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First Principles Molecular Dynamics Computation on
Ionic Transport Properties in Molten Salt Materials
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Abstract: Based on the Hellmann-Feynman theorem, which integrates the
molecular dynamics simulation with computational quantum mechanics, this re-
search simulates the ionic transport in the LiCl-KCl molten salt materials using so
called “first principles molecular dynamics (FPMD)” technique without employ-
ing an empirical potential model. The main purpose of this computational FPMD
focuses on the evaluation of important transport properties, such as diffusion co-
efficient, ionic conductivity, shear viscosity, and thermal conductivity, using the
Green-Kubo relationship. All simulation results agree well with experimental data
published in existing literatures within an acceptable range. FPMD calculations
are proved to be a powerful tool for prediction of the molecular structure, transport
properties, as well as ionic interactions from the microscopic aspect. It is expected
to integrate further with a multi-scale simulation tool for future function expansion
to macroscopic performance prediction.

Keywords: first principles molecular dynamics (FPMD), molten salt, diffusion
coefficient, ionic conductivity, shear viscosity, thermal conductivity.

1 Introduction

Due to the superior stability of molten salts at both high and low temperatures, there
are many engineering applications, such as stationary energy storage [Bradwell,
Kim, Sirk, and Sadoway (2012)], pyro-chemical treatment of nuclear wastes [Fuka-
sawa, Uehara, Nagai, Sato, Fujii, and Yamana (2012)], as a coolant in nuclear reac-
tion processes [Waldrop (2012); Brun (2007)], and being electrolytes in thermally
activated batteries [Guidotti and Masset (2006); Masset and Guidotti (2007); Mas-
set, Henry, Poinso, and Poignet (2006)]. Additionally, similar phase change materi-
als can be applied to modern micro and nano technologies, such as a micro heat sink
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for the cooling of electronic components [Faraji, Mustapha, and Mostafa, (2014)],
thermal doping on semiconductors [Eslamian and Saghir (2012)], and rapid ac-
cumulation of particles suspended in a thermocapillary liquid bridge [Kuhlmann,
Lappa, Melnikov, Mukin, Muldoon, Pushkin, Shevtsova, and Ueno (2014)]. E-
specially under high temperature operating conditions, molten salt batteries can
provide extremely high output power due to the high ionic conductivity achieved in
molten electrolytes. They can sustain high level of mechanical and thermal stress
[Masset (2006); Masset, Schoeffert, Poinso, and Poignet (2005)] with superior sta-
bility in long-time storage [Haimovich, Dekel, and Brandon (2009); Haimovich,
Dekel, and Brandon (2015); Fujiwara, Inaba, and Tasaka (2011)]. Due to extensive
utilizations in various applications, their transport properties (diffusion coefficient,
ionic onductivity, shear viscosity, and thermal conductivity etc.) become the main
concern in macroscopic performance evaluations. However, measurements on high
temperature molten salts can be costly and limited, computational simulation tech-
niques provide a powerful tool for evaluating the transport properties, as well as
details in molecular structures and ionic interactions, provided that a proper math-
ematical model can be set up [Srivastava and Atluri (2002)].

To date, classical molecular dynamics (MD) potential models contain the physics
of ionic attraction, repulsion, dispersion and polarization effects etc., they can be
used to predict many properties of molten salts and their solutes [Frenkel and Smit
(1996); Lantelme and Turq (1982); Caccamo and Dixon (1980); Cheng Lee, and
Hong (2007); Cheng, Chen, and Hong (2008); Chen, Li, and Hong (2015)]. Fumi
and Tosi (1964) developed potential functions and then tuned all parameters for all
kinds of alkali halides to reproduce the properties of crystals. Galamba, Castro,
and Ely (2004, 2005, 2007) successfully computed the shear viscosity and thermal
conductivity of molten KCl and NaCl with equilibrium MD and non-equilibrium
MD simulations. Nevins and Spera (2007) examined the various calculation con-
ditions to obtain a good compromise between simulation time and viscosity output
quality. Although many research reports have depicted those on typical molten
alkali halides using MD simulations, it is still a troublesome matter to fit many
semi-empirical potential parameters that could be time-consuming and subject to
inevitable uncertainties.

