)] or layered homogeneous problems [Birgisson and Crouch
(1998)], while specific fundamental solutions for other types of problems, for ex-
ample, half-space problems [Johnson (1974); Galvin and Romero (2014b)], poroe-
lastic problems [Chen (1994a, 1994b); Schanz (2001a, 2001b)], non-homogeneous
problems [Sanchez-Sesma, Madariaga and Irikura (2001); Luzon, Sanchez-Sesma,
Perez-Ruiz, Ramirez-Guman and Pech (2009)], etc., are still unavailable in closed
form.

The second approach can be performed either in the Fourier-domain [Dominguez
and Roesset (1978); Mansur, Abreu and Carrer (2004)] or in the Laplace-domain
[Cruse and Rizzo (1968)]. Tadeu and his co-workers proposed an iterative pro-
cedure coupling the normal derivative of the integral equation (TBEM) and the
method of fundamental solutions (MFS) to solve the transient acoustic [Tadeu, An-
tónio and Ferreira (2013)] and elastic [António, Tadeu and Ferreira (2013)] wave
propagation problems in the presence of multiple inclusions in frequency domain.
In order to obtain the time-domain results, the inverse transformation is required.
A new approach combining time and Laplace domains is to use the convolution
quadrature method (CQM) developed by Lubich (1988a, 1988b), for example,
Schanz and Antes (1997), Schanz (2001b), Abreu, Carrer and Mansur (2003),
Antes, Schanz and Alvermann (2004) and Abreu, Mansur and Carrer (2006). It
utilizes Laplace-domain fundamental solutions and provides solutions directly in
time-domain. Li, Zhang, Xie, Zheng and Guo (2014) developed a general method
to tackle arbitrary, non-null initial conditions in the analysis of three-dimensional
elastodynamic problems using CQM. The main merits of CQM are that only the
Laplace-domain fundamental solutions are needed so that it can be applied to prob-
lems where time-domain fundamental solutions are not available [Carrer and Mansur
(2010)] and that it shows better stability behavior [Banjai and Schanz (2012)].
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The third approach is based on the static fundamental solutions (Kelvin fundamen-
tal solutions). In this case, domain integrals occur in the boundary-domain inte-
gration equation (BDIE). Generally, domain discretization is required to evaluate
these domain integrals (D-BEM) [Carrer and Mansur (2010); Dong, Zhang, Xie,
Lu, Han and Wang (2015); Dong, Zhang, Xie, Lu, Li, Han and Li (2015)]. Such
treatment may offset the main advantage of BEM that only boundary discretization
is required. In order to avoid domain discretization, various techniques have been
developed to transform these domain integrals into boundary integrals, for exam-
ple, dual reciprocity method (DRM) [Albuquerque, Sollero and Aliabadi (2002);
Vanegas, Patino and Vargas (2014); Useche and Albuquerque (2015); Vanegas and
Patino (2015)] introduced in Ref. [Nardini and Brebbia (1983)] and explained in
detail by Partridge, Brebbia and Wrobel (1992), and Radial Integration Method
(RIM) proposed by Gao (2002a, 2002b). In DRM, the integrands are approximat-
ed with a series of prescribed basis functions and particular solutions are derived
based on these basis functions and the differential operator of the problem. Then
the domain integrals are transformed to the boundary employing the particular so-
lutions. The main challenge to implement DRM is that it may be difficult to obtain
the particular solutions for some 3D problems. The RIM can transform any domain
integrals into a boundary integral and a radial integral which is independent of ge-
ometry. It has been employed in nonlinear and nonhomogeneous elastic problems
[Gao, Zhang and Guo (2007)], fracture analysis [Gao, Zhang, Sladek and Sladek
(2008)] and transient heat conduction problems [Yao, Yu, Gao and Gao (2014)].

