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Abstract: This paper presents a model (mathematical, rheological and numeri-
cal) for triggering and propagation of landslides presenting coupling between the
solid skeleton and the pore fluid. The model consists of two sub models, a depth in-
tegrated model incorporating the propagation equations, and a 1D model describing
pore pressure evolution. The depth integrated sub model is discretized using a set
of SPH nodes, each one having an associated finite difference mesh for discretiz-
ing the pore pressure evolution. The model we propose differs from other depth
integrated models with coupled pore pressures proposed in the past in the way pore
pressures are described in the soil mass. Here, we will not restrict the analysis to
an assumed shape function fulfilling boundary conditions, but we will rather use a
full approximation of pore pressures inside the landslide.
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vertical pore pressure, frictional fluid rheological model.

1 Introduction

Landslides cause severe economic damage and a large number of casualties every
year around the world. Engineers and geologists need to understand and predict
their properties, such as velocity, depth and run out distance. In addition to experi-
ence gained on similar cases, predictions require the application of mathematical,
constitutive/rheological and numerical models.

In some cases, coupling between solid skeleton and fluids filling its voids is impor-
tant, and properties such as run out and velocity depend on it. And because of pore
pressures, friction seems to be smaller than that of the material.

Therefore, the mathematical model –the balance of mass and momentum equations
– has to be able to reproduce this coupling and the evolution of pore pressures
inside the landslide mass.
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Depth integrated models present a good compromise between accuracy and com-
putational cost, the 3D problem has been reduced to a 2D one. They have been
extensively used since the pioneering work of Savage and Hutter (1989, 1991),
being worth mentioning the work of Iverson and Denlinger (2001), Hutter and
Koch (1991), Naaim, Vial, and Coture (1997), Laigle and Coussot (1997), Pit-
man, Nichita, Patra, Bauer, Sheridan, and Bursik (2003), McDougall and Hun-
gr (2004), Rodríguez Paz and Bonet (2005), Mangeney-Castelnau, Vilotte, Bris-
teau, Pertheme, Bouchout, Simeoni, and Yerneni (2003), Lajeunesse Mangeney-
Castelnau, and Vilotte (2004), Pastor, Quecedo, Fernández Merodo, Herreros,
González, and Mira (2002), D’Ambrosio, Iovine, Spataro, and Miyamoto (2007),
Pastor, Haddad, Sorbino, Cuomo, and Drempetic (2009).

In most of the mentioned models, pore pressures are not taken into account. We can
mention here the work of Hutchinson (Hutchinson 1986), who proposed a sliding
consolidation model to predict run out of landslides, Iverson, and Denlinger (2001),
Pastor, Quecedo, Fernández Merodo, Herreros, González, and Mira (2002), and
Quecedo Quecedo, Pastor, Herreros, and Fernández Merodo (2003).

The effect of pore pressure has been described by Major and Iverson (1999), who
provided experimental data describing the evolution of basal pore water pressure in
debris flows, Iverson (2005). A more general approach –requiring more complex
models- includes two fluids. Such models have been proposed by by Pitman and
Le (2005) and Pudasaini (2012).

In the case of depth integrated models, all information concerning vertical profiles
was condensed on a single variable describing basal pore pressure, and its evolution
was modelled using simplified approaches.

The purpose of this paper is to propose a depth integrated model including vertical
profiles of pore pressures. The latter are discretized using a simple finite differ-
ences explicit scheme, while the former model is discretized using a SPH model.
In this way, problems such as making zero basal pore pressures -when the land-
slide crosses a terrain with very high permeability or a rack- can be modelled with
more precision. Pore pressures are made zero at the base (imposing the boundary
condition on the node located at the bottom), but are not zero at the whole mass
of the soil. Indeed, when the avalanche leaves the zone, the boundary condition is
changed again to zero flux. In models based on a single pore pressure variable it is
not possible to take this effect into account.

Concerning pore pressure evolution, it is influenced by:

(i) Changes on landslide depth – because they generate changes in total vertical
stresses.
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(ii) Changes of soil dilatancy – the critical state line depends on the rate of de-
viatoric strain, as suggested independently by Pailha and Pouliquen (2009)
and Pastor, Blanc, and Pastor (2009)

(iii) The basal surface over which the landslide propagates, which can be satu-
rated, and generate a flow of water into the landslide mass resulting on a
increase of pore pressure (or viceversa if the basal terrain is dilatant).

The paper is structured as follows:

(i) First of all, in Section 2, we describe the mathematical model, which is based
on Biot-Zienkiewicz model describing the coupling between solid skeleton
and pore fluid. Equations for pore pressure evolution on 1D profiles are
derived as a particular case, and a succinct description of the depth integrated
model used is provided.

(ii) Section 3 is devoted to rheological modelling. We concentrate on diffuse
failure mechanisms where the material is not necessarily of softening type.
Then, we analyze additional sources of dilatancy – breaking of grains and
rate of shear strain- and finish by describing a model for frictional fluids.

(iii) Section 4 deals with discretization, and presents the SPH model and the Fi-
nite Difference schemes associated to each SPH node.

(iv) Finally, Section 5 is devoted to present a number of examples and applica-
tions.

2 Mathematical model

2.1 Introduction

Geomaterials are mixtures of solids grains, liquids (water) and gases (air), present-
ing a strong interaction between their constituents. Therefore, mathematical models
aiming to reproduce both triggering and propagation of landslides, have to take it
into account. It is interesting to notice that two different paths have been followed
to model the behavior of landslides. The former, based on geomechanics assumes
the mixture is a solid, with small relative velocities of the fluid and gas phases rela-
tive to the solid skeleton, while the latter, considers the avalanching mass as a fluid
with a particular rheological behavior.