First principles molecular dynamics (FPMD) simulations are a new technique to
deal with the potential functions between various atoms and ions, but still keep
the methodology of the classical MD. They can be computationally intensive and
therefore are limited to much smaller systems and shorter simulation time than
classical MD methods [Galamba and Cabral (2007a, 2007b); San, Chiu, and Hong
(2011); San and Hong (2011); Bengston, Nam, Saha, Sakidja, and Morgan (2014)].
The main purpose of the FPMD simulation in this paper focuses on the evaluation
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of important transport properties, such as diffusion coefficient, ionic conductivity,
shear viscosity, and thermal conductivity of molten LiCl-KCl systems. All simula-
tion results will be compared against experimental data or classical MD results (if
no experimental results available) published in existing literatures.

2 Methodology

The FPMD simulation technique in this paper is based on the Hellmann-Feynman
(H-F) theorem which integrates the MD simulation with computational quantum
mechanics [Hong and Tsai (2010)]. H-F theorem mainly describes how to calculate
the total energy and its spatial gradient in the Hamiltonian system; that can be
expressed by:

E(λ ) = 〈ψ(λ ) |H(λ )|ψ(λ )〉 (1)

dE
dλ

=

〈
ψ(λ )

∣∣∣∣dH(λ )

dλ

∣∣∣∣ψ(λ )

〉
= ∇〈ψ(λ ) |H(λ )|ψ(λ )〉=−Fi j (2)

where E is the total energy, ψ is the wave function, H is the Hamiltonian operator,
λ is a specified nuclear position, and Fi j is the inter-molecular force between atoms
i and j. If λ is a given degree of freedom of the system, then the term dE/dλ given
by Eq. (2) can be interpreted as the generalized inter-molecular force. The method-
ology of the FPMD simulation in this paper is to employ the density functional
theory (DFT), which calculates the density functional instead of the wave function
of a multi-electron system [Kohn and Sham (1965); Hong and Chen (2011)]. For
a system of n electrons, ρ(r) represents the total electron density at a particular
position r in space. The electronic energy, denoted by E[ρ], is considered as a
functional of the electron density. There is a single corresponding electronic ener-
gy E[ρ] for a given function ρ(r). The precise electron density and the electronic
energy in the DFT are expressed by:

ρ(r) =
n

∑
i
|ψi(r)|2 (3)

E[ρ(r)] = ET [ρ(r)]+EV [ρ(r)]+EJ[ρ(r)]+EXC[ρ(r)] (4)

where ET is the kinetic energy term arisen from the motion of the electrons; EV in-
cludes the potential energy of the nuclear-electron attraction and the repulsion be-
tween pairs of nuclei; EJ is the electron-electron repulsion term; and EXC represents
the exchange-correlation term which includes the remaining part of the electron-
electron interactions. All terms are functions of electron density function ρ(r),
except for the nuclear- nuclear repulsion.
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Our FPMD simulations were carried out on the CASTEP (Cambridge serial to-
tal energy package) platform [Segall Lindan, Probert, Pickard, Hasnip, Clark, and
Payne (2002); Clark, Segall, Pickard, Hasnip, Probert, Refson, and Payne, (2005)].
The first step was to optimize the molecular structures of LiCl, KCl, and eutectic
LiCl-KCl electrolytes by minimizing the total energy of the simulation system. All
simulations were run with the canonical ensemble (NPT) using the Nosé-Hoover
thermostat [Nosé (1984)] for 200 time steps on LiCl and KCl, and 400 time steps
on eutectic LiCl-KCl to equilibrate the simulation system. Energy cutoff was set at
300 eV and periodic boundary conditions (PBCs) were employed in both classical
MD and FPMD to represent a macro-size bulk material.

