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A New Hybrid Uncertain Analysis Method and its
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Abstract: This paper presents a new hybrid Chebyshev-perturbation method
(HCPM) for the prediction of acoustic field with random and interval parameters. In
HCPM, the perturbation method based on the first-order Taylor series that accounts
for the random uncertainty is organically integrated with the first-order Chebyshev
polynomials that deal with the interval uncertainty; specifically, a random interval
function is firstly expanded with the first-order Taylor series by treating the interval
variables as constants, and the expressions of the expectation and variance can be
obtained by using the random moment method; then the expectation and variance
of the function are approximated by using the first-order Chebyshev polynomials;
the bounds of the expectation and variance are finally obtained by using the Monte
Carlo method. Numerical results on two acoustic models verify that the accuracy
of HCPM is better than that of the hybrid perturbation method (HPM).

Keywords: Perturbation method, Chebyshev polynomials, acoustic field predic-
tion, random variables, interval variables.

1 Introduction

In recent years, numerical methods for the response analysis of engineering systems
with deterministic parameters have received lots of attention and developed rapidly.
However, uncertainties caused by environmental factors, manufacturing tolerances
or unpredictable external excitations are unavoidable in engineering practice. Thus
it is very important to perform the uncertain analysis in engineering systems, es-
pecially for the systems that are sensitive to the uncertain parameters. Generally
all uncertain parameters can be described as two different models: the probabilistic
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and non-probabilistic models. If the information about the uncertain parameters is
sufficient to define the probability distribution functions unambiguously, the prob-
abilistic model can be the prior way to describe the uncertain parameters [Stefanou
(2009); Kamiński and Lauke (2013)]; if the objective information about the uncer-
tain parameters is limited and it is difficult to construct the probability distribution
functions, the non-probabilistic model is suitable for describing uncertain parame-
ters. Many probabilistic methods have been proposed for the response analysis of
engineering systems with random parameters. The Monte Carlo method (MCM) is
a widely used approach for stochastic problems due to its simplicity of implemen-
tation [Hurtado and Barbat (1998); Fishman(1996)]. However, the computational
cost of MCM is usually too high to be acceptable for large-scale engineering sys-
tems, and thus its applications are limited. The spectral stochastic method is an ef-
ficient approach based on polynomial chaos series for stochastic problems [Shang
and Yun (2013); Chen and Soares (2008); Chung, Gutiérrez, Graham-Brady and
Lingen (2005)], but the application of it is still limited to the stochastic problems
with a few variables. Based on the Neumann expansion and the Taylor series ex-
pansion, the perturbation stochastic method was developed for stochastic problems
[Çavdar, Bayraktar, Çavdar and Adanur (2008); Kaminski (2010); Liu, Belytschko
and Mani (1986)]. Due to the neglect of higher order terms of Taylor series, the ap-
plication of the perturbation stochastic method is limited to the stochastic problems
with small uncertain ranges of parameters.

Non-probabilistic model is an alternative that can be perfectly applied to represent
the uncertain parameters with insufficient information for constructing the proba-
bility distribution functions, such as the convex model and the interval model [Qiu
(2003); Hua and Qiu (2010); Jiang, Bi, Lu and Han (2013); Li, Luo, Rong and
Hu (2013); Moore (1966)]. For the convex model, the uncertain parameters are
expressed as the convex-set variables whose variation bounds are defined, and the
least and most favorable responses of the uncertain problems can be obtained by
using an anti-optimization approach. For the interval model, the lower and upper
bounds are well-defined, and the lower and upper bounds of the response of an un-
certain problem can be obtained by employing the interval analysis methods. Many
interval methods have been developed for the interval uncertain problems and have
achieved significant progress. MCM can also be used to deal with the interval
uncertain problems, but the applications of it are limited due to the excessive com-
putational cost. The vertex method can be employed to obtain the exact intervals
of response of an uncertain problem if the interval equation can be defined as a
non-convex polyhedron [Qiu, Xia and Yang (2007)], but the computational cost of
it increases exponentially with the increase of the number of interval parameters.
Based on the Neumann expansion and the Taylor series expansion, the interval per-
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turbation method (IPM) was developed [Qiu, Chen and Elishakoff (1996); Qiu and
Elishakoff (1998)] for the response prediction of uncertain structures. Recently, Wu
et al. [2013a,b, 2014] proposed a Chebyshev inclusion function-based method to
solve interval ordinary differential equation (ODE) systems and interval differential
algebraic equation (DAE) systems. There is no need for the Chebyshev inclusion
function-based method to obtain the explicit expression of governing equations of
the uncertain systems, and the Chebyshev inclusion function-based method can
control overestimation better than the Taylor inclusion function-based method in
solving the interval ODE and DAE systems.