In the case of the solid approach - geomechanical - we have to mention the pioneer-
ing work of Biot [Biot (1941); Biot (1955)] for linear elastic materials. This work
was followed by further development at Swansea University, where Zienkiewicz
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and co-workers (Zienkiewicz and Shiomi 1984, Zienkiewicz, Chan, Pastor, Paul,
and Shiomi (1990), Zienkiewicz, Xie, Schrefler, Ledesma, and Bicanic (1990),
Zienkiewicz, Chan, Pastor, Shrefler, and Shiomi (2000) extended the theory to non-
linear materials and large deformation problems. It is also worth mentioning the
work of Lewis and Schrefler (1998), Coussy (1995) and de Boer (2000). It can
be concluded that the geotechnical community have incorporated coupled formula-
tions to describe the behaviour of foundations and geostructures. Indeed, analyses
of earth dams, slope failures and landslide triggering mechanisms have been carried
out using such techniques during last decades.

In the case of the landslide propagation, coupled formulations have arrived later.
We can mention here the work of Hutchinson [Hutchinson (1986)], who proposed a
sliding consolidation model to predict run out of landslides, Iverson, and Denlinger
(2001), Pastor, Quecedo, Fernández Merodo, Herreros, González, and Mira (2002),
and Quecedo Quecedo, Pastor, Herreros, and Fernández Merodo (2003).

2.2 General model

The general model is based on the assumption that the mixture is composed of a
solid phase and several fluid phases. The equations are: (i) balance of mass and
(ii) balance of linear momentum for the constituents and the mixture, (iii) con-
stitutive or rheological laws describing the material behaviour of all constituents,
and (iv) kinematics relations linking velocities to rate of deformation tensors. The
main problem with this approach is the computational cost, because of the number
of unknowns and the difficulty of having to track all interfaces. The main advan-
tage is its general character, as it can describe phenomena involving large relative
displacements between solid and fluid phases. This model has been described by
Pastor, Quecedo, Fernández Merodo, Herreros, González, and Mira (2002).

2.3 Biot-Zienkiewicz model

A first simplified model can be derived by assuming that the velocity of fluid phases
relative to solid skeleton is small. In this case the equations can be cast in terms
of the displacements or velocities of solid skeleton, the velocities of the pore water
relative to the skeleton and the averaged pore pressure of the interstitial fluids. This
model, proposed by Zienkiewicz and Shiomi (1984) for the case of saturated soils is
referred to as u− pw−w. Its main variables are (i) the velocity of solid skeleton vs,
(ii) the Darcy velocity of the pore water, w and the pore pressure pw. Under certain
assumptions, which were analyzed for soil mechanics problems by Zienkiewicz
and co-workers, it is possible to eliminate the Darcy velocity from the model. This
is the most celebrated u− pw model of Zienkiewicz, which has been widely used
in geomechanics being the base of many computer codes. The resulting model



Modelling of Landslides: An SPH Approach 187

consists of the following equations:

• Balance of mass and momentum of pore water, which is obtained eliminating
the Darcy’s velocity of the pore water:

divv+div
{

kw

(
−ρw

dv
dt

+ρwb−gradpw

)}
+

1
Q

d pw

dt
= 0 (1)

where 1
Q =

[
1−n
Ks

+ n
Kw

]
is a mixed volumetric stiffness of the mixture.

• Balance of momentum of the mixture

ρ
dv
dt

= ρb+divσ (2)

In above, v is the velocity of the soil skeleton, kw the Darcy’s permeability, ρw and
ρ the densities of the water and the mixture, b the body forces, pw the pore pressure
and σ the total stress tensor.

2.4 The propagation-consolidation approximation

So far we have described general models which can be applied to general prob-
lems. The analysis of landslides, due to their shape and geometrical properties
allows some interesting simplifications. First of all, we will arrive to “propagation-
consolidation” models, where pore pressure dissipation takes place along the nor-
mal to the terrain surface, and next, we will describe depth integrated models,
where the three dimensional problem is transformed into a two dimensional for-
m. The propagation-consolidation model can be derived assuming that the velocity
and pressure fields can be split into two components, i.e., propagation and consoli-
dation as v = v0 + v and pw = pw0 + pw1.

The equations of the propagation-consolidation model are:

ρ
dv0

dt
= ρb+divσ (3)

with divv0 = 0, and

d pw

dt
=

∂

∂x3

(
cv

∂ pw

∂x3

)
(4)

where cv is the coefficient of consolidation.

When applied to runout problems, we have to make two changes:
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(i) As the soil column varies its height h, the pore pressure increases by an
amount of

ρg
∂h
∂ t

(
1− x3

h

)
(5)

and

(ii) We have to account for large deformations in the X3 axis.

The final equation describing the vertical consolidation is:

d pw

dt
=

∂

∂x3

(
cv

∂ pw

∂x3

)
+ρg

∂h
∂ t

(
1− x3

h

)
(6)

It is interesting to note that two time scales exist in the equation, (i) a consolidation
time, and another time related to the rate of variation of h. The solution depends on
the ratio between both time scales.

2.5 Deth integrated equations

Many flow-like catastrophic landslides have average depths which are small in
comparison with their length or width. In this case, it is possible to simplify the
3D propagation-consolidation model described above by integrating its equations
along the vertical axis. The resulting 2D depth integrated model presents an excel-
lent combination of accuracy and simplicity providing important information such
as velocity of propagation, time to reach a particular place, depth of the flow at a
certain location, etc.

Depth integrated models have been frequently used in the past to model flow-like
landslides. It is worth mentioning the pioneering work of Savage and Hutter (1991);
and the contributions of Laigle and Coussot (1997), Mc Dougall and Hungr (2005),
and Pastor, Quecedo, Fernández Merodo, Herreros, González, and Mira (2002),
and Quecedo, Pastor, Herreros, and Fernández Merodo (2003). We will use the
reference system given in Figure 1 where we have depicted some magnitudes of
interest which will be used in this section.