3 Results and Discussions

3.1 Convergence tests

Since FPMD simulations are computationally intensive, normally we try the best to
reduce the simulation time by decreasing the number of atoms involved. However,
that will incur numerically unstable and divergence as well as inaccuracy. Conver-
gence tests were carried out to check if the number of atoms in a single unit cell
with 16, 32, 64, 128, 256, 512, and 1024 atoms is enough during a reasonable sim-
ulation time (8 ps). Figure 1 shows that the simulation results of the system density,
total energy, and diffusion coefficient tend to converge when the number of atoms
is above 256 atoms per unit cell. The error bars in the diagram show that the fluc-
tuation ranges from 7% to 10% if we choose 16 to 128 atoms. If the atom number
is greater than 256, all error bars become much shorter (less than 3%). Hence, in
the later cases of this paper we will set the number at 256 atoms per unit cell.

Figure 2 shows that we tried to test how long the FPMD simulation should perform.
The simulation time was set from 2 to 48 ps (time step is 2fs in each case) and the
results found that after 16 ps, all error bars became very small and the results could
be converged. Table 1 specially compares the predicted density of the system with
those experimental data from Janz, Allen, Bansal, Murphy, and Tomkins (1979).
All simulation and experimental results of molten LiCl, KCl, and eutectic LiCl-
KCl salts are in good agreement.

3.2 Molecular structure analysis

To investigate if the molecular structure of high temperature molten salts at pseudo-
liquid (molten) state or not, the radial distribution function (RDF) for the system
has to be examined. RDF, denoted as g(r), is a spatial parameter to investigate the
molecular structure by counting the local number density divided by the system
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Figure 1: Convergence tests of (a) density, (b) total energy, and (c) diffusion 

coefficients, with different number of 16, 32, 64, 128, 256, 512, and 1024 atoms in a 

unit cell of LiCl−KCl system at 1123K. The error bars show the range of output data 

variations. 

  

Figure 1: Convergence tests of (a) density, (b) total energy, and (c) diffusion co-
efficients, with different number of 16, 32, 64, 128, 256, 512, and 1024 atoms in
a unit cell of LiCl-KCl system at 1123K. The error bars show the range of output
data variations.

density. The mathematical definition of g(r) is expressed by

g(r) =
〈N (r,∆r)〉

1/2NρV (r,∆r)
(5)

where 〈〉 indicates the time average, N (r,∆r) is the number of atoms within a spher-
ical shell of r+∆r, N is the total number of atoms in the systems, ρ is the system
number density, and V (r,∆r) is volume of the shell.

Figure 3 illustrates all RDFs of ion-pairs of Li+−Cl−, Li+−Li+, Li+−K+,
K+−Cl−, K+−K+, and Cl−−Cl− in the LiCl-KCl system with 256 atoms in a
unit cell at 1023K. The figure shows that Li+−Cl− and K+−Cl− pairs have the
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Figure 2: Convergence tests of (a) density, (b) total energy, and (c) diffusion 

coefficient, with different simulation time (2, 4, 6, 8, 16, 24, and 48 ps, respectively) 

at the same time step of 2 fs in the LiCl−KCl system with 256 atoms at 1123K. The 

error bars show the range of output data variations. 

 

 

Figure 2: Convergence tests of (a) density, (b) total energy, and (c) diffusion coef-
ficient, with different simulation time (2, 4, 6, 8, 16, 24, and 48 ps, respectively) at
the same time step of 2 fs in the LiCl-KCl system with 256 atoms at 1123K. The
error bars show the range of output data variations.

highest first peaks at the shortest distance. It indicates that they tend to aggregate
together due to the attractive Columbic force between them. For the other ion pairs,
since they have the same sign of charges, the repulsive force makes them more sep-
aration. However, all of them converge and fluctuate near g(r)=1 after a certain
distance, that means they all reach molten state in equilibrium.

Table 2 outlines the structural parameters for LiCl, KCl, and eutectic LiCl-KCl
molten salt systems in their RDF diagrams. In which rmax is the position of the first
peak; hmax is the height of the first peak; rmin is the position of the first minimum.
Since it is difficult to measure such kind of structure parameters from experiments,
we compare our results with some classical molecular dynamics simulation results
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Table 1: Densities (g cm−3) of LiCl, KCl, and eutectic LiCl-KCl molten salts at
various temperatures above their melting points.

