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Abstract: Determining sectors that could be affected by lava flows in volcanic ar-
eas is essential for risk mitigation purposes. Traditionally, when adopting methods
based on probabilistic numerical simulations, the hazard is assessed by analysing
a huge set of simulations of hypothetical events, each characterized by a distinct
probability of occurrence based on statistics of historical events. If lateral or eccen-
tric eruptions are also taken into account, simulated lava flows usually start from
the nodes of regular grids of potential vents, uniformly covering the study area.
In this study, an alternative approach to evaluate flow-type hazard, based on a non-
uniform grid of potential vents, is proposed. The method takes into account ex-
pected changes in the topographic context due to successive lava-flow bodies, and
allows to obtain more detailed maps for the most exposed areas, besides signifi-
cantly reducing the computational efforts. The approach has been tested to evalu-
ate lava-flow hazard at Mt Etna (Eastern Sicily, Southern Italy), and a preliminary
analysis has been performed to investigate the behaviour of the adopted technique
with respect to the number of performed sets of simulations to better understanding
its predictive capability.
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1 Introduction

Lava flows frequently threaten people and properties worldwide. About 10% of
the world’s population lives next to volcanoes that are expected to show renewed
activity, more than half a billion people in four big cities being exposed to volcanic
risk [Peterson (1986); Chester, Degg, Duncan, and Guest (2001); Tilling, Norton,
and Ridgway (2006)].

Volcanoes are generally characterized by inherently unpredictable behaviours [Mel-
nik and Sparks (1999)]. Nevertheless, such systems are constrained by physical
laws, showing systematic trends of evolution and periodic behaviour. Accordingly,
the forecasting of volcanic activity represents a challenging research topic.

The hazard induced by lava flows is commonly evaluated by means of empirical ge-
ological approaches [e.g. Frazzetta and Romano (1978)], empirical–statistical eval-
uations [e.g. Behncke, Neri, and Nagay (2005)], or statistical-probabilistic analysis
of past events [e.g. Sheridan and Macías (1995)]. Available approaches can be dis-
tinguished into deterministic and probabilistic [Gómez-Fernández (2000)], in some
cases also combined together [cf. Wadge, Young, and McKendrick (1994)]. De-
terministic methods generally involve the mapping of density of potential sources
(lateral or eccentric vents), and attempt to identify the exposed areas by consider-
ing the potential propagation of the flows from such sources: flows are assumed
to originate at given sites, and the threatened sectors are mapped by geomorpho-
logic assessment. On the other hand, in probabilistic methods, physical models are
commonly employed: a set of possible sources is assumed, and numerical simu-
lations are performed for each of them, according to prefixed types of events that
characterize the study area.

Several authors recently employed massive, computer-based numerical simulation
to evaluate lava-flows hazard at Mt. Etna [e.g. D’Ambrosio, Rongo, Spataro, Avo-
lio, and Lupiano (2006); Crisci, Iovine, Di Gregorio, and Lupiano (2008); Iovine
(2008); Crisci, Avolio, Behncke, D’Ambrosio, Di Gregorio, Lupiano, Neri, Ron-
go, and Spataro (2010); Tarquini and Favalli (2010); Rongo, Avolio, Behncke,
D’Ambrosio, Di Gregorio, Lupiano, Neri, Spataro, and Crisci (2011); Cappello,
Vicari, and Del Negro (2011); Del Negro, Cappello, Neri, Bilotta, Hérault, and
Ganci (2013); D’Ambrosio, Filippone, Marocco, Rongo, and Spataro (2013a)], in
Southern Italy. Indeed, a similar approach was also used to evaluate debris flows
hazard in Campania [Iovine (2008); Avolio, Di Gregorio, Lupiano, and Mazzanti
(2013); Lucà, Avolio, D’Ambrosio, Crisci, Lupiano, Robustelli, and Rongo (2013);
Lucà, D’Ambrosio, Robustelli, Rongo, and Spataro (2014)]: a regular lattice of po-
tential sources, uniformly covering the study area, is applied, and an exhaustive
phase of numerical simulations of the overall potential flows is performed for each
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source, adopted types of simulations being representative of the considered physical
system. Once the computational phase is done (this is generally a time consuming
step), a probability of occurrence is assigned to each simulation. By overlapping
all the simulated flows and summing their probabilities, a probabilistic hazard map
can be obtained.