After space discretization, a set of second-order ordinary differential equations
with respect to time variable are derived. These equations can be solved using
time-stepping algorithms such as the Wilson-θ method, the Newmark method and
the Houbolt method. For a long time the Houbolt method was probably the most
popular and reliable time integration method used in the D-BEM [Hatzigeorgiou
and Beskos (2002); Soares, Carrer and Mansur (2005); Pereira, Karam, Carrer
and Mansur (2012)] or DR-BEM formulations [Albuquerque, Sollero and Aliaba-
di (2002, 2004); Useche and Albuquerque (2015)]; mainly, due to the fact that
unwanted complex higher frequencies that cause numerical instability are damped
out. However, it provides numerical results with considerable numerical damping
and one has to select a small time step to obtain accurate results. The Newmark
method [Newmark (1959)] has been widely used in FEM formulations, presenting
over the Houbolt method a better control of the stability and accuracy, according to
the values of the parameters β and γ , see Bathe (1996) and Cook (2002). Alter-
native time-marching schemes are also developed, for example, Carrer and Mansur
(2004) and Souza, Carrer and Martins (2004).

To the best knowledge of the authors, few BEM work is found for analyzing tran-
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sient response of 3-D non-homogeneous body in time domain. In this paper, a RIM-
based time-domain BEM using static fundamental solutions is developed to treat
this problem. The entire domain is assumed to be continuously non-homogeneous
and the Kelvin fundamental solutions are employed to form the boundary-domain
integration equation. The domain integrals resulting from the inertia term and the
non-homogeneity term are transformed to boundary integrals by RIM. Consequent-
ly, only the boundary is discretized and 8-node discontinuous elements from Mi and
Aliabadi (1992) are employed. The Wilson-θ method is implemented to perform
the marching in time and its performance is tested in terms of accuracy and stability.

The paper is organized as follows: Firstly, the BDIE for 3D non-homogeneous do-
main utilizing Kelvin fundamental solutions is derived. Secondly, the domain inte-
grals in the BDIE are converted to boundary integrals with RIM, resulting in a pure
boundary integration equation (BIE). Then, a set of second-order ordinary differ-
ential equations are obtained by numerical implementation of the aforementioned
BIE and solved by the Wilson-θ method. Finally, numerical examples are given in
order to demonstrate accuracy, capacity to treat non-homogeneity and large-scale
potential of the proposed method.

2 The boundary-domain integration equation for 3-D non-homogeneous prob-
lems

We consider a 3D domain V bounded by boundary S. In the absence of body force,
the governing equation for linear elastodynamic problems can be written as

σi j,i (x, t)−ρ (x) ü j (x, t) = 0, (1)

where u j is displacement at point x and time t; σi j is stress and ρ is density. It is
assumed that the shear modulus µ (x) and density ρ (x) vary with Cartesian coordi-
nates while Poisson’s ratio ν is constant. In this case, the elasticity tensor Ci jkl (x)
can be written as

Ci jkl (x) = µ (x)C0
i jkl, (2)

with

C0
i jkl =

2ν

1−2ν
δi jδkl +δikδ jl +δilδ jk (3)

According to the generalized Hooke’s law, the relationship between σi j and dis-
placement gradients uk,l is

σi j = µC0
i jkluk,l (4)
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A weak form of Eq. (1) can be written as∫
V

Um j (σi j,i−ρ ü j)dV = 0 (5)

where Um j is the weight or test function. Herein, the elastic displacement fun-
damental solution is chosen as the weight function, which satisfies the following
partial differential equation:

µ0C0
i jklUm j,il =−δmk∆(x,y) (6)

where ∆(x,y) is the Dirac delta function; µ0 is the shear modulus of a homogeneous
domain. Since the value of µ0 will not affect the result, it is set to be 1. Ui j is written
as

Ui j (y,x) =
1

16πµ0 (1−ν)r
[(3−4ν)δi j + r,ir, j] (7)

where r is the distance between the source point y and field point x. Substitution of
Eq. (4) into Eq. (5) and application of Gauss’s divergence theorem yield∫

S
Um jt jdS−

∫
S

Tm j
µ

µ0
u jdS+

∫
V

C0
i jklUm j,ilµukdV

+
∫

V
Hm ju jdV −

∫
V

Um jρ ü jdV = 0
(8)

where t j = σi jn j is boundary traction, n j is the outward unit normal to the boundary
S, and

Tm j = µ0C0
ik jlUmk,inl (9)