System LiCl KCl LiCl-KCl
Temp. (K) Sim. a Exp. b Sim. a Exp. b Sim. a Exp. b

673 - - - - 1.673 1.682
723 - - - - 1.632 1.653
823 - - - - 1.588 1.596
873 - - - - 1.552 1.569
923 1.471 1.485 - - 1.537 1.542
973 1.455 1.463 - - 1.518 1.516

1023 1.432 1.442 - - 1.483 1.491
1073 1.413 1.420 - - 1.471 1.467
1123 1.387 1.398 1.514 1.481 1.458 1.443
1173 1.456 1.377 1.497 1.452 1.432 1.421
1223 1.334 1.355 1.481 1.423 1.411 1.399

a Melting point: LiCl at 883 K, KCl at 1043 K, and eutectic LiCl-KCl (LiCl
58.8%) at 673 K.
b Experimental results from Janz et al. (1979).

published in existing literatures [Lantelme and Turq (1982); Caccamo and Dixon
(1980)], although slightly under different simulation temperatures. The structural
results are in good agreement in general, confirming the validity of the FPMD cal-
culations. Introduction of the ionic polarization calculation in the FPMD simula-
tion, whereby the Columbic repulsion and attraction are considered, may improve
the simulation precision and accuracy.

3.3 Diffusion coefficient

The slope of the mean square displacement (MSD) versus time is related to the
diffusivity of the activating ions, according to the Einstein expression:

Dα = lim
t→∞

〈
|δ ri(t)|2

〉
6t

(6)

where Dα is the diffusion coefficient of a α-type ion, δ ri(t) is the displacemen-
t in time t, and the angular brackets denote ensemble average over all the ions of
species α . To investigate the temperature effect on the ionic diffusivity, we checked
the diffusion coefficients of each ion in individual LiCl, KCl and eutectic LiCl-KCl
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Figure 3: Radial distribution functions, g(r), of all ion-pairs in the LiCl−KCl system 

with 256 atoms in a unit cell at 1023K. 

 

  

Figure 3: Radial distribution functions, g(r), of all ion-pairs in the LiCl-KCl system
with 256 atoms in a unit cell at 1023K.

molten salt electrolytes at multiple temperatures. Since their melting points are dif-
ferent, so their operating temperature ranges are also different. Figure 4 and Figure
5 show that the FPMD simulation results predict almost linearly proportional effect
of temperature on diffusion coefficients. Among all, the trend is that the higher the
temperature, the greater the diffusivity. Also DLi>DCl in the LiCl and DK>DCl in
the KCl system at the same temperature in Figure 4 and Table 3. In the eutectic
LiCl-KCl system in Figure 5 and Table 3, it is DLi>DCl>DK in general. They are
all due to the atomic mass effect, where Li < Cl < K, that the lighter the ion, the
greater the diffusivity.

3.4 Ionic conductivity

Using the Green-Kubo (G-K) relation (Frenkel and Smit, 1996), the ionic conduc-
tivity λ can be calculated from the time integral of the charge flux autocorrelation
function through the FPMD method:

λ =
1

3V kBT

∫
∞

0
〈JZ(t) · JZ(0)〉dt (7)

where V is the simulation cell volume, kB is the Boltzmann constant, T is tempera-
ture, and the charge flux vector JZ(t) is defined by

JZ(t) =
n

∑
i=1

zievi(t) (8)
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Figure 4: Comparison of FPMD simulation results with experiments on diffusion 

coefficients of (a) Li in LiCl, (b) Cl in LiCl, (c) K in KCl and (d) Cl in KCl at 

multiple temperatures. Black squares represent FPMD simulation results, and red 

circles are experimental results from Janz et al. (1979). The error bars show the 

uncertainties from the experiment, in which Li ±20 %, Cl ±20 % in the LiCl system 

and K ±20 %, Cl ±20 % in the KCl system. 