Such type of classic approach has both advantages and shortcomings: among the
pros, any change of values of the parameters affecting the probabilities of the sim-
ulations does not imply the need of re-executing the whole set of simulations, thus
allowing the prompt updating of the hazard maps. In other words, the simulation
phase is independent from the assignment of probabilities and from the evaluation
of the hazard. In addition, a highly detailed map can be obtained for the entire
study area, depending, among others, on the detail of the grid of potential sources
covering the study area. Nevertheless, the method requires a massive computation-
al effort, based on an elevated number of independent simulations (these latter may
be distributed among different processing units aiming at reducing the overall com-
putational time). Moreover, it does not consider the modifications of the volcano in
time, due to emplacement of new lava flows on the slopes.

An alternative method for evaluating flow-type hazard, based on a non-uniform
grid of potential vents as in D’Ambrosio, Iovine, Lupiano, Rongo, Spataro, and
Boñgolan (2013b), has been developed, aiming at i) further improving the details
of the results for the most exposed areas, ii) accounting for possible modifications
of the topographic conditions in time, and iii) reducing the computational efforts.
Non-uniform distributions allow for finer details of simulation in the most threat-
ened sectors. Such type of grid was already used in specific areas of interest of
computational domains: for instance, Blottner (1975) attempted to capture the tur-
bulence in a boundary layer by this approach. While non-uniform grids frequently
appear in adaptive methods, they may also be used in a static environment, as in
Boñgolan-Walsh, Duan, Fischer, Ozgokmen, and Iliescu (2007), where the grid
was purposely set finer at the inlet of the flow, and coarser downstream, to better
capture the dynamics of evolving gravity currents.

In the present study, this alternative method was applied to evaluate the lava-flow
hazard at Mt. Etna (Eastern Sicily, Southern Italy), the largest subaerial active vol-
cano in Europe. Its flanks were repeatedly affected by lava flows from flank erup-
tions in historical times [Romano and Sturiale (1982)]. In its eastern portion, a high
spatial density of fractures, effusive fissures and pyroclastic cones is to be found
[Mazzarini and Armienti (2001); Behncke, Neri, and Nagay (2005)], mainly along
a SSE-trending fracture system which crosses the study area between the villages
of Nicolosi and Trecastagni [Corazzato and Tibaldi (2006)]. Moreover, deep-seated
gravitational sliding towards the Jonian Sea, associated with larger-scale volcano-
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tectonic dynamics, affects the whole south-eastern flank of the volcano [Borgia,
Ferrari, and Pasquarè (1992)], thus contributing to the volcanic evolution. First ex-
amples of maps outlining sectors of Mt. Etna mostly exposed to volcanic risk were
realized by Frazzetta and Romano (1978), followed by Guest and Murray (1979),
Duncan, Chester, and Guest (1981), Forgione, Luongo, and Romano (1989), and
Behncke, Neri, and Nagay (2005). In the past few decades, significant urban de-
velopment has occurred mainly on the southern flank of the volcano, thus notably
modifying the exposure of the elements at risk.

In the following, the new alternative method is described, and an application on
distributed-memory machines to evaluate the lava-flow hazard at Mt Etna is pre-
sented. The computational specifications of the numerical simulation phase are
described, and 4 different probabilistic hazard maps, related to temporal frames
ranging from 1 to 100 years, are presented. The behaviour of the adopted approach
with respect to the number of performed sets of simulations is also preliminarily
investigated.