Hm j =C0
ik jlUmk,iµ,l (10)

Substituting Eq. (6) into Eq. (8), we have,

µum (y)+
∫

S
Tm j (x,y)µu j (x, t)dS−

∫
S
Um j (x,y) t j (x, t)dS

=−
∫

V
Um j (x,y)ρ ü j (x, t)dV +

∫
V

Hm j (x,y)u j (x, t)dV
(11)

The boundary integration equation can be obtained by taking the source point y to
the boundary as,

c(y)µum (y)+
∫

S
Tm j (x,y)µu j (x, t)dS−

∫
S
Um j (x,y) t j (x, t)dS

=−
∫

V
Um j (x,y)ρ ü j (x, t)dV +

∫
V

Hm j (x,y)u j (x, t)dV
(12)

where c(y)=0.5 if y is on the smooth boundary.
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3 Transforming domain integrals to the boundary with RIM

As can be seen from Eq. (12), two domain integrals caused by inertia term and
non-homogeneity term respectively are included. A conventional way to treat such
domain integrals is to discretize the domain into cells, which to some extent offsets
the advantage of BEM. In order to keep only boundary discretization, the Radial
Integration Method (RIM) proposed by Gao (2002a, 2002b) is adopted herein to
transform the domain integrals to equivalent boundary integrals.

The basic idea of RIM is that, the domain integral of a general known function f (x)
with x representing the Cartesian coordinates,

I =
∫

V
f (x)dV (13)

can be transformed into a boundary integral and a radial integral which is indepen-
dent of the geometry:

I =
∫

S

r,ini

r2 (z)
F (z)dS (z)

F (z) =
∫ r(z)

0
f (x)ξ

2dξ

(14)

where r (z) is the distance between the origin and boundary point z.

As for the unknown displacements u j and acceleration ü j at field point x, they are
approximated by a series of prescribed basis functions in the first place so that
RIM can be implemented. It is recommended that a combination of the radial
basis functions (RBFs) and the polynomials in terms of global coordinates can give
promising results [Golberg, Chen and Bowman (1999)]:

u j =
NA

∑
A=1

α
A
j φ

A (R)+ai
jxi +a0

j

ü j =
NA

∑
A=1

β
A
j φ

A (R)+bi
jxi +b0

j

(15)

In the above, φ A (R) is the RBF; R = r
(
x,xA

)
is the distance from the A-th Appli-

cation Point xA to the field point x. NA is the total number of Application Points.
αA

j ,a
i
j,a

0
j ,β

A
j ,b

i
j,b

0
j (A = 1, · · · ,NA, i = 1,2,3) are undetermined coefficients which

are independent of coordinates. In this paper, the compactly supported 4th-order s-
pline RBF is adopted, i.e.,

φ
A (R) =

{
1−6

(
R
dA

)2
+8
(

R
dA

)3
−3
(

R
dA

)4
,0≤ R < dA

0,R≥ dA

(16)
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in which dA is the radius of the support region at the A-th Application Point.

Substituting Eq. (15) into the domain integrals in Eq. (12) and transforming them
into boundary integrals, we have∫

V
Hm j (x,y)u j (x, t)dV

=
NA

∑
A=1

α
A
j

∫
S

r,ini

r (y,z)2 FA
α (y,z)dS (z)

+ai
j

[∫
S

r,i
r (y,z)2 r,knkFb

α (y,z)dS (z)+
∫

S

yi

r (y,z)2 r,knkFc
α (y,z)dS (z)

]

+a0
j

∫
S

1

r (y,z)2 r,knkFc
α (y,z)dS (z)

(17)

∫
V

Um j (x,y)ρ ü j (x, t)dV

=
NA

∑
A=1

β
A
j

∫
S

r,ini

r (y,z)2 FA
β
(y,z)dS (z)

+bi
j

[∫
S

r,i
r (y,z)2 r,knkFb

β
(y,z)dS (z)+

∫
S

yi

r (y,z)2 r,knkFc
β
(y,z)dS (z)

]

+b0
j

∫
S

1

r (y,z)2 r,knkFc
β
(y,z)dS (z)