As mentioned above, the probabilistic and non-probabilistic models can be used
to describe the uncertainties of uncertain systems with random parameters and un-
certain systems with interval parameters, respectively. While in some engineering
problems, both the random parameters and the interval parameters are involved, and
thus a hybrid analysis framework for the problems with mixed uncertainties should
be constructed. Significant progress has been made in the hybrid probabilistic and
interval model. Muscolino et al. (2011a, b) have investigated the stochastic inter-
val responses of structures with uncertain-but-bounded parameters under random
excitation. The reliability-based design (RBD) in static analysis of structures with
random and interval parameters has been studied in literatures [Cacciola, Muscoli-
no and Versaci (2011); Gao, Song and Tin-Loi (2010)]. To analyze the response of
uncertain structures with random and interval parameters, Gao et al. (2010, 2011)
have developed a hybrid perturbation Monte-Carlo method (HPMCM), which is
derived from the MCM and the perturbation method with first-order Taylor se-
ries. Based on the HPMCM and the vertex method, the hybrid perturbation vertex
method (HPVM) has been proposed for the hybrid uncertain structure-acoustic sys-
tem [Xia and Yu (2013)]. By employing the HPMCM and HPVM, the intervals of
expectation and variance of the system response can be calculated. Compared with
HPMCM, HPVM is more efficient, but the computational efficiency of HPVM de-
creases exponentially with the increase of the number of interval parameters. For
the response analysis of low-frequency exterior acoustic fields with random and
interval parameters, the hybrid perturbation method (HPM) have been proposed
[Chen, Yu and Xia (2014)] recently.

As we all know, response analysis of the acoustic field with uncertain parameters
has achieved great success recently. Many probabilistic methods have been devel-
oped for the prediction of the acoustic field with random parameters, such as in
literatures [James and Dowling (2005,2008); Khine, Creamer and Finette (2010)].
Due to the difficulty of obtaining the probability density functions of some uncer-
tain parameters, non-probabilistic models have been employed in the response pre-
diction of the uncertain acoustic field [Xia and Yu (2012, 2014)]. Response analysis
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of acoustic field with both random and interval parameters has been studied only in
literature [Xia and Yu (2013)]., other literatures for this problem have not been pub-
lished. Hybrid uncertain analysis methods like HPM can be considered as potential
methods for the acoustic field with both random and interval parameters.

Generally speaking, although some great work has been done by researchers, study
about the hybrid uncertain models is still in its primary stage. In HPMCM, HPVM,
and HPM, the partial derivatives with respect to uncertain parameters should be
calculated twice: one for the random parameters and the other for the interval pa-
rameters. However, the calculation of partial derivatives with respect to the interval
parameters is usually complex. For the Chebyshev polynomials, there is no need
to calculate the partial derivatives with respect to the interval parameters; what’s
more, they have a better controlling of interval overestimation comparing with the
Taylor series. By taking advantage of these merits of the Chebyshev polynomials,
a new hybrid Chebyshev-perturbation method (HCPM) is proposed for the analysis
of uncertain problems with random and interval parameters in this paper. In HCP-
M, the perturbation stochastic method based on the first-order Taylor series that
accounts for the random uncertainty is integrated systematically with the Cheby-
shev polynomials for dealing with the interval uncertainty. At first, by treating the
interval variables as constants, the random interval function is expanded with the
first-order Taylor series, and the expressions of the expectation and variance can be
obtained by using the random moment method; then the expectation and variance
of the objective function are approximated by using the Chebyshev polynomials,
and for the sake of computational efficiency, the higher order terms of Chebyshev
polynomials than one are neglected; finally, the bounds of the approximate expec-
tation and variance can be calculated by using the MCM. It is obvious that only the
partial derivatives with respect to random parameters are required to be calculated
in HCPM. To verify the effectiveness of HCPM, HCPM is applied to analyze the
response of acoustic field with random and interval parameters. Numerical exam-
ples of a 2D u-shape acoustic tube and the 2D acoustic cavity of a van are presented
to demonstrate the effectiveness of the proposed method, and as a comparison, HP-
M is applied to the two numerical examples, too. The numerical results prove that
the accuracy of HCPM is better than that of HPM.

2 Perturbation stochastic method for functions with random parameters

The perturbation stochastic method is known as a powerful tool based on the Taylor
series expansion for dealing with random uncertainties. In this method, the function
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f (x) with random parameters can be approximated as the following formulation

f (x) = f (xe)+
n

∑
i=1

f,xi(x
e)(xi− xe

i )+
1
2

n

∑
i=1

n

∑
j=1

f,xix j(x
e)(xi− xe

i )(x j− xe
j)+ · · · (1)

where x= [x1 x2 · · · xn]
T is a random vector consisting of random variables {xi}n

i=1,
xe = [xe

1 xe
2 · · · xe

n]
T is the expectation of the random vector x and xe

i is the expecta-

tion of the random variable xi, f,xi(xe) = ∂ f (x)
∂xi

∣∣∣
x=xe

is the first-order partial deriva-

tive of f (x) with respect to xi at the expectation vector xe, f,xix j(xe) = ∂ 2 f (x)
∂xi∂x j

∣∣∣
x=xe

is the second-order partial derivative of f (x) with respect to xi and x j at the expec-
tation vector xe.