2 Method and application to Mt. Etna

The alternative method for lava-flow hazard evaluation, here described, relies on
numerical simulations of hypothetical flows that may originate in the study area,
based on a non-uniform grid of potential vents, and on their subsequent elabora-
tion in a GIS environment. After fixing a reference temporal frame, a set of maps
(snapshots) is obtained: each derives from a computational run, by sequentially
simulating a number of potential flows from a subset of probabilistically activat-
ed vents. For each snapshot, the number of simulations to be performed depends
both on the observed frequencies of historical eruptions and on the extent of the
considered temporal frame. The type of each simulation, expressed in terms of
intensity (e.g. erupted volume over duration), also depends on historical observed
frequencies. Thanks to the sequential strategy of execution within a given run, the
simulated flows modify the topography (due to solidification), and may then affect
the path of subsequent flows. At the end of each computational run, the cells of
the snapshot are assigned the value 1 in case they are affected by one or more lava
flows, or 0 if they are not affected. To obtain a statistically consistent result for the
considered temporal frames, a proper number of snapshots must be computed and
averaged, thus providing for reliable probabilistic hazard maps (in the following,
PHMs).

In this study, lava flows were simulated by using Sciara-fv2 [Spataro, Avolio, Lu-
piano, Trunfio, Rongo, and D’Ambrosio (2010)], a Cellular Automata (CA) mod-
el [cf. von Neumann (1966); Saravakos and Sirakoulis (2014); Was and Lubas
(2014); Blecic, Cecchini, Trunfio, and Verigos (2014)]. CA are parallel computa-
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tional models widely used for simulating the dynamics of systems whose evolution
can be described in terms of local interactions among their constituent parts. They
are dynamical systems, discrete in space and time. The space is subdivided into
cells of uniform size and the overall dynamics of the system emerges as the re-
sult of the simultaneous application, at discrete time steps, of a transition function
to each cell, which takes as input the state of the cells belonging to the neigh-
bourhood. Since such systems are made of independent cells, CA can be easily
implemented on parallel computers [e.g. Setoodeh, Adams, Gürdal, and Watson
2006; D’Ambrosio and Spataro (2007)].

More in detail, Sciara-fv2 belongs to the family of Complex CA, also known as
Macroscopic or Multi-component CA [cf. Di Gregorio and Serra (1999); Avolio,
Di Gregorio, Spataro, and Trunfio (2012)], successfully applied to several type-
s of complex, natural phenomena, such as lava and debris flows and forest fires
[e.g., Crisci, Di Gregorio, Rongo, and Spataro (2005); Di Gregorio, Filippone, S-
pataro, and Trunfio (2013); Trunfio, D’Ambrosio, Rongo Spataro, and Di Gregorio
(2011); D’Ambrosio, Filippone, Rongo, Spataro, and Trunfio (2012)]. In a Multi-
component CA, the set of states is decomposed into substates, whilst the transition
function is split into elementary processes. Moreover, external influences and phys-
ical/empirical parameters can be considered to account for global properties of the
phenomenon to be simulated. In Sciara-fv2, substates are used to describe phys-
ical properties (e.g. lava thickness and temperature), while elementary processes
allow to model substates changes in time (e.g. variations of thickness and tem-
perature, and solidification of lava flows). Lava feeding at the vents is simulated
by means of an external influence, as it would not be easily described in terms of
local interactions. Eventually, a set of parameters accounts for physical properties,
such as lava temperatures at the vents and at solidification, lava density and specif-
ic heat. For each step of computation, the model simulates the lava flows among
the cells, and accounts for lava solidification depending on temperature changes.
As a consequence, topographic modifications are obtained step by step, until the
flows stop at the end of a given simulation, and complete solidification occurs.
Sciara-fv2 was successfully employed in previous applications to large study areas
[e.g., Crisci, Avolio, Behncke, D’Ambrosio, Di Gregorio, Lupiano, Neri, Rongo,
and Spataro (2010); Rongo, Avolio, Behncke, D’Ambrosio, Di Gregorio, Lupiano,
Neri, Spataro, and Crisci (2011); D’Ambrosio, Filippone, Marocco, Rongo, and
Spataro (2013a)], where a significant number of simulations had to be performed.
More details on the model can be found in the above cited references, and in S-
pataro, Avolio, Lupiano, Trunfio, Rongo, and D’Ambrosio (2010), and in Oliverio,
Spataro, D’Ambrosio, Rongo, Spingola, and Trunfio (2011).