(18)

where r (y,z) is the distance from source point y to boundary point z; and

FA
α (y,z) =

∫ r(y,z)

0
Hm j (x,y)φ

A (R)ξ
2dξ

Fb
α (y,z) =

∫ r(y,z)

0
Hm j (x,y)ξ

3dξ

Fc
α (y,z) =

∫ r(y,z)

0
Hm j (x,y)ξ

2dξ

(19)

FA
β
(y,z) =

∫ r(y,z)

0
Um j (x,y)ρ (x)φ

A (R)ξ
2dξ

Fb
β
(y,z) =

∫ r(y,z)

0
Um j (x,y)ρ (x)ξ

3dξ

Fc
β
(y,z) =

∫ r(y,z)

0
Um j (x,y)ρ (x)ξ

2dξ

(20)

Eqs. (17) and (18) can be expressed in a simple form as:∫
V

Hm j (x,y)u j (x, t)dV =
{

H̃y
}T {α} (21)
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∫
V

Um j (x,y)ρ ü j (x, t)dV =
{

C̃y
}T {β} (22)

where
{

H̃y
}T

,
{

C̃y
}T

,{α} and {β} are arranged as follows:{
H̃y
}T

=
{

F̂1
α , · · · , F̂NA

α , F̂1
a , F̂

2
a , F̂

3
a , F̂

0
a
}

(23){
C̃y
}T

=
{

F̂1
β
, · · · , F̂NA

β
, F̂1

b , F̂
2

b , F̂
3

b , F̂
0

b

}
(24)

{α}=
{{

α
1
j
}T

, · · · ,
{

α
NA
j

}T
,
{

a1
j
}T

,
{

a2
j
}T

,
{

a3
j
}T

,
{

a0
j
}T
}T

(25)

{β}=
{{

β
1
j
}T

, · · · ,
{

β
NA
j

}T
,
{

b1
j
}T

,
{

b2
j
}T

,
{

b3
j
}T

,
{

b0
j
}T
}T

(26)

where

F̂A
α =

∫
S

r,ini

r(y,z)2 FA
α (y,z)dS (z) , A = 1, · · · ,NA (27)

F̂ i
a =

∫
S

r,i
r(y,z)2 r,knkFb

α (y,z)dS (z)+
∫

S

yi

r(y,z)2 r,knkFc
α (y,z)dS (z) , i = 1,2,3 (28)

F̂0
a =

∫
S

1

r (y,z)2 r,knkFc
α (y,z)dS (z) (29)

F̂A
β
=
∫

S

r,ini

r(y,z)2 FA
β
(y,z)dS (z) , A = 1, · · · ,NA (30)

F̂ i
b =

∫
S

r,i
r(y,z)2 r,knkFb

β
(y,z)dS (z)+

∫
S

yi

r(y,z)2 r,knkFc
β
(y,z)dS (z) , i = 1,2,3 (31)

F̂0
b =

∫
S

1

r (y,z)2 r,knkFc
β
(y,z)dS (z) (32)

{
α

A
j
}T

=
{

α
A
1 ,α

A
2 ,α

A
3
}
,
{

β
A
j
}T

=
{

β
A
1 ,β

A
2 ,β

A
3
}
, A = 1, · · · ,NA (33)

The following relationships are used in Eq. (17) and Eq. (18):∫
V

Hm jai
jxidV =

∫
V

Hm jai
j (ri + yi)dV =

∫
V

Hm jai
j (rr,i + yi)dV∫

V
Um jρbi

jxidV =
∫

V
Um jρbi

j (ri + yi)dV =
∫

V
Um jρbi

j (rr,i + yi)dV
(34)

Substituting Eq. (17) and Eq. (18) into Eq. (12), a pure boundary integral equation
can be obtained:

c(y)µum (y)+
∫

S
Tm j (x,y)µu j (x, t)dS−

∫
S
Um j (x,y) t j (x, t)dS

=−
{

C̃y
}T {β}+

{
H̃y
}T {α}

(35)
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4 Discretization of boundary integration equation

The boundary S is discretized into Ne boundary elements and Nb boundary nodes,

S =
Ne

∑
e=1

Se (36)

Also, NI internal nodes are casted into the domain V , making the total number of
nodes to be N.