From Eq. (1), we can see that an obvious shortcoming of the perturbation stochas-
tic method is the requirement for calculating the partial derivatives. Generally, the
higher the order of the partial derivative is, the more complex the calculation of the
partial derivative is, and the computational cost will increase significantly with the
increase of the order of the partial derivative. What’s more, the improvement in
accuracy of the higher order approximations is rather small compared with the dis-
proportional increase of computational cost [Stefanou (2009)]. Thus, the high order
terms of Taylor series in Eq. (1) are usually neglected in engineering computing,
and the first- and second-order stochastic methods are the most widely used.

In the conventional perturbation stochastic method, the stochastic characteristics of
a random function are described as expectation and variance. For the first-order
perturbation stochastic method, the expectation and variance of f (x) can be calcu-
lated by using the random moment method and can be expressed as

E( f (x)) = f (xe) (2)

V ( f (x)) =
n

∑
i=1

n

∑
j=1

f,xi(x
e) f,x j(x

e)cov(xi,x j) (3)

where E(·) denotes the expectation of a random variable , and V (·) denotes the
variance of a random variable, cov(·) denotes the covariance of two random vari-
ables.

The second-order perturbation stochastic method can be used to calculated the ex-
pectation and variance of f (x) in a similar way if all the variables are normally
distributed, and for other types of random variables, the joint probability distribu-
tion functions are required. Thus the application of the second-order perturbation
stochastic method is limited in engineering practice. More information about the
second-order perturbation stochastic method can be found in literature [Liu, Be-
lytschko and Mani (1986)].
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3 Chebyshev method for functions with interval parameters

The Chebyshev method is proposed for solving the interval ODE and DAE systems
by Wu et al. (2013a, 2013b), and the main idea of it is employing the Chebyshev
polynomials to approximate the interval functions. Considering a one-dimensional
interval function f (x) continuous over [a,b], which indicates that the variable x ∈
[a,b], the Chebyshev polynomials of degree n can be expressed as

Cn(x) = cos(nθ) (4)

where θ = arccos
(

2x−(b+a)
b−a

)
∈ [0,π], and n is a nonnegative integer. It can be

obtained from Eq. (39) that

C0(x) = 1, Cn(x) ∈ [−1,1] (5)

In a similar way as the perturbation method using the Taylor series, the interval
function f (x) can be approximated by using the Chebyshev polynomials

f (x) =
1
2

f0 +
n

∑
i=1

fiCi(x) (6)

with fi the i-th constant coefficient. In the Eq. (41), if n is large enough, the interval
function f (x) can be approximated with a very small error that can be neglected.
The i-th constant coefficient fi can be calculated by

fi =
2
π

∫ 1

−1

f (λ )Ci(λ )√
1−λ 2

dλ ≈ 2
π

π

m

m

∑
j=1

f (λ j)Ci(λ j) =
2
m

m

∑
j=1

f (cosθ j)cos(iθ j) (7)

where λ = 2x−(b+a)
b−a , λ j denotes the j-th interpolation point in the integral formula,

m is the total number of the interpolation points, and the expression of λ j can be
written as

λ j = cosθ j, θ j =
2 j−1

m
π

2
, j = 1,2, ... ,m (8)

To control the integral error, m is usually set to be a value not less than n+1.

For a r-dimensional interval function f (x) continuous over [a,b], the Chebyshev
polynomials of degree n can be written as

Cn1,n2, ... ,nr(x) = cos(n1θ1)cos(n2θ2)...cos(nrθr) (9)

where x ∈ [a,b] is an interval vector consisting ofrinterval variables, or it can be
expressed as

x = [x1,x2, · · · ,xr]
T , xi ∈ [ai,bi], i = 1,2, ...,r (10)
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Similarly, the r-dimensional interval function f (x) can also be approximated by
using the Chebyshev polynomials

f (x) =
n

∑
i1=0
· · ·

n

∑
ir=0

(
1
2

)p

fi1,...,irCi1,...,ir(x) (11)

where p is the total number of zeros occurring in the subscripts i1, ..., ir. The con-
stant coefficients fi1,...,ir can be calculated by

fi1,...,ir =

(
2
m

)r m

∑
j1=1
· · ·

m

∑
jr=1

f (cosθ j1 , ...,cosθ jr)cos(i1θ j1)...cos(irθ jr) (12)

where (cosθ j1 , ...,cosθ jr) is an interpolation point, and it can be figured out from
Eq. (47) that the total number of interpolation points is mr.

The purpose of the approximation using the Chebyshev polynomials is to search
the bounds of the interval function effectively. For Eq. (46), different methods can
be used to calculated the bounds, such as the conventional optimization algorithms,
interval arithmetic and the MCM. The interval arithmetic is an efficient method to
calculate the bounds, but the accuracy of it can hardly be evaluated because of the
wrapping effect [Moore (1966)]. Due to the robustness and simplicity of MCM,
the MCM will be employed to calculated the bounds of the function approximated
by Chebyshev polynomials in this paper.

4 HCPM for functions with random and interval parameters

In this section, the first-order perturbation stochastic method is integrated with the
first-order Chebyshev method to deal with the functions with random and interval
parameters, and the hybrid Chebyshev-perturbation method (HCPM) is proposed.