 

 

Figure 4: Comparison of FPMD simulation results with experiments on diffusion
coefficients of (a) Li in LiCl, (b) Cl in LiCl, (c) K in KCl and (d) Cl in KCl at
multiple temperatures. Black squares represent FPMD simulation results, and red
circles are experimental results from Janz et al. (1979). The error bars show the
uncertainties from the experiment, in which Li ±20 %, Cl ±20 % in the LiCl
system and K ±20 %, Cl ±20 % in the KCl system.

in which zie is the charge of the ion, and vi is the velocity of atom i. Each of the
charge flux vector has three independent components (i.e., JxZ , JyZ , JzZ), which pro-
vide an independent estimate of ionic conductivity in each direction. The averaged
value (divided by 3) is taken as the overall ionic conductivity.

Figure 6 compares the predicted ionic conductivity results of LiCl, KCl, and LiCl-
KCl melts with published experimental data from Janz, Allen, Bansal, Murphy,
and Tomkins (1979). Our FPMD approach slightly overestimates the experiments.
However, the errors are more or less within the uncertainties of experiments indi-



First Principles Molecular Dynamics Computation 273

34 

 

(a) Li in eutectic LiCl−KCl 

 

(b) Cl in eutectic LiCl−KCl 

 

(c) K in eutectic LiCl−KCl 

 

Figure 5: Comparison of FPMD simulation results with other classical MD results on 

diffusion coefficients of ions of (a) Li, (b) Cl, and (c) K in the eutectic LiCl−KCl 

molten salt at multiple temperatures. Black square represent FPMD simulation results, 

cyan triangles are from classical MD-1 (Lantelme and Turq, 1982), and purple stars 

are from another classical MD-2 (Caccamo and Dixon, 1980). 

 

  

Figure 5: Comparison of FPMD simulation results with other classical MD results
on diffusion coefficients of ions of (a) Li, (b) Cl, and (c) K in the eutectic LiCl-KCl
molten salt at multiple temperatures. Black square represent FPMD simulation
results, cyan triangles are from classical MD-1 [Lantelme and Turq (1982)], and
purple stars are from another classical MD-2 [Caccamo and Dixon (1980)].

cated by the experimental report. Advanced investigation including the polarization
effect should be able to improve the accuracy of the calculated results. Our FPMD
calculations show that the ionic conductivities of molten salt electrolytes increase
with increasing temperatures, same as the increasing diffusion coefficient accom-
panied by the rising of temperature.

3.5 Shear viscosity

The shear viscosity η is a measure of the resistance of a fluid being deformed by
shear stress. It is defined mathematically as the time integral of the off-diagonal
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Table 3: Densities and diffusion coefficients of LiCl, KCl, and eutectic LiCl-KCl
molten salts at multiple temperatures.

System Temp. (K) Density (g cm−3)
Diffusion coefficient (cm2 s−1×10−5 )
DLi DK DCl

LiCl

923 1.471 9.6 - 4.22
973 1.455 11.6 - 5.14

1023 1.432 13.62 - 6.28
1073 1.413 15.42 - 7.42
1123 1.387 17.15 - 8.35
1173 1.456 18.33 - 9.65
1223 1.334 19.45 - 11.43

KCl

1073 1.545 - 6.42 5.92
1123 1.514 - 8.15 7.52
1173 1.497 - 9.53 8.75
1223 1.481 - 10.85 10.05

LiCl-KCl

673 1.672 2.56 1.26 1.46
723 1.632 3.06 1.92 2.61
823 1.588 3.76 3.26 3.76
923 1.537 5.45 5.15 5.45

1023 1.483 6.74 6.94 6.74
1123 1.458 8.78 8.28 8.18
1223 1.411 11.37 9.83 10.62

stress tensor autocorrelation function based on the G-K relation in a steady-state
FPMD simulation,

ηxy =
1

kBTV

∫
∞

0
〈Sxy(t)Sxy(0)〉dt (9)

where kB is the Boltzmann constant, T is temperature, V is the cell volume, and Sxy

is the xy-component of the stress tensor. Sxy is defined as

Sxy =
N

∑
i=1

[
mivxivyi +

1
2 ∑

j 6=i
xi j fy(ri j)

]
(10)

where mi is the mass of ion i, vxi and vyi are the x-component and y-component of vi