In order to replace the undetermined coefficient vectors {α} and {β} in Eq. (35)with{
u j
}

and
{

ü j
}

, the Application Points in Eq. (15) are collocated at all nodes,
which means NA = N. Then the displacement and acceleration of k-th node can be
expressed as

uk
j =

N

∑
A=1

α
A
j φ

A (R)+ai
jx

k
i +a0

j

ük
j =

N

∑
A=1

β
A
j φ

A (R)+bi
jx

k
i +b0

j ,k = 1, · · · ,N
(37)

where xk
i is the coordinate of the k-th node.

The number of coefficients αA
j ,a

i
j,a

0
j and β A

j ,b
i
j,b

0
j is larger than the number of

equations in Eq. (37). In order to determine these coefficients, the following equi-
librium conditions have to be satisfied:

N

∑
A=1

α
A
j = 0,

N

∑
A=1

α
A
j xA

i = 0

N

∑
A=1

β
A
j = 0,

N

∑
A=1

β
A
j xA

i = 0

(38)

where xA
i is the Cartesian coordinates of the A-th node.

Rewrite Eq. (37) and Eq. (38) in matrix form,{
û j
}
= [φ ]{α}{

ˆ̈u j
}
= [φ ]{β}

(39)

where{
û j
}
=
{{

u1
j
}T

,
{

u2
j
}T

, · · · ,
{

uN
j
}T

,0,0,0,0
}T

3N+12
=
{{

u j
}T

,0
}T

{
ˆ̈u j
}
=
{{

ü1
j
}T

,
{

ü2
j
}T

, · · · ,
{

üN
j
}T

,0,0,0,0
}T

3N+12
=
{{

ü j
}T

,0
}T (40)
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[φ ] =



φ11I · · · φ1NI x1
1I x1

2I x1
3I I

...
. . .

...
...

...
...

...
φ11I · · · φNNI xN

1 I xN
2 I xN

3 I I
I · · · I 0 0 0 0

x1
1I · · · xN

1 I 0 0 0 0
x1

2I · · · xN
2 I 0 0 0 0

x1
3I · · · xN

3 I 0 0 0 0


(41)

where I is the 3×3 unit matrix.

If no two nodes share the same coordinates, the matrix [φ ] is invertible and thereby

{α}= [φ ]−1{û j
}

{β}= [φ ]−1{ ˆ̈u j
} (42)

According to Eq. (40), the matrix [φ ]−1 can be expressed in the block form as

[φ ]−1 =
[
[φ1](3N+12)×3N , [φ2](3N+12)×12

]
(43)

Then Eq. (42) can be rewritten as

{α}= [φ1]
{

u j
}

{β}= [φ1]
{

ü j
} (44)

Substitution of Eq. (44) into Eq. (35) leads to

c(y)µum (y)+
∫

S
Tm j (x,y)µu j (x, t)dS−

∫
S
Um j (x,y) t j (x, t)dS

=−{Cy}T {ü j
}
+{Hy}T {u j

} (45)

where

{Cy}T =
{

C̃y
}T

[φ1] ,{Hy}=
{

H̃y
}T

[φ1] (46)

After collocating the source point y at every boundary and internal node, a set of
second-order partial differential equations are formed, which can be expressed in
matrix form:Cb1,b1 Cb1,b2 Cb1,I

Cb2,b1 Cb2,b2 Cb2,I
CI,b1 CI,b2 CI,I


üb1
üb2
üI

+
Hb1,b1 Hb1,b2 Hb1,I

Hb2,b1 Hb2,b2 Hb2,I
HI,b1 HI,b2 HI,I


ub1
ub2
uI

=

Ub1,b1 Ub1,b2
Ub2,b1 Ub2,b2
UI,b1 UI,b2


tb1
tb2


(47)

The subscripts b1 and b2 mean that the variables are on known displacement bound-
ary and known traction boundary respectively. The subscript I means the variables
belong to internal nodes.
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5 Time-marching scheme

Eq. (47) can be expressed in a more general form:

MÜ +KU = R (48)