To derive a quasi lagrangian formulation of the depth integrated equations, we will
first introduce a “quasi material derivative” as:

d̄
dt

=
∂

∂ t
+ v̄ j

∂

∂x j
(7)

from where we obtain the “quasi lagrangian” form of the balance of mass, depth
integrated equation as

d̄h
dt

+h
∂ v̄ j

∂x j
= eR (8)
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Figure 1: Reference system and notation used in the analysis

where eR is the erosion rate [L−1] and h is the flow depth

The balance of momentum equation is

h
d̄
dt

v̄i−
∂

∂xi

(
1
2

b3h2
)
=

1
ρ

∂

∂x j

(
hσ̄
∗
i j
)
+bih+

1
ρ

∣∣NB
∣∣ tB

i − eRv̄i (9)

where we have introduced the decomposition

σi j =−p̄δi j +σ
∗
i j (10)

with p̄ = 1
2 ρb3h and σ̄∗i j = σ̄i j + p̄δi j.

The term tB
i is the i-th component of the normal stress acting on the basal surface,

and
∣∣NB
∣∣ is

∣∣NB
∣∣=( ∂Z

∂x1

2

+
∂Z
∂x2

2

+1

)1/2

where Z is the height of the basal surface.

It is important to note that we have to include the effect of centripetal accelerations,
which can be done in a simple manner by integrating along the vertical the balance
of momentum equation, and assuming a constant vertical acceleration given by
V 2/R, where V is the modulus of the averaged velocity and R the main radius of
curvature in the direction of the flow.
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Concerning the consolidation equation, we will keep the full profile along X3,
therefore:

d pw

dt
=

∂

∂x3

(
cv

∂ pw

∂x3

)
+ρg

∂h
∂ t

(
1− x3

h

)
(11)

The model will be 2D (depth integrated), but with a 3D resolution of the pore
pressure.

It is important to note that the results obtained above depend on the rheological
model chosen, from which we will obtain the basal friction and the depth integrated
stress tensor.

3 Modelling fluidized geomaterials behaviour

3.1 Introduction

Classical geomechanical constitutive equations are used most of the times to model
the behaviour of solid soils, i.e., before fluidization has occurred. This field has
progressed very much in the last decades, from classical plasticity models to more
advanced hypoplastic or generalized plasticity models.

There are excellent texts and state of art papers devoted to describe constitutive
models and their use in geotechnical engineering. We can mention here the texts
of Desai (1984), Cambou and Di Prisco (2000), Kolymbas (2000), Zienkiewicz,
Chan, Pastor, Shrefler, and Shiomi (2000) among others, and the references provid-
ed therein.

On the other hand, models describing the behaviour of fluidized materials have
been developed within the framework of rheology.

Rheological models have been developed since the work of Bingham (1922). In
the case of cohesive fluids, exhibiting a yield stress, it is worth mentioning the con-
tributions of Hohenemser and Prager (1932) and Oldroyd (1947) who generalized
Bingham model for general stress conditions (see also Malvern (1969), Coussot
(1994, 1997, 2005), Dent and Lang (1983), and Locat (1997).

If we assume that the fluid is isotropic, and we want to express the stress as a
function of the rate of deformation tensor, it is possible to use the so called “repre-
sentation theorems”. Following Malvern the stress tensor can be written as:

σ =−pI−Φ0I +Φ1d +Φ2d2 (12)

where p is a “thermodynamic” pressure, I the identity tensor, d the rate of defor-
mation tensor, and Φk with k = 0.2 scalar functions of the invariants of d:

Φk = Φk (I1d , I2d , I3d) (13)
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The invariants are defined as:

Ikd =
1
k

tr(dk) (14)

In most of models it is assumed that the flow is incompressible, and therefore
I1d = 0. This is consistent with the decomposition into propagation and vertical
consolidation described in the preceding Section, and also with the fact that soils
fail at constant volume. However, the reader should be aware that this is just an
assumption which has proven accurate only under certain assumptions.

In some cases, such as the Bingham model, the fluid is assumed to have cohesion,
i.e., a stress level below which no flow occurs. From a modelling point of view, this
assumption introduces a computational problem, because the stresses are difficult
to obtain, and special techniques have to be used. For an example, see Muravleva,
Muravleva, Georgiu, and Mitsoulis (2010).

Therefore, the consistent study of both the triggering and propagation phases presents
the problem of having to use a constitutive model for the first part of the analysis
and a rheological model for propagation.

As an alternative, Perzyna viscoplasticity provides a suitable framework within
which both solid and fluid behaviour can be modelled. In a simple shear flow, a
simple variant of Perzyna model can be written as:

ε̇
vp
xy = γ (σxy−σy)

n (15)

where γ is a fluidization parameter and n a constant of the model which will be
assumed to be 1.

And the Bingham fluid

σxy = σy +µε̇
vp
xy (16)

where σy is the yield stress, and µ the viscosity.

The similitude of both formulations is clear. Of course, care has to be taken as
a fluidized granular material can be compared to a fluid at early stages, but if the
energy increases, it will become close to a granular gas. The approach of using
viscoplastic models is therefore limited.