Consider a random interval function f (xR,xI), where xR = [xR
1 ,x

R
2 , · · ·xR

n ]
T is the

random vector, xI = [xI
1,x

I
2, · · ·xI

r]
T is the interval vector. The expectation and vari-

ance of xR can be expressed as

E(xR) = E([xR
1 ,x

R
2 , · · ·xR

n ]
T ), V (xR) =V ([xR

1 ,x
R
2 , · · ·xR

n ]
T ) (13)

The interval of xI can be expressed as

xI = [x, x̄], xI
i ∈ [xi, x̄i], i = 1,2, ...,r (14)

where · and ·̄ mean the lower and upper bounds, respectively.

By treating the interval variables as constants, f (xR,xI) can be approximated by
using the first-order Taylor series at the expectations of the random variables, which
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is expressed as

f (xR,xI) = f (E(xR),xI)+
n

∑
i=1

f,xR
i
(E(xR),xI)(xR

i −E(xR
i )) (15)

where f,xR
i
(E(xR),xI) = ∂ f (xR,xI)

∂xR
i

∣∣∣
xR=E(xR)

. According to Eqs. (2) and (3), the ex-

pectation and variance of the random interval function f (xR,xI) can be expressed
as

E( f (xR,xI)) = f (E(xR),xI) (16)

V ( f (xR,xI)) =
n

∑
i=1

n

∑
j=1

f,xR
i
(E(xR),xI) f,xR

j
(E(xR),xI)cov(xR

i ,x
R
j ) (17)

It can be seen from Eqs. (16) and (17) that the expectation and variance of f (xR,xI)
are expressed as functions with respect to the interval variables, thus E( f (xR,xI))
and V ( f (xR,xI)) are also interval variables and can be rewritten as

E( f (xR,xI)) = EF(xI) (18)

V ( f (xR,xI)) =V F(xI) (19)

The intervals of EF(xI) and V F(xI) can be calculated by different methods, such
as the IPM and the Chebyshev method. If the IPM is employed, the hybrid uncer-
tain analysis method turns to be the HPM, which was proposed by Chen et al in
literature [Chen, Yu and Xia (2014)]. As the HPM is used, it should be noted that
the calculation of partial derivatives of the variance expressed in Eq. (17) is very
complex, which can be considered as a shortcoming of HPM. In this paper, the
Chebyshev method is used to calculated the intervals of EF(xI) and V F(xI), and
the hybrid method turns to be the HCPM. Compared with HPM, there is no need
for HCPM to calculate the complex partial derivatives of the variance expressed in
Eq. (17).

According to Eq. (11), EF(xI) and V F(xI) can be approximated by using the
Chebyshev polynomials

EF(xI) =
n

∑
i1=0
· · ·

n

∑
ir=0

(
1
2

)p

EFi1,...,irCi1,...,ir(x
I) (20)

V F(xI) =
n

∑
i1=0
· · ·

n

∑
ir=0

(
1
2

)p

V Fi1,...,irCi1,...,ir(x
I) (21)



A New Hybrid Uncertain Analysis Method 229

where EFi1,...,ir and V Fi1,...,ir are the constant coefficient, and they can be calculated
by using Eq. (12) as follows

EFi1,...,ir =

(
2
m

)r m

∑
j1=1
· · ·

m

∑
jr=1

EF(cosθ j1 , ...,cosθ jr)cos(i1θ j1)...cos(irθ jr) (22)

V Fi1,...,ir =

(
2
m

)r m

∑
j1=1
· · ·

m

∑
jr=1

V F(cosθ j1 , ...,cosθ jr)cos(i1θ j1)...cos(irθ jr) (23)

From Eqs. (20)∼(23), we can see that EF(xI) and V F(xI) are the sum of (n+1)r

terms, EFi1,...,ir and V Fi1,...,ir are the sum of mr terms, and given that m is a parame-
ter not less than n+1, it is foreseeable that the computational cost of the Chebyshev
method will increase exponentially with the increase of the order n. Therefore, for
the sake of computational efficiency, higher order terms of the Chebyshev polyno-
mials than one are neglected and the value of m is set to be n+1 in this paper. Thus,
Eqs. (20) and (21) can be rewritten as

EF(xI) =
1

∑
i1=0
· · ·

1

∑
ir=0

(
1
2

)p

EFi1,...,irCi1,...,ir(x
I) (24)

V F(xI) =
1

∑
i1=0
· · ·

1

∑
ir=0

(
1
2

)p

V Fi1,...,irCi1,...,ir(x
I) (25)

where

EFi1,...,ir =
2

∑
j1=1
· · ·

2

∑
jr=1

EF(cosθ j1 , ...,cosθ jr)cos(i1θ j1)...cos(irθ jr) (26)

V Fi1,...,ir =
2

∑
j1=1
· · ·

2

∑
jr=1

V F(cosθ j1 , ...,cosθ jr)cos(i1θ j1)...cos(irθ jr) (27)

By applying the MCM to Eqs. (24) and (25), the lower and upper bounds of EF(xI)
and V F(xI) can be calculated and are expressed as

E( f (xR,xI)) = EF = min
x∈xI
{EF(x)}

E( f (xR,xI)) = EF = max
x∈xI
{EF(x)} (28)

V ( f (xR,xI)) =V F = min
x∈xI
{V F(x)}

V ( f (xR,xI)) =V F = max
x∈xI
{V F(x)} (29)
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Due to the neglect of higher order terms of the Taylor series and the Chebyshev
polynomials, it should be noted that the application of HCPM is limited to the
analysis of uncertain problem with small parametric uncertainty. However, many
uncertain problems in engineering practice meet with the condition that there are
only small fluctuations of uncertain parameters. Thus, HCPM is applicable.