(the velocity of ion i), xi j is the x-component of distance ri j = ri− r j, and fy(ri j) is
the y-component of the force fi j on ion i due to ion j. Each of the independent off-
diagonal components of the stress tensor (i.e., Sxy, Syx, Sxz, Szx, Syz and Szy) gives an
independent evaluation of the shear viscosity, and there are six off-diagonal terms,
so the statistical precision can be improved by averaging over six that result from
the stress tensor.
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Figure 6: Comparison of FPMD simulation results with experiments on Ionic 

conductivities of (a) LiCl, (b) KCl, and (c) eutectic LiCl−KCl molten salts at multiple 

temperatures. Black squares represent FPMD simulation results, red circles are 

experimental results from Janz et al. (1979). The error bars show the uncertainties 

from the experiment, in which LiCl ±2.5 %, KCl ±1.0 %, and LiCl−KCl ±2.5 % 

when T<1050K and LiCl−KCl ±4.0 % when T>1050K. 

 

  

Figure 6: Comparison of FPMD simulation results with experiments on Ionic con-
ductivities of (a) LiCl, (b) KCl, and (c) eutectic LiCl-KCl molten salts at multiple
temperatures. Black squares represent FPMD simulation results, red circles are ex-
perimental results from Janz et al. (1979). The error bars show the uncertainties
from the experiment, in which LiCl ±2.5 %, KCl ±1.0 %, and LiCl-KCl ±2.5 %
when T<1050K and LiCl-KCl ±4.0 % when T>1050K.

The correlation function has been averaged over 1,000 time steps to ensure excel-
lent statistics that repeated runs give the same platform value adequately. Shear
viscosities of LiCl, KCl and LiCl-KCl molten salts have been calculated at mul-
tiple temperatures, above the melting point with an interval of 100 K. Figure 7
shows that they are in close agreement with experimental results form Janz, Allen,
Bansal, Murphy, and Tomkins (1979). For LiCl and KCl systems, the prediction-
s are under-estimated, but the errors are within the experimental uncertainties of
±10% and ±3%, respectively. For the eutectic LiCl-KCl, the calculation result-



276 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.3, pp.263-283, 2015

s are under-estimated below 900K and over-estimated when above 900K, but still
within the experimental uncertainty of±15%. For LiCl, KCl, and LiCl-KCl molten
salt systems, the shear viscosities decrease as the temperature increases, in contrast
to the proportional trend of diffusion coefficients and ionic conductivities on tem-
perature.
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Figure 7: Comparison of FPMD simulation results with experimental fit on shear 

viscosities of (a) LiCl, (b) KCl, and (c) eutectic LiCl−KCl molten salts at multiple 

temperatures. Shear viscosities of (a) LiCl, (b) KCl, and (c) eutectic LiCl−KCl molten 

salt at multiple temperatures. Black squares are simulation results and red empty 
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Figure 8: Comparison of FPMD simulation results with experiments on thermal
conductivities of (a) LiCl, (b) KCl, and (c) eutectic LiCl-KCl molten salts at mul-
tiple temperatures. Black squares are simulation results, green triangles are exper-
imental results from Nagasaka et al. (1992), and blue diamonds are from experi-
ments carried out by Williams (2006). The error bars show the uncertainties from
the experiment, in which LiCl ±11.0 %, KCl ±5.0 %, and LiCl-KCl ±20.0 %.

3.6 Thermal conductivity

The thermal conductivity κ can be calculated from the time integral of the energy
flux autocorrelation function, based on the G-K formula

κ =
V

3kBT 2

∫
∞

0
〈JE(t)JE(0)〉dt (11)

where kB is the Boltzmann constant, T is temperature, V is the simulation cell
volume, JE is the energy flux, and JxE is the x-component of the energy flux vector.
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Table 4: Ionic conductivities, shear viscosities, and thermal conductivities of LiCl,
KCl, and eutectic LiCl-KCl molten salts at various temperatures.