Moreover, models based on viscoplasticity do not present the ill-posedness nature
exhibited by classical plasticity based models, where wave propagation velocities
become imaginary in the softening regime [Sluys (1992)].
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3.2 Perzyna models for soils

In the Perzyna model, the relation between the stress tensor and the strain tensor is
given by

∂σσσ

∂ t
= De :

(
∂εεε

∂ t
− ∂εεεvp

∂ t

)
(17)

Above, De is the elastic constitutive tensor and εεε the strain tensor. The superscrip-
t vp indicates the viscoplastic component of the strain tensor which is given by
[Perzyna (1966)]

∂εεεvp

∂ t
= γm〈φ (F)〉 (18)

In equation (18):

• the symbol 〈. . .〉 represents the Macaulay brackets:

{
〈ϕ〉= ϕ if ϕ ≥ 0

= 0 otherwise

• γ is the fluidity parameter

• m is a unit norm tensor characterizing the direction of the plastic flow

• φ (F) is an arbitrary function

We will choose φ (F) as

φ (F) =

(
F−F0

F0

)N

(19)

where N is a model parameter and F a function describing a convex surface in the
stress space. The value F0 characterizes the stress below which no viscoplastic flow
occurs.

To complete the Perzyna model, the function F has to be defined. In this paper, we
will use two different functions F representing purely cohesive materials and clays:

a) The surface determined by the Von Mises yield criterion

b) The yield surface of the modified Cam-Clay model

a) The former yield criterion depends only on the second invariant of the deviatoric
stress tensor, and is written as:

f = q−Y = 0 (20)
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where q is related to J2 by q =
√

3J2 and Y is a measure of the material cohesion.

We will choose F as

F = q (21)

And the initial size of the yield surface will be given by

F0 = Y0 (22)

The size of the yield surface will vary according to a suitable hardening/softening
law. Here we will assume that the size of the yield surface will be proportional to
the increase of the equivalent deviatoric plastic strain, ε̄vp

∂Y0

∂ t
= H

∂ ε̄vp

∂ t
(23)

where H is the softening modulus.

We will also assume an associated flow rule, which means that the plastic potential
surface g(σσσ) = 0 coincides with the yield surface F (σσσ , internalvariables) = 0 and
in consequence:

g = q and m =
∂g
∂σσσ

(24)

b) The yield surface of the modified Cam-Clay model has the form of an ellipsoid
in the p−q plane and it is defined as (Burland 1960):

q2 +M2 p(p− pc) = 0 (25)

where

p is the hydrostatic pressure

q is the deviatoric stress

M is the slope of the failure line in the p−q plane

Next, we will choose

F =
1
pc

(
q2 +M2 p(p− pc)

)
(26)

and

F0 = pc (27)
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The hardening/softening rule chosen is given by the relation between the size of the
yield surface pc and the plastic volumetric strain, ε

p
v :

d pc

dε
p
v
=

(
1+ e
λ −κ

)
pc (28)

where:

d pc

dε
p
v
=

(
1+ e
λ −κ

)
pc (29)

e is the void ratio of the material

λ is the slope of the ‘Normal Consolidation Line’

and κ is the slope of the line representing the unloading process in the p−q plane.

The flow rule will be associated, and therefore:

g =
1
pc

(
q2 +M2 p(p− pc)

)
and m =

∂g
∂σσσ

/

∣∣∣∣ ∂g
∂σ

∣∣∣∣ (30)

iii) The last governing equation is the kinetic relation between strain and velocities.
This equation allows expressing the rate of deformation in terms of the gradient of
velocity

∂εi j

∂ t
=

1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
(31)

where vi is the velocity along the xi axis.

The reader should be aware that the presented model is only valid for small defor-
mations, and should be extended using a suitable objective form of the stress rate,
such as that of Jaumann. However, this paper aims only to assess the capability of
the

3.3 Depth integrated rheological models for fluidized soils

When obtaining the depth integrated equations described in the preceding Section,
we have lost the flow structure along the vertical, which is needed to obtain both
the basal friction and the depth integrated stress tensor. A possible solution which
is widely used consist of assuming that the flow at a given point and time, with
known depth and depth averaged velocities has the same vertical structure than a
uniform, steady state flow. In the case of flow-like landslides this model is often
referred to as the infinite landslide, as it is assumed to have constant depth and
move at constant velocity along a constant slope. This infinite landslide model is
used to obtain necessary items in our depth integrated model. We will present next
some models frequently found in landslide propagation modelling.
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3.3.1 Bingham fluid

In the case of Bingham fluids, there exists an additional difficulty, because it is not
possible to obtain directly the shear stress on the bottom as a function of the av-
eraged velocity. The expression relating the averaged velocity to the basal friction
for the infinite landslide problem is,

v̄ =
τBh
6µ

(
1− τY

τB

)2(
2+

τY

τB

)
(32)

where µ is the viscosity, τY the yield stress, and τB the shear stress on the bottom.

The profiles of velocities of Bingham fluids in infinite landslide models are char-
acterized by the existence of a plug, or region where the stress is below the yield
stress. No shear deformation appears, and the upper part of the flow moves rigidly,
hence its name (Fig.2)

Bingham’s fluid “Infinite landslide”  

τ

( )sing h zρ θ−

sinB ghτ ρ θ=

z

τ

Bτ

Ph

yτ

S

B

P

Sh

z

x

Shear zone

Plu

g

Sh

Ph

sin P Yg hρ θ τ= sin

Y
Ph

g

τ

ρ θ
=

S Ph h h= −

Figure 2: Velocity profile of a Bingham fluid in an infinite landslide

3.3.2 Frictional fluid

One simple yet effective model is the frictional fluid, especially in the case where it
is used within the framework of coupled behaviour between soil skeleton and pore
fluid. Without further additional data it is not possible to obtain the velocity dis-
tribution. This is why depth integrated models using pure frictional models cannot
include information concerning depth integrated stresses σ̄ . Concerning the basal
friction, it is usually approximated as τb =−σv tanφ

v̄i
|v̄| .
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where σv is the normal stress acting on the bottom. Sometimes, when there is a
high mobility of granular particles and drag forces due to the contact with the air
are important it is convenient to introduce the extra term. proposed by Voellmy’s
[Voellmy (1955)], which includes the correction term ρgv2

ξ
where ξ is the Voellmy

turbulence parameter.