In this paper, the application of the method to Mt. Etna allowed to obtain lava-
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flow hazard maps for the following temporal frames: ∆t1 = 1, ∆t2 = 25, ∆t3 = 50
and ∆t4 = 100 years. The number of simulations performed in a computational
run depends on the selected temporal frame, on one side, and on assumptions on
the behaviour of the physical system under consideration (i.e. the volcano), on the
other. For instance, if the system can be assumed in steady state, the mean number,
s̄, of eruptions expected within a given temporal frame can be simply obtained
by multiplying the duration of the temporal frame, ∆t, by the mean number of
historical events per year, m̄:

s̄ = m̄∆t (1)

Furthermore, aiming at guaranteeing statistical variability, the actual number of
simulations to be simulated in the i-th run, si, can be selected by assuming a Poisson
distribution of probability, having s̄ as mean. To define the number of events to be
simulated in each run, the mean number of lava flows per year at Mt Etna was
first evaluated by analysing the historical behaviour of the volcano. In Tab. 1,
duration and volume of historical lava-flow events in the past 400 years are listed
[Behncke, Neri, and Nagay (2005)]. Among them, cases with extreme intensities
(e.g. duration longer than 240 days, volumes greater than 160 × 106 m3) were
neglected, being considered quite improbable. Accordingly, a total of 52 types
of eruptions were considered, with a mean number of expected events per year
m̄ = 52/400 = 0.13. By assuming a steady behaviour of the volcano, the mean
numbers s̄(∆t j) of expected events for the remaining frames of interest ∆t j, j = 2, . . . ,
4, were computed, again by applying equation 1. Obtained values are listed in Tab.
2.

The above averages were taken as averages for randomly generating the number
of simulations to be performed in each run, according to a Poisson distribution of
probabilities, as shown in Fig. 1. Specifically, a random number c ∈ [0,1] was
generated, by means of a roulette-like procedure, to entering the cumulative proba-
bility: the related abscissa (rounded at the next integer) indicated the number s(∆t j)

i
of simulations to be performed in the i-th run of the j-th temporal frame.

In this study, the Probability Density Function (PDF) proposed by Lupiano (2011)
was considered (with minor changes, see below), and a non-uniform grid of poten-
tial vents was adopted: the distribution of the sources is a function of the PDF, with
greater densities in sectors characterized by higher probabilities of source opening
(Fig. 2). The adopted PDF takes into account the historical distribution of lateral
and eccentric vents, and the distribution of the main faults/weakness structures of
the volcano. With respect to the original proposal, the distance of the vents from
the summit was not considered, to avoid overweighting of probabilities in sectors
already marked by high structural weaknesses.
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Table 1: Types of historical eruptions at Mt. Etna [Behncke, Neri, and Nagay
(2005)]. For each combination of volume (V, in 106 m3) and duration (D, in days),
the number of lateral eruptions recorded since 1600 A. D. are listed. Bold values
mark the cases actually considered in this study

V ≤ 32
32 <V
≤ 64

64 <V
≤ 96

96 <V
≤ 128

128 <V
≤ 160

160 <V

0 < D≤ 15 19 3 0 0 0 0
15 < D≤ 30 6 3 1 0 0 0
30 < D≤ 60 3 0 1 0 1 0
60 < D≤ 90 1 2 0 1 0 0
90 < D≤ 120 3 0 1 0 0 0
120 < D≤ 150 1 1 1 0 0 1
150 < D≤ 180 0 0 1 1 0 0
180 < D≤ 210 0 1 0 0 1 0
210 < D≤ 240 0 0 0 0 0 0
240 < D ≤ 270 0 0 0 0 0 0
270 < D ≤ 300 0 0 0 1 0 0
300 < D ≤ 500 0 0 1 0 2 1
500 < D 0 0 0 1 0 3

Table 2: For each temporal frame ∆t j, j = 1,2, . . . ,4, the mean number of expect-

ed events s̄(∆t j) and the total number (rounded) of expected simulations S(∆t j)
e =