System Temp. (K)
Ionic conductivity Shear viscosity Thermal

conductivity
σ (Scm−1) η (mPa.s) λ

(Wm−1K−1)

LiCl

923 6.342 1.283 0.572
973 6.647 1.113 0.552
1023 6.913 0.982 0.531
1073 7.318 0.875 0.517
1123 8.141 0.793 0.503
1173 8.897 0.742 0.487
1223 9.630 0.692 0.471

KCl

1073 2.652 0.916 0.455
1123 2.884 0.815 0.431
1173 3.072 0.743 0.417
1223 3.361 0.694 0.402

LiCl-KCl

673 1.575 2.765 0.775
723 1.913 2.387 0.653
823 2.565 1.766 0.475
923 3.132 1.382 0.444
1023 3.717 1.192 0.374
1123 4.185 1.108 0.341
1223 4.647 1.012 0.336

The energy flux vector JE is defined as

JE =
1
V

 N

∑
i=1

Eivi +
1
2

N

∑
j 6=i

(ri j fi j) · vi

 (12)

and the energy per particle Ei is defined as

Ei =
1
2

miv2
i +

j 6=i
∑
N

Ui j(ri j)

 (13)

where mi is the mass of ion i, vi is the velocity of the ion i, Ui j(ri j) is the pair
potential between particles i and j, ri j is the position vector between particles i and
j, and fi j is the force on ion i due to ion j.
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Thermal conductivities of those molten salts have been calculated at multiple tem-
peratures, above their melting points with an interval of 100 K. The calculation
results are listed in Table 4 in detail. Figure 8 compares the simulated thermal con-
ductivity values with those obtained from experimental data [Nagasaka Nakazawa,
and Nagashima (1992); Williams (2006)] for single LiCl, KCl, and etuctic LiCl-
KCl systems. All calculation results are within the uncertainties of experimental
results, in which ±10% for LiCl, ±3% for KCl, and ±15% for LiCl-KCl, respec-
tively. The inversely proportional trend between the thermal conductivity and tem-
perature is in accordance with experimental results. Table 4 also summarizes all
the calculation results of transport properties, including ionic conductivities, shear
viscosities, and thermal conductivities of LiCl, KCl, and LiCl-KCl molten salt elec-
trolytes, which will be used to input to a commercial computational fluid dynamics
(CFD) software to evaluate the macroscopic performance of a thermally activated
battery.

4 Conclusions

An advanced first principles molecular dynamics (FPMD) simulation approach,
based on the Hellmann-Feynman (HF) theorem, integrates the molecular dynamics
simulation with the density functional theory (DFT) of multi-electron systems. This
paper studies the ionic structure and transport properties (diffusion coefficient, ionic
conductivity, shear viscosity, and thermal conductivity) in LiCl, KCl, and LiCl-KCl
molten salts. In the preliminary convergence test, it has been proved that a unit cell
of 216 atoms and simulation time of 16 ps are sufficient to achieve adequately
converged results with acceptable accuracy.

The major advantage of the FPMD calculation technique is that it predicts the ion-
ic interaction and transport properties without employing an empirical potential
model, which is the major bottleneck of classical MD techniques. The calculation
results can provide a well guidance when experimental measurements are difficult
and costly to conduct. The predicted transport properties of LiCl, KCl, and LiCl-
KCl molten salts are in good agreement with experimental results from published
literatures. Diffusion coefficients and ionic conductivities are proportional to the
operating temperature. However, shear viscosities and thermal conductivities of
molten salts are proved to be inversely proportional to the rising temperature.

In summary, the single molten salt LiCl has a better ionic diffusivity, fluidity, and
ionic conductivity than KCl. It is possible to improve the performance through ad-
dition of LiCl on the KCl. The eutectic LiCl-KCl has a much lower melting point
than both LiCl and KCl, and the ionic conductivity is between them. All FPMD
calculation results for LiCl, KCl and LiCl-KCl electrolytes are in close agreement
with experiments in this paper. In the future, it is expected to develop a multi-scale
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simulation tool, including quantum mechanics, molecular dynamics, and compu-
tational fluid dynamics, to design a thermally activated battery from materials to
the device. This is able to replace the costive trial-and-error experiments and to
optimize the system design.
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