In some cases, the fluidized soil flows over a basal surface made of a different
material. If the friction angle between both materials δ is smaller than the friction
angle of the fluidized soil, the basal shear stress is given by:

τb =−ρ
′
bgh tanφb

v̄i

|v̄|
(33)

where the basal friction φb is

φb = min(δ ,φ) (34)

This simplified model can implement the effect of pore pressure at the basal surface.
In this case, the basal shear stress will be:

τb =−
(

σ
′
v tanφb− pb

w

) v̄i

|v̄|
(35)

We can see that the effect of the pore pressure is similar to decreasing the friction
angle.

3.4 A viscoplastic based approach to rheological behaviour of fluidized soils

We will illustrate here the idea of describing fluidized soil rheology using Perzyna
viscoplasticity. We have chosen the case of an infinite landslide, and analyzed
it using the stress-velocity mixed finite element approach described in di Prisco,
Pastor, and Pisanò (2011) and Pisanò and Pastor (2011).

In the case of the Von Mises model, the results are shown in Fig. 3 below

We can notice the formation of a solid plug in the upper region of the flow, where
the material has not yielded.

In the case of a Cam Clay model, the results are given in Fig. 4.

We can see that velocity profile differs from that of the purely cohesive soil, being
close to a straight line.

4 Numerical models

4.1 Introduction

This section is devoted to present two of the models which we are using presently
to model landslides. We have chosen the SPH (Smoothed particle hydrodynamics),
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Figure 3: Velocity profile obtained using a Perzyna Von Mises model

Figure 4: Velocity profile in an infinite landslide obtained with a Cam Clay Perzyna
model.

a numerical technique allowing us the possibility to deal with large deformations
avoiding expensive remeshing operations.

The Smoothed Particle Hydrodynamics (SPH) was first applied to model astrophys-
ical problems [Gingold and Monaghan (1977); Lucy (1977)]. From there, it was
extended to classical hydrodynamics problems [Liu and Liu (2003)]. Today SPH is
used in many areas, among which it is worth mentioning magneto-hydrodynamics
[Morris 1996)], multi-phase flows [Monaghan and Kocharyan (1995)], viscous
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flows [Takeda, Miyama, and Sekiya (1994)], quasi-incompressible flows [Mon-
aghan (1994); Morris, Fox, and Zhu (1997)], flows through porous media [Zhu,
Fox, and Morris (1997)], metal-forming [Bonet and Kulasegaram (2000)], im-
pact problems [Randles and Libersky (1996)], elastic dynamics problems [Gray,
Monaghan, and Swift (2001)], fast landslide propagation [McDougall (1998); M-
cDougall and Hungr (2004); Pastor, Haddad, Sorbino, Cuomo, and Drempetic
(2009)] and fluid structure interactions [Antoci, Gallati, and Sibilla (2007)]. Re-
cently and for the first time, SPH has been applied to soils problems involving soil-
water interaction [Bui, Sako, and Fukagawa (2007)] and failure [Bui, Fukagawa,
Sako, and Ohno (2008)].

Concerning the disadvantages and difficulties presented by the SPH method we
can mention (i) The boundary deficiency problems which can be solved by apply-
ing a normalization to the Smoothed Hydrodynamics method [Chen, Beraun, and
Carney (1999)], and (ii) the tensile instability which appear in dynamics problems
with material strength [Dyka, Brundsen, Schrott, and Ibsen (1995); Dyka and Ingel
(1997); Swegle, Hicks, and Attaway (1995)].

We will present two SPH based models, first a Taylor SPH model where we formu-
late the mathematical model in terms of effective stress, pore pressure and velocity,
and then, a depth integrated model which allows the approximation of consolida-
tion pore pressure in 3D.

4.2 A Taylor SPH model for landslide analysis

The Taylor-SPH model has been presented by the authors in Blanc and Pastor
(2010, 2011, 2012a, b).

The system of PDEs describing the behaviour of saturated soil are cast in terms of
three fields: velocities, stresses and pore pressures. As in all mixed formulation-
s, stability requires that the formulation satisfies the Babuska-Brezzi conditions.
In our case, we ensure the stability of the stresses and velocities using a Taylor-
Galerkin algorithm, whose stability has been shown by Codina (1998).

Coupled formulations have been shown to be unstable when displacements and
pore pressures are discretized using the same approximation bases, unless special
stabilization techniques are used.

Our SPH algorithm is based on the Fractional Step technique proposed by Chorin
(1968), which was initially devised to use standard time-stepping schemes in in-
compressible fluid dynamics problems.

In the case of incompressible fluids, the Fractional Step algorithm consists of:

• Integrating the velocity in time without imposing the incompressibility con-
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straint. We obtain an intermediate field v∗ which is not divergency free

• Next, v∗ is projected onto a divergence free space, which is done by solving
a pressure laplacian.

In the case of saturated geomaterials, the steps are the following:

• The intermediate velocity field v∗ is obtained from:

ρ
v∗−vn

∆t
= ρ

∆v∗

∆t
= ρb+divσσσ

′n (36)

v∗ = vn +
∆t
ρ

(
ρb+divσσσ

′n) (37)

• The projected velocity vn+1 follows from:

ρ
vn+1−v∗

∆t
=−gradpn+1

w (38)

vn+1 = v∗− ∆t
ρ

gradpn+1
w (39)

In above, we have used what is called a full pressure projection, as we have not
included the pressure gradient at time n in the first step. If we take the divergence
of equation (39), we arrive at:

divvn+1 = divv∗− ∆t
ρ

divgradpn+1
w (40)

from where,

−div(kwgradpn+1
w )+divvn+1 +

1
Q

d pn+1
w

dt
= 0 (41)

we obtain(
1
Q

1
∆t
−div(kwgrad)− ∆t

ρ
divgrad

)
pn+1

w =−divv∗+
1
Q

1
∆t

pn
w (42)

Therefore, the Fractional Step algorithm consists on:

– Obtaining the fractional velocity v∗ using (37)

– Solving (42) to obtain pn+1
w

– Finally, vn+1 is computed using (39).