In order to solve Eq. (48), the Wilson-θ method is implemented. A brief review of
this method is given in the following and readers are referred to Ref. [Bathe (1996)]
for detailed descriptions. In Wilson-θ method, a linear variation of acceleration is
assumed during the time interval [t, t +θ∆t], where θ ≥ 1.0. Let τ,0 ≤ τ ≤ θ∆t
denote the increase in time; then from time t to t +θ∆t,

Ü t+τ = Ü t +
τ

θ∆t

(
Ü t+θ∆t −Ü t

)
(49)

For unconditional stability, θ ≥ 1.37 is required in FEM and usually θ = 1.4 is em-
ployed. In the following section, the sensitivity to this parameter will be examined.

6 Numerical Examples

A C++ code has been developed based on the proposed method. In the code, each
entry is calculated and stored as an eight-byte value. The program runs on a laptop
with Intel Core(TM) Duo T9550 processor and 4GB physical memory. In order to
demonstrate accuracy, capacity to treat non-homogeneity and large-scale potential
of the proposed method, a number of numerical tests are carried out, including a
stability analysis on the time-step size and parameter θ in Wilson-θ method, an
accuracy analysis on the number of internal nodes and a comparison of storage
between the presented method and conventional TD-BEM.

6.1 Test 1: Stability analysis on the time-step size and parameter θ .

In this example, the classical 1D numerical model is considered. This model
consists of a one-dimensional bar of length L under Heaviside-type load pz =
p0H (t−0), where p0 = 5. Since the scheme presented herein is derived for 3D
case, a cuboid domain in dimension 1×1×2 is analyzed. Fig. 1 shows the defini-
tion of the model and boundary conditions.

The boundary mesh is illustrated in Fig. 2, consisting of 40 boundary elements
and 63 (3×3×7) internal nodes. Eight-node discontinuous elements from Mi and
Aliabadi (1992) as shown in Fig. 3 are adopted to treat edge and corner nodes,
where the positioning parameter 0 < λ < 1 of collocation nodes stands for the
degree of continuity. It is taken to be 2/3 in the analyses. Poisson’s ratio is set to be
0. In order to represent non-homogeneity, the shear modulus and mass density are
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Figure 1: One dimensional bar: geometry and loading definition.

assumed to vary quadratically and linearly along z direction respectively:

µ = µ0

(
aµ

z
L
+1
)2

,

ρ = ρ0

(
aρ

z
L
+1
)1 (50)

where µ0 = 1000,aµ = 2,ρ0 = 1000,aρ = 3. This leads to a wave velocity that
goes from

√
2 to 1.5

√
2.

In order to measure the time-step size ∆t, a dimensionless variable, say β∆t , is
usually adopted [Mansur (1983); Junior (2007); Oyarzun, Loureiro, Carrer and
Mansur (2011)],

β∆t = cd∆t
/

l (51)

where l is the smallest boundary element length and cd is the wave velocity. S-
ince the wave velocity is a variable in this case, the maximum of cd is chosen to
determine the time-step.

In order to study the influence of time-step size and parameter θ on stability, vari-
ous combinations listed in Tab.1 are chosen in the analyses. The BEM results are
compared with graded finite element method proposed by Santare, Thamburaj and
Gazonas (2003) in 1D.

Figs. 4-6 show the displacement uz in the middle of the bar and the traction tz at the
fixed end under different parameters. As can be seen from Fig. 4 (case 1, 2 and 3)
that results become unstable when θ = 1.3 while θ = 1.4 and 1.8 give good stability
within the time range considered. This is in accordance with the conclusion in FEM
that θ ≥ 1.37 is recommended. Fig. 5 shows that only the smallest time step length
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Figure 2: One dimensional bar: boundary discretization and internal nodes.

Figure 3: Eight-node discontinuous element.

Table 1: Parameters for Wilson-θ method.
CASE 1 2 3 4 5 6 7

θ 1.8 1.4 1.3 1.4 1.4 1.8 1.8
β∆t 0.3 0.3 0.3 0.2 0.5 0.2 0.5



316 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.4, pp.303-324, 2015

Figure 4: Displacement component uz at middle point and traction component tz at
fixed end: Wilson-θ analysis with β∆t = 0.3.