One Simple Example. Considering a random interval function f (x,y) = x2 + xy2,
where x ∈ [0.6,1.4], y ∼ N(1, 0.12), HPM and HCPM are employed to calculate
the intervals of the expectation and variance of f (x,y). The intervals calculated by
HPM are[

E( f (x,y)),E( f (x,y))
]
= [0.800000,3.200000][

V ( f (x,y)),V ( f (x,y))
]
= [0.008000,0.072000]

(30)

The intervals calculated by HCPM are[
E( f (x,y)),E( f (x,y))

]
= [0.880000,3.280000][

V ( f (x,y)),V ( f (x,y))
]
= [0.011200,0.075200]

(31)

The actual intervals of the expectation and variance of f (x,y) are[
E( f (x,y)),E( f (x,y))

]
= [0.966000,3.374000][

V ( f (x,y)),V ( f (x,y))
]
= [0.014472,0.078792]

(32)

From Eqs (30)∼(32), we can see that the intervals yielded by HCPM match the
actual intervals more closely than that yielded by HPM, which indicates that HCPM
has an advantage in accuracy over HPM.

The main steps of HCPM for uncertain problems with random and interval param-
eters can be summarized as follows

Step 1: Expand the random interval function f (xR,xI) with the first-order Taylor
series at the expectations of the random variables (Eq. (15)).

Step 2: Express the expectation and variance of the expanded function of f (xR,xI)
as functions with respect to the interval variables by using the random moment
method (Eqs. (16) and (17)).

Step 3: Approximate the expectation and variance in Step 2 with the first-order
Chebyshev polynomials (Eqs. (24) and (25)).

Step 4: Calculate the bounds of the approximated expectation and variance in Step
3 by using the MCM.



A New Hybrid Uncertain Analysis Method 231

5 Prediction of the acoustic field with random and interval parameters

As is known to all, traditional uncertain approaches for the uncertain acoustic prob-
lems are probabilistic methods; the non-probabilistic model has been introduced
into the uncertain acoustic problems by Xia et al. (2012, 2014) recently. However,
due to the unpredictable external loads and the effects of the aggressive environ-
mental factors, it is possible for acoustic field to possess both the probabilistic and
non-probabilistic parameters. Thus the analysis of acoustic field with hybrid uncer-
tain parameters is meaningful. In this section, the HCPM is applied to the acoustic
field with random and interval parameters, and the corresponding equations are
derived.

5.1 Basic dynamic equilibrium equation of an acoustic cavity

Fig.1 is a simple diagram of an acoustic cavity Ω, where ΓD denotes the Dirichlet
boundary condition, ΓN denotes the Neumann boundary condition, ΓR denotes the
Robin boundary condition. The steady-state sound pressure p in the frequency
domain can be expressed by using the Helmholtz equation

∇
2 p+ k2 p = 0 (33)

where ∇2 is the Laplace operator; k = ω/c is the wave number, and ω denotes the
angular frequency, c denotes the sound speed.

The initial boundary conditions of ΓD, ΓN and ΓR can be expressed as

p = pD on ΓD (34)

n.∇p =− jρωvn on ΓN (35)

n.∇p =− jρωAn p on ΓR (36)

where pD is the sound pressure on the Dirichlet boundary, j =
√
−1 is an imaginary

unit, ρ is the fluid density, vn is the normal velocity imposed on the acoustic field
and An is the admittance coefficient.

From Eqs (33)∼(36), the dynamic equilibrium equation of an acoustic cavity mod-
eled by the finite element method can be obtained and expressed as

Zp = F (37)

where F represents the load vector, p is the sound pressure vector, Z = K− k2M+
jkC is the dynamic stiffness matrix of the acoustic cavity, in which K, M, C rep-
resent the stiffness matrix, mass matrix, and the damping matrix, respectively.
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Figure 1: An acoustic cavity Ω.