Concerning discretization with SPH, the steps are the following:
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(i) The first step is solved casting (37) together with the constitutive equation as a
system of 1st order hyperbolic equations of the form

∂ϕ

∂ t
+divf = s̄ (43)

where ϕ is the vector of unknowns, f is the flux tensor and s̄ is the source vector.

The source terms originate from body forces, Jaumann-Zaremba terms and vis-
coplastic rate of deformation tensor. This system of equations will be solved using
an SPH version of the Runge-Kutta Taylor-Galerkin algorithm proposed by the
authors (Blanc et al. (2011)] for solid and soil dynamics problems, where the equa-
tions are first discretized in space and then in time.

The arrangement of the SPH nodes is similar to that proposed by Randles and
Libersky (2000). We will use an initial staggered node arrangement, which consist
on a double set of SPH nodes (Fig.5). We call the nodes of the first set, the ma-
terial SPH nodes, and the nodes of the second set, the auxiliary SPH nodes. It is
interesting to note that auxiliary nodes play the same role than Gauss points in the
finite element Taylor-Galerkin scheme. Thus each variable of the model is defined
at both material and auxiliary SPH nodes.

To approximate functions on the SPH nodes, only information coming from the
SPH auxiliary nodes will be used and, vice versa, to approximate functions on the
SPH auxiliary nodes, only information coming from the SPH nodes will be used.

Figure 5: SPH grid: material and auxiliary nodes

Values of the function φ and its spatial derivatives are approximated using the cor-
rective SPH method which has been introduced to overcome the boundary defi-
ciency problem (Chen et al. 1999). Using the corrective SPH method with the
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arrangement of SPH node presented above and the Taylor-Galerkin algorithm the
SPH tensile instability is avoided (Blanc 2010).

(ii) The second step FS2 of the algorithm consists of computing the pore pressures
at time tn+1 solving a linear system of algebraic equations which coefficients ma-
trix arises from the discretization of the left hand side term of equation (42). The
operator acting on pn+1

w is:(
1
Q

1
∆t
−div(kwgrad)− ∆t

ρ
divgrad

)
(44)

and involves discretization of the laplacian operator. We will use here the expres-
sion for the laplacian of scalar given by Schwaiger (2008):

∇
2 fI =

NJ

∑
J=1

2
mJ

ρJ
( f (xJ)− f (xJ))

(xIJ)α
WIJ,α

|xIJ|2
(45)

where xIJ = xJ − xI and WIJ,α is the derivative of the kernel with respect to space
coordinate α .

The discrete form of the pore pressure operator K can be represented by a n× n
matrix; n being the number of SPH nodes. The right-hand side of the equation
(45) is a vector of dimension n×1 which is easily obtained from the intermediate
velocity v∗ and the pore pressure at time n, pn

w. The system K · pn+1
w = RHS is

solved using a Preconditioned Jacobi Conjugate Gradient method.

Finally, in the third step, the projected velocity is obtained using equation (39) as:

vn+1 = v∗− ∆t
ρ

gradpn+1
w (46)

which is easily discretized using the Corrected SPH method.

4.3 A Depth integrated SPH model for landslide runout analysis

We will introduce a set of nodes {xK} with K = 1 . . .N and the nodal variables:

• hI height of the landslide at node I

• v̄I depth averaged, 2D velocity

• tb
I surface force vector at the bottom

• σ̄∗I depth averaged modified stress tensor

• P1I pore pressure at the basal surface
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If the 2D area associated to node I is ΩI , we will introduce for convenience:

• a fictitious mass mI moving with this node mI = ΩIhI

• and, an averaged pressure term p̄I , given by p̄I =
1
2 b3h2

I

It is important to note that mI has no physical meaning, as when node I moves,
the material contained in a column of base ΩI has entered it or will leave it as the
column moves with an averaged velocity which is not the same for all particles in
it.

There are several possible alternatives for the equations, according to the discretized
form chosen for the differential operators results. We will show those obtained with
the third symmetrised forms:

d̄hI

dt
= hI ∑

J

mJ

hJ
vIJgradWIJ (47)

where we have introduced vIJ = vI− vJ .

Alternatively, the height can be obtained once the position of the nodes is known
as:

hI = 〈h(xI)〉= ∑
J

hJΩJWIJ = ∑
J

mJWIJ (48)

The discretized balance of linear momentum equation is:

d̄
dt

v̄I =−∑
J

mJ

(
pI

h2
I
+

pJ

h2
J

)
gradWIJ

+
1
ρ

∑
J

mJ

(
σI

h2
I
+

σJ

h2
J

)
gradWIJ +b+

1
ρhI

∣∣NB
∣∣ tB

I

(49)

So far, we have discretized the equations of balance of mass and balance of mo-
mentum. The resulting equations are ODEs which can be integrated in time using
a scheme such as Leap Frog or Runge Kutta (2nd or 4th order).

Finally, we will have at each SPH node a 1D finite difference mesh which will be
used to model pore pressure dissipation. The FD scheme is explicit because of both
the simplicity and the speed of computation.