Figure 5: Displacement component uz at middle point and traction component tz at
fixed end: Wilson-θ analysis with θ = 1.4.

Figure 6: Displacement component uz at middle point and traction component tz at
fixed end: Wilson-θ analysis with θ = 1.8.
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(β∆t = 0.2 in case 4) leads to instability when θ = 1.4. Fig. 6 shows that all three
values of β∆t give satisfactory stabilities when θ = 1.8. In general values of 0.3 and
0.5 is recommended for β∆t .

6.2 Test 2: Sensitivity of accuracy to the number of internal nodes.

In this example, the influence of number of internal nodes on accuracy is studied.
The model and boundary mesh as given in test 1 are used, while 0, 3 and 63 internal
nodes are scattered into the domain respectively for comparison. For 0-internal-
nodes case, no internal nodes are used. For 3-internal-nodes case, three internal
nodes are equally spaced along the longitude axis of the rod. For 63-internal-nodes
case, the pattern is shown in Fig. 2. The parameters for time marching scheme are
chosen to be β∆t = 0.3, θ = 1.4, which have been verified in the first test.

The BEM results of displacement and traction in terms of various numbers of in-
ternal nodes are shown in Fig. 7 and compared with FEM. It is observed that the
number of internal nodes has little impact on the accuracy and that the BEM results
with all the three cases are in good agreement with the FEM results. This indicates
that only a few or even no internal nodes are required in the proposed method for
the 3-D non-homogeneous wave propagations.

Figure 7: Displacement component uz at middle point and traction component tz at
fixed end: Wilson-θ analysis.

6.3 Test 3: Storage analysis: a comparison with conventional TD-BEM.

In this example, the storage requirement versus the number of DOFs is studied.
The model in Test 1 is meshed with different element sizes in order to generate
different scales. The parameters for time marching scheme are chosen to be β∆t =
0.3,θ = 1.4. Total time length considered is set to be 15. The storage versus the
number of DOFs by using the proposed RIM-based BEM is outputted as shown in
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Fig. 8 and compared with that from the conventional TD-BEM (based on dynamic
fundamental solutions and direct time stepping scheme, see Manolis and Beskos
(1988)). As this is a comparison only on storage, for the conventional TD-BEM,
homogeneous material is assumed with µ = 1000 and ρ = 1000.

It is shown that the physical memory consumed by conventional TD-BEM grows
dramatically with the increase of number of DOFs. When the number of DOF-
s reaches 3840, the physical memory is projected to be 10.4 GB, which already
exceeds the maximum physical memory of the computer. The physical memory
needed for 6000 number of DOFs projects to 36.9 GB. This indicates that the con-
ventional TD-BEM meets serious challenges when treating large-scale problems.
The reason behind this is that the storage of conventional TD-BEM depends not
only on the number of DOFs, but also on the number of coefficient matrices, which
depends strongly on the total time steps required for a wave travelling through the
entire domain.

By contrast, the physical memory used by the proposed method (herein presented
as RIM-based BEM) just rises slightly with the increase of number of DOFs. Only
about 1.5 GB is required for 6000 number of DOFs with 354 time steps. This is
because the number of matrices arising from this method is time-independent and
can be used for all time steps. This advantage makes this method potential for the
wave propagation analysis of large-scale non-homogeneous problems.

Figure 8: Storage requirement: a comparison.
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7 Conclusions

In this paper, a RIM-based time domain BEM was proposed to solve transien-
t dynamic problems in 3D non-homogeneous domains. The Kelvin fundamental
solution was adopted to form the boundary-domain integration equations. The use
of the Radial Integration Method (RIM) kept the advantage of BEM that the dis-
cretization and integration were restricted to the boundary. The Wilson-θ method
was adopted as time-marching scheme. The main advantages of the proposed
method are that it can treat 3-D non-homogeneous wave propagations with only
boundary discretization and that the associated storage is independent of the num-
ber of time steps, making it suitable for large-scale problems. Numerical results
demonstrated 1) good stability, 2) satisfactory accuracy and 3) large-scale potential
of the proposed method.
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