K, M, C, F can be expressed as follows

K =
Ncell

∑
i=1

Ki =
Ncell

∑
i=1

∫
Ωi

(∇N)T (∇N)dΩ,

M =
Ncell

∑
i=1

Mi =
Ncell

∑
i=1

∫
Ωi

NT NdΩ,

C =
Ncell

∑
i=1

Ci =
Ncell

∑
i=1

ρcAn

∫
Γi

R

NT NdΓ,

F =
Ncell

∑
i=1

Fi =− j
Ncell

∑
i=1

ρω

∫
Γi

N

NT vndΓ

(38)

where the summation stands for an assembly process of the acoustic system matri-
ces and vectors, Ncell is the total number of elements in the acoustic field, Ωi stands
for thei−th element, Γi

R = ΓR∩Ωi stands for the Robin boundary related with the
element Ωi, Γi

N = ΓN ∩Ωi stands for the Neumann boundary related with the el-
ement Ωi, NT stands for the Lagrange shape function vector of the isoparametric
element.
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5.2 Acoustic dynamic equilibrium equation with random and interval parame-
ters

When the random and interval parameters are introduced into the acoustic dynamic
equilibrium equation, Eq. (37) can be rewritten as

Z(xR,xI)p(xR,xI) = F(xR,xI) (39)

where xR is the random vector consisting of n random variables, xI is the interval
vector consisting of r interval variables.

By treating the interval variables as constants and employing the first-order Tay-
lor series, the random interval dynamic stiffness matrix Z(xR,xI) and the random
interval load vector F(xR,xI) can be expanded at the expectations of the random
variables, and they can be expressed as

Z(xR,xI) = Z(E(xR),xI)+
n

∑
i=1

∂Z(E(xR),xI)

∂xR
i

(xR
i −E(xR

i )) = Z0 +∆Z (40)

F(xR,xI) = F(E(xR),xI)+
n

∑
i=1

∂F(E(xR),xI)

∂xR
i

(xR
i −E(xR

i )) = F0 +∆F (41)

where

Z0 = Z(E(xR),xI), ∆Z =
n

∑
i=1

∂Z(E(xR),xI)

∂xR
i

(xR
i −E(xR

i )) (42)

F0 = F(E(xR),xI), ∆F =
n

∑
i=1

∂F(E(xR),xI)

∂xR
i

(xR
i −E(xR

i )) (43)

Substitute Eqs (40) and (41) into Eq. (39) and use some simple mathematics, one
can get

p(xR,xI)=(Z0+∆Z)−1(F0 +∆F) (44)

If the spectral radius of (Z0)
−1∆Z is less than 1, (Z0 +∆Z)−1 can be expanded by

employing the Neumann series

(Z0 +∆Z)−1 = (Z0)
−1 +

∞

∑
γ=1

(Z0)
−1(−∆Z(Z0)

−1)γ (45)

Thus, Eq. (44) can be expressed as

p(xR,xI) = (Z0)
−1F0 +(Z0)

−1∆F+
∞
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(Z0)
−1(−∆Z(Z0)

−1)γ∆F
(46)
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By neglecting the higher-order terms, Eq.(46) can be rewritten as

p(xR,xI) = (Z0)
−1F0 +(Z0)

−1
∆F− (Z0)

−1
∆Z(Z0)

−1F0 (47)

Substitute Eqs (42) and (43) into Eq. (47) and use some simple mathematics, one
can get
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where
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−1F0,
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By applying the random moment method to Eq. (48), the expectation and variance
of p(xR,xI) can be obtained and expressed as

E
(
p(xR,xI)

)
= EF(xI) = p0(xI) (50)
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According to Eqs (24) and (25), E
(
p(xR,xI)

)
and V

(
p(xR,xI)

)
can be approximat-

ed by the first-order Chebyshev polynomials
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where
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By applying the MCM to Eqs. (52) and (53), the lower and upper bounds of expec-
tation and variance of p(xR,xI) can be calculated and expressed as

E
(
p(xR,xI)

)
= EF = min

x∈xI
{EF(x)}

E (p(xR,xI)) = EF = max
x∈xI
{EF(x)} (56)

V
(
p(xR,xI)

)
= VF = min

x∈xI
{VF(x)}

V (p(xR,xI)) = VF = max
x∈xI
{VF(x)} (57)

5.3 Numerical analysis of a 2D u-shape acoustic tube

A 2D u-shape acoustic tube depicted in Fig. 2 is considered. The u-shape acoustic
cavity is filled with air, and the diameter of the circular cross-section is 0.1 m. A
discontinuous normal velocity excitation vn is loaded on the left top side of the
u-shape tube, and other edges are treated as perfectly rigid. The u-shape tube is
modeled by the FEM with 136 quadrilateral elements and 175 nodes. Points 1∼35
are located along the central axis of the u-shape tube model.

Figure 2: The 2D u-shape acoustic tube.



236 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.3, pp.221-246, 2015

(a)

(b)
Figure 3: The lower and upper bounds of expectation and variance of the sound
pressure’s imaginary part along the central axis ( f =150 Hz): (a) expectation; (b)
variance.

Considering the uncertainty in the properties of the air caused by the changes of
environment temperature, the sound speed c and the density ρ of air are treated
as interval uncertain parameters. The interval of the sound speed c is set to be
[334.3, 349.1], and the interval of the density ρ of air is set to be [1.164, 1.269].
The discontinuous normal velocity excitation vn is considered as a random param-
eter normally distributed, whose expectation is 0.1m/s, and the coefficient of varia-
tion is 4%.