5 Examples and applications

5.1 Failure of a vertical slope under constant loading

We will present first an application of the Runge-Kutta Taylor-SPH algorithm de-
scribed in Section 4. The case we have selected consists of the failure of a vertical
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cut under constant loading is studied. An analytical solution exists for the failure
load of vertical slope and therefore it will give us an idea of the accuracy the Runge-
Kutta Taylor-SPH algorithm. The vertical cut is modeled using a bi-dimensional
approximation under plane strain conditions. The vertical cut is 10 meter high and
10 meters long. The footing is 5 meter width. Unlike the finite elements it is not
required to model the footing (Figure 17). The boundary conditions in the area of
the footing will represent the displacements due to the loading on the footing.

Figure 6: Sketch of the vertical cut and its discretization

The boundary conditions are (Figure 6):

• On the left-hand side Γ1 the nodes can only move along the vertical axe, thus
vx = 0 and σxy = 0

• On the bottom Γ2 the nodes are fixed, vx = 0 and vy = 0

• The right-hand side, Γ3, is the free-surface, thus σn = 0;τ = 0

• On the right part of the top, Γ4, the vertical velocity is imposed to represent
the displacement of the footing: vy =Vt and σxy = 0

• On the left part of the top, Γ5: vy = 0 and σxy = 0

The modulus of the velocity Vt increases constantly over time (Fig 7)

The material parameters are the elastic modulus: E = 1 ·105 Pa, the Poisson’s co-
efficient ν = 0.35, the density ρ = 2000 kg/m3.

The material is viscoplastic. The parameters of the Perzyna’s model and of the Von
Mises yield criterion are the fluidity parameter: γ = 2 s−1, the model parameter:
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Figure 7: Boundary conditions of the vertical cut

N = 1, the initial size of the yield surface Y0 = 200 Pa. In a first step the softening
modulus is equal to 0: H = 0 Pa in order to compare the failure load calculated by
the Runge-Kutta Taylor-SPH algorithm to the analytical failure load. In a second
step the softening modulus is H =−1 ·103 Pa.

The analytical failure load, Panalytical, for a Von Mises material is given by:

Panalytical =
2bY0√

3

In the Runge-Kutta Taylor-SPH algorithm, the failure load is calculated as:

Pcalculated =
1

NP

NP−1

∑
I=1

1
2
(σ22,I +σ22,I+1)‖xxxI,I+1‖

Where:

NP are the eleven SPH nodes located under the footing

SPH nodes I and I +1 are consecutive SPH nodes of the boundary surface

σ22,I is the vertical tension on SPH node I

xxxI,I+1 is the vector formed by SPH nodes I and I +1

In order to compare the results obtained with the new Runge-Kutta Taylor-SPH
algorithm to the analytical solution, the failure load is plotted in function of the
displacement at base of the rigid footing (Figure 8).

In the perfect plastic case where no softening occurs, the load-displacement rela-
tionship of the SPH gives a response in accordance to the analytical solution of the
problem. The curve rises linearly until 1000 N and then shows non-linear behavior,
which correspond to plastic loading, until it reaches the collapse load. The ana-
lytical failure load is 1154 N and the estimated failure load given by our model is
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Figure 8: Load-displacement curves: Analytical and computational solutions

between 1171 N and 1267 N. In the case with softening the curve observed in the
load-displacement relationship graph corresponds to the response imposed by the
constitutive model. Indeed once irreversible viscoplastic deformations occur, the
material starts to soften and then the failure load decreases.

The failure of the material is shown by the evolution of the deviatoric viscoplastic
strains in the vertical cut (Figure 9). The viscoplastic deformations are accumulated
in a sharp shear band clearly defined. The shear band has an orientation of 45◦

which corresponds to the solution of the problem. In the first part of the calculation,
there are any difference between the case of perfect viscoplasticity and the case with
softening. However at the end of the calculation the shear band is better defined in
the case with softening.

The failure of the vertical cut is well illustrated when plotting the displacement
contours on the deformed mesh (Figure 10). It appears two discontinuities where
failure occurs: at the middle of the top border and at the middle of the right border.
The right-upper triangle of the vertical cut is translated along the failure line repre-
sented by the shear band. The failure is sharper in the case with softening than in
the perfect viscoplastic case.

This case study shows how accurate is the Runge-Kutta Taylor-SPH algorithm. The
model is able to represent the sharp failure of a vertical cut under constant loading
of a rigid footing. The viscoplastic deformations reach 73 percents in the case of
perfect viscoplasticity and 60 percents in the case with softening. Thus the algo-
rithm is useful to do a geotechnical analysis of a vertical cut in large deformation
theory.

5.2 Breaking of a dam: frictional fluid

The first example we will consider here is that of the breaking of a dam. We have as-
sumed for the dam a height and a length of 10 m. Failure occurs instantaneously at
time zero, and the material propagates along a horizontal plane. We have assumed
an effective friction angle of 45◦ and a consolidation coefficient Cv = 2.10−4 m2s−1.
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Figure 9: Evolution of the viscoplastic deformation in the vertical cut: a) perfect
viscoplastic case ; b) case with softening

The results are shown in figures 11 a to d, where we have plotted the pore pressure
contours, which are given relative to those which cause liquefaction of the soil. It
is important to see the differences with the dry soil case which is presented in Figs.
12 (a, b).