All simulations about this u-shape tube model are carried out by using MATLAB
R2014a on a 3.60 GHz Intel(R) Core (TM) CPU i7-4790. The lower and upper
bounds of expectation and variance of the sound pressure at the points 1∼35 are
calculated by using HCPM and HPM, and the reference results are obtained by
using the Monte Carlo method (MCM). In the Monte Carlo simulation, 104 sam-
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(a)

(b)
Figure 4: The lower and upper bounds of expectation and variance of the sound
pressure’s imaginary part along the central axis ( f =250 Hz): (a) expectation; (b)
variance.

ples of the random parameter are firstly conducted to calculate the expectation and
variance, 103 samples of the interval parameters are then conducted to calculate the
lower and upper bounds of the expectation and variance. Thus, the total number
of samples to get the reference results is 107. The lower and upper bounds of ex-
pectation and variance of the sound pressure’s imaginary part at the points 1∼35
are shown in Fig. 3 for frequency f =150Hz, Fig. 4 for frequency f =250Hz, Fig.
5 for frequency f =350Hz. It can be found from Figs. 3∼5 that the bounds of
expectation yielded by HCPM and HPM match the reference bounds perfectly, and
the bounds of variance yielded by HCPM match the reference bounds more closely
than that yielded by HPM.

To investigate the accuracy of HCPM and HPM for the prediction of acoustic field
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(a)

(b)
Figure 5: The lower and upper bounds of expectation and variance of the sound
pressure’s imaginary part along the central axis ( f =350 Hz): (a) expectation; (b)
variance.

with random and interval parameters more clearly, the global error is defined as

GE =

∫
Ω
( fM− fH)

2dΩ∫
Ω

f 2
MdΩ

(58)

where GE represents the global error, fM represents the result calculated by MCM,
fH represents the result calculated by HCPM or HPM.

On the central axis, the global errors of the bounds of expectation and variance
of the sound pressure’s imaginary part are calculated and listed in Table 1, the
considered frequency is 250Hz. In Table 1, “LB” denotes the lower bounds, and
“UB” denotes the upper bounds. It can be seen from Table 1 that the global errors of
the results calculated by HCPM and HPM are both acceptable; the global errors of
the expectations are smaller than that of the variances, which is mainly because of
the relation between the variance and the square of expectation; the global errors of
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HCPM are smaller than that of HPM, thus we can get that HCPM has an advantage
over HPM in accuracy for the prediction of acoustic field with random and interval
parameters.

Table 1: The global errors of the bounds of expectation and variance of the sound
pressure’s imaginary part on the central axis ( f =250Hz).

GEs of expectations GEs of variances
HCPM HPM HCPM HPM

LB 2.85E-05 2.16E-04 5.09E-05 2.60E-03
UB 2.44E-05 1.81E-04 9.23E-04 3.20E-03

To further investigate the accuracy of HCPM and HPM for the prediction of acous-
tic field with random and interval parameters, we increase the fluctuation of the
uncertain parameters. The intervals of sound speed c and air density ρ are set to
be [325.2, 357.5] and [1.110, 1.342], respectively. The expectation of the normally
distributed velocity excitation vn is 0.1m/s, and the coefficient of variation is set to
be 8%. Fig. 6 shows the lower and upper bounds of expectation and variance of
the sound pressure’s imaginary part at the points 1∼35, the considered frequency is
250Hz. It can be seen from Fig. 6 that the bounds of the expectation and variance
calculated by HPM deviate from the reference bounds seriously, while the bound-
s of the expectation and variance calculated by HPCM still match the reference
bounds well. Thus, we can conclude that HCPM can achieve higher accuracy than
HPM for the prediction of acoustic field with larger parametric uncertainties.

As previously stated, due to the neglect of higher order terms of the Taylor series
and the Chebyshev polynomials, although the HCPM can achieve better accuracy
than HPM, the application of HCPM is still limited to the analysis of uncertain
problem with small parametric uncertainty. For the analysis of uncertain problem
with large parametric uncertainty, the higer order terms of the Taylor series and the
Chebyshev polynomials are available.

5.4 Numerical analysis of the 2D acoustic cavity of a van

The prediction of interior acoustic field of a vehicle is a hotspot issue in the research
field of vehicle engineering. Numerical results for the prediction of interior acoustic
field can provide valuable information for the optimization of noise in the vehicle.

Fig. 7 illustrates the 2D conceptual acoustic cavity model of a van with dimen-
sions 2969× 1493 mm. The acoustic cavity is filled with air, and it is modeled
by FEM with 260 quadrilateral elements and 318 nodes. Considering the changes



240 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.3, pp.221-246, 2015

(a)

(b)
Figure 6: The lower and upper bounds of expectation and variance of the sound
pressure’s imaginary part along the central axis ( f =250 Hz, with larger-fluctuation
uncertain parameters): (a) expectation; (b) variance.

of environment temperature, the sound speed c and the density ρof air are treated
as interval uncertain parameters, and the intervals of them are [331.3,346.1] and
[1.184,1.293], respectively. A discontinuous and normally distributed velocity ex-
citation vn is imposed on the front bottom of the acoustic cavity. The expectation of
vn is 0.1m/s, and the coefficient of variation is 4%. The admittance coefficient An

along the Robin boundary ΓR at the front windshield is also considered as a normal-
ly distributed parameter, and the expectation of it is 0.0015m/Pa.s, the coefficient
of variation is 4%. Points 1∼10 are located near the driver and passenger.