5.3 Aberfan flowslide of 1966

One of the main difficulties when modeling Aberfan flowslide is the role of pore
pressures. Coal debris were a material composed of solid, fluid and gas phases,
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Figure 10: Displacement contours on the deformed mesh (Factor of deformation
x2): a) perfect viscoplastic case ; b) case with softening

with a strong interaction between them. However, models cast in terms of effec-
tive stresses, pore pressures, and velocities of all constituents have not been used
so far, because of the problem of moving interfaces mentioned above. Depth inte-
grated models can provide important information about runout, propagation paths
and velocities, which is frequently sufficient to design protection structures. The
main shortcoming of depth integrated models comes from the fact that pore fluid
and solid particles are modelled as a single phase material, with properties that do
not change with time. This is why Aberfan flowslide has been modelled assuming a
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Dam break problem: Saturated soil
4 2 1

1 0 2 10tan . .
v
C m sφ − −= =

10 m

t = 0 s

t = 1.0 s
t = 1.0 s t = 1.5 s

t = 0.5 s

Figure 11: (a,b,c,d) Dam break: frictional saturated soil

Bingham fluid rheological law for the debris. For instance, Jeyapalan et al. (1983)
and Jin, Fread (1997) obtained results which fitted well the observations choosing
τy = 4794 Pa., µ = 958 Pa.s and ρ = 1760 kg/m3. Even if the results are good,
it is possible to argue that waste coal was not fully saturated, and the material was
frictional. Of course, the apparent angle of friction introduced above will be much
smaller than φ ’, but vertical consolidation could have made it to change during the
propagation phase. Hutchinson (1986) proposed a simple “sliding-consolidation”
model in which it was clear that the combination of friction with basal pore pres-
sures could provide accurate results of runout and velocities.

This simplified method was used by the authors in [Pastor, Quecedo, Fernández
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t = 1.5 s 

Dam break problem: Dry soil 
1 0tan .φ =

t = 1.0 s 

Figure 12: (a,b) Dam break: dry frictional soil

Merodo, Herreros, González, and Mira (2002)]. It is assumed that there exist a layer
of saturated soil of height hs on the bottom of the flowing material [Hutchinson
(1986)]. The decrease in pore pressures is caused by vertical consolidation of this
layer. Pore pressures on the top and bottom of this layer can be either estimated
from the values of the vertical stresses or obtained directly from the results of finite
element computations.

Assuming that the excess pore pressure evolves as

pw (x3, t) = N (x3) p̄w (t) (50)

it is possible to obtain a closed form solution of the consolidation equation. In the
case of

N (x3) = sin
(

π

2
x3

hs

)
(51)

the solution is

p̄w (t) = p̄0
w exp

(
− t

Tv

)
(52)

where Tv =
4h2

s
π2cv

.

and cv is the coefficient of consolidation. Finally,

pw (x3, t) = p̄0
wN (x3)exp

(
− t

Tv

)
(53)
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The coefficient ru can be estimated as:

ru = r0
u exp

(
−t
Tv

)
(54)

In above, we have used “pore pressures” instead of “pore water pressures”. The
reason is that dry or partially saturated materials can collapse generating high air
pressures on their pores, which will cause a similar effect.

The information provided in the literature do not provide enough data to perform a
realistic analysis in two dimensions. Therefore, we have used a simple 1D model
with the terrain profiles sketched in Fig.9, which are a better approximation than
that of Jeyapalan et al. (1983). The main purpose of this example is to show that
a depth integrated model using pore pressure dissipation can reproduce the basic
patterns observed.

Therefore, we have used the vertical profile given in Figure 13 below, where we
can see the profiles both before and after the flowslide.

Figure 13: Vertical profiles of Aberfan tip before and after 1965 flowslides

Density of the mixture ρ and friction angle φ ’, have been taken as 1740 kg/m3

and 36◦ respectively. we have chosen cv = 6.5.10−5 m2/s. and assumed that a basal
saturated layer of 0.06 times the height of the flowslide at the beginning. Initial pore
pressure has been taken as 0.78 times the value corresponding to full liquefaction.

The results obtained in the simulation are given in Figure 14 where sections of the
free surface of the flowslide are given at times 0, 6, 10, 15, 20 and 30 s. In figure
15 we provide pore water pressure contours at time 2s. Please note that in order to
improve readability, we have expanded the graphic representation of the saturated
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Figure 14: Vertical profiles showing Aberfan flowslide propagation

layer and it occupies the whole mass (This is possible because of the assumption
that the saturated layer depth is proportional to that of the flowslide).
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Figure 15: Pore water contours at t = 2 s.

5.4 Effect of a terrain zone with very high permeability

One of the advantages of incorporating a set of finite difference meshes at each
SPH node is the ability to improve the quality of the predictions in cases where
basal pore pressures go to zero as a consequence of the landside crossing a terrain
with very high permeability –or a rack.

The procedure to simulate this effect in the proposed model is based on chang-
ing the boundary condition associated to the finite difference nodes located at the
contact with the terrain.

As a thought experiment, we will repeat the case presented in Section 5.3, including
now such a zone.

We have selected the zone sketched in fig.16, where we have set the boundary con-
dition of zero pore pressure at the bottom of all finite difference meshes associated
to SPH nodes on it.

Figure 16: Location of the zero pore pressure zone

Figure 17 provides a comparison of the vertical profiles at different time stations.
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Note that the depth has been amplified by a factor of 4.

Figure 17: Vertical profiles at different times. Note the larger runout distance when
no rack is present.

Concerning the distribution of pore pressure in the landslide, figures 18a and 18b
provide the results obtained for times 17 and 20 s. The location of the rack is shown
in fig. 18b.

6 Conclusions

We have presented in this paper two alternative numerical models which can be
used to describe triggering and propagation of landslides.

Concerning triggering, we have presented a coupled SPH model which avoids ten-
sile instabilities inherent to classical SPH formulations.

Propagation is analyzed using a depth integrated SPH model which includes a ver-
tical finite difference mesh providing higher accuracy of pore water dissipation.

Finally, and most important, we have shown how viscoplastic models of Perzyna
type are able to reproduce the rheological behaviour of Bingham and frictional
models.
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(a)

(b)

Figure 18: (a) Pore water pressure distribution at time 17 s. (b) Pore water pressure
distribution at time 20 s.
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