In this numerical example, all simulations are carried out by using MATLAB R2014a
on a 3.60 GHz Intel(R) Core (TM) CPU i7-4790. The bounds of expectation and
variance of the sound pressure’s real and imaginary parts at points 1∼10 are calcu-
lated by using HPM and HCPM, reference results are obtained with Monte Carlo
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Figure 7: The 2D acoustic cavity model of a van.

(a)

(b)
Figure 8: The lower and upper bounds of expectation of the sound pressure’s imag-
inary and real part at points 1∼10 ( f =150 Hz): (a) imaginary part; (b) real part.
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(a)

(b)
Figure 9: The lower and upper bounds of variance of the sound pressure’s imagi-
nary and real part at points 1∼10 ( f =150 Hz): (a) imaginary part; (b) real part.

simulation. In the Monte Carlo simulation, 104 samples of the random parameters
are conducted to calculate the expectation and variance, and 103 samples of the
interval parameters are conducted to calculate the bounds of the expectation and
variance, thus the total number of samples is 107. The lower and upper bounds of
expectation and variance of the sound pressure’s real and imaginary parts at points
1∼10 are shown in Figs. 8 and 9, respectively; the considered frequency is 150 Hz.
It can be seen from Figs. 8(a) and 9(a) that the bounds of the expectation and vari-
ance of the sound pressure’s imaginary part calculated by the two methods match
the reference bounds very well. From Fig. 8(b), we can see that the bounds of the
expectation of the sound pressure’s real part calculated by HCPM match the refer-
ence bounds more closely than that calculated by HPM; from Fig. 9(b), we can see
that the bounds of the variance of the sound pressure’s real part calculated by HPM
significantly deviate from the reference bounds, while the bounds of the variance of



A New Hybrid Uncertain Analysis Method 243

the sound pressure’s real part calculated by HCPM are still in good agreement with
the reference bounds; thus we can conclude that HCPM has achieved more excel-
lent accuracy than HPM. Comparing Figs 8(a) and 9(a) with Figs. 8(b) and 9(b),
we can figure out that the bounds of the expectation and variance of the sound pres-
sure’s real part calculated by the two methods show perfect agreement with their
reference bounds, while the bounds of the expectation and variance of the sound
pressure’s imaginary part calculated by the two methods show relatively mediocre
agreement with their reference bounds, which may be because that the modules
of the sound pressure’s imaginary part are much smaller than that of the sound
pressure’s real part, and the corresponding relative errors become much larger.

The computational efficiency is also an important index for evaluating the numer-
ical methods’ performances. Execution times of HCPM and HPM for calculating
the expectation and variance of the sound pressure at points 1∼10 are listed in Table
2, the considered frequency is 150Hz. It can be seen from Table 2 that the execution
times of HCPM is a bit longer than that of HPM, but considering the improvement
in accuracy and the excessive computational cost of MCM , the additional compu-
tational cost of HCPM is acceptable.

Table 2: Execution times to calculate the expectation and variance.

HCPM HPM MCM
Execution times to calculate expectation 0.608 s 0.343 s

About 8 daysExecution times to calculate variance 0.686 s 0.374 s

6 Conclusions

In this paper, a new hybrid uncertain analysis method termed as hybrid Chebyshev-
perturbation method (HCPM) is proposed for the uncertain problems involving ran-
dom and interval parameters. In HCPM, the perturbation method based on the
first-order Taylor series is employed to deal with the random uncertainty, while the
first-order Chebyshev polynomials is used to deal with the interval uncertainty, and
they are integrated systematically. Specifically, a response function of the uncer-
tain system is firstly expanded with the first-order Taylor series by considering the
interval variables as constants, and the random moment method is applied to the ex-
panded function for obtaining the expressions of the expectation and variance; then
by using the first-order Chebyshev polynomials, the expectation and variance of the
function are approximated; by applying the Monte Carlo simulation to the expres-
sions of the expectation and variance approximated with the first-order Chebyshev
polynomials, the bounds of the expectation and variance are finally calculated.



244 Copyright © 2015 Tech Science PressCMES, vol.109-110, no.3, pp.221-246, 2015

The proposed method is demonstrated by application to a 2D u-shape acoustic tube
and the 2D acoustic cavity of a van with random and interval parameters; as a
comparison, HPM is applied to the two numerical examples, too; the Monte Carlo
method is employed to yield the reference results. Numerical results verify that
the accuracy of HCPM is better than that of HPM. The computational efficiency of
HCPM is a bit lower than that of the HPM, but the additional computational cost
is acceptable considering the excessive computational cost of MCM. It should be
pointed out that the application of HCPM is limited to the analysis of uncertain
problems with small parametric uncertainty, because only the first-order terms of
the Taylor series and the Chebyshev polynomials are considered. For the analysis
of uncertain problem with large parametric uncertainty, the higer order terms of the
Taylor series and the Chebyshev polynomials should be considered.
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