∑
r
i=1 s̄(∆t j) over a total of r = 240 computational runs are listed. The numbers of

performed simulations, S(∆t j)
p =∑

r
i=1 s(∆t j)

i , obtained by considering the Poisson dis-
tributions with mean s̄(∆t j), are also reported for each temporal frame. The total
number of both expected and performed simulations are also listed (in Italics) at
bottom.

j ∆t j s̄(∆t j) S(∆t j)
e S(∆t j)

p

1 1 0.13 31 42
2 25 3.25 780 790
3 50 6.5 1560 1551
4 100 13 3120 3145

tot. 5491 5528

More in detail, the probability of opening of new vents was defined based on the
eruptive history and on geological characteristics of Mt. Etna (e.g. faults, dykes,
eruptive fissures, lateral and eccentric vents) [cf. Ferrari, Garduno, and Neri (1991);
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Figure 1: a) Adopted Poisson cumulated distributions of probability (∑ Pi), and
b) distributions of probability (Pi) to determine the number of simulations to be
performed for the considered temporal frames.

Acocella and Neri (2003); Behncke, Neri, and Nagay (2005)]. The PDF therefore
defines the likelihood that a vent will open in the considered sector, assuming that
the probability increases in the vicinity of weakness structures as possible routes
of ascent of magma. The likelihood is assessed according to the spatial density of
eruptive fissures in the cell neighbourhood, this latter defined by the kernel density
estimation function [Silverman (1986)]. In particular, the Gauss kernel [Connor
and Hill (1995)] was adopted, thanks to its characteristics of symmetry and ability
to describe the typical mechanisms of mass transfer and temperature in volcanic
systems. The optimal distance was evaluated by comparing the observed distances
among the eruptive fractures with the theoretical curves (expected distribution), and
applying the standard Gauss error function relationship. By taking into account the
weakness structures mapped in the study area, the obtained optimum distance was
2000 m [Lupiano (2011)].

As for the non-uniform grid, the distance among the nodes was defined so that
the cumulative probability assigned to each source (cf. vent activation probability,
in Tab.3), obtained by summing the PDF probabilities within the “reference area”
made of the cells surrounding each vent, is a constant value. For this purpose,
the PDF was subdivided into ten classes, based on equal probability intervals. For
the sake of comparison with previous analyses, based on a uniform distribution of
nodes spaced at 1000 m intervals in a square grid, the number of considered vents
is 1006. It is worth to note that such potential sources were uniformly distributed
within each class in proportion to the cumulated probabilities of the classes.

Once the number of simulations to be performed in a given run was defined (cf.
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Figure 2: Probabilities of activation (ranked in 10 classes – cf. Tab. 3) of the
considered potential vents of the non-uniform grid.

Fig. 1), a roulette-like procedure was employed to randomly select the sources
to be used for each simulation. As for the type of eruption (expressed in terms
of volumes and duration) to be simulated, it was also randomly chosen among
those that characterized the volcano behaviour in the past 400 years (cf. Tab.1). A
bivariate statistical interpolation allowed to determine probabilities of occurrence
also for types of eruptions not included in the historical record (cf. Tabs.1 and 4),
as suggested by Crisci, Avolio, Behncke, D’Ambrosio, Di Gregorio, Lupiano, Neri,
Rongo, and Spataro (2010). For each simulation, duration and volume were then
selected, based on probabilities listed in Tab.4.

As for the effusion rate, the approach proposed by Crisci, Iovine, Di Gregorio, and
Lupiano (2008) was employed, in agreement with the known eruptive behaviour
of the volcano [Behncke, Neri, and Nagay (2005)]. In particular, a set of effusion-
rate functions was selected to modulate lava emission from the vents during the
simulations, by considering representative trends of Etnean effusion rates. Given
a total amount of lava to be emitted during the simulation, the adopted functions
were built so that lava emission would gradually increase, according to a normal-
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Table 3: Areal extents, cumulated probabilities, number and densities of vents, and
vent activation probabilities per each class of the PDF. For the whole study area,
the total extent, cumulated probabilities, number of vents, and densities of vents
per squared kilometres are shown (in Italics) at bottom.

Class
Extent
(km2)

Cumulated
probability

Number
of vents

Density of
vents per km2

Vent activation
probability

1 785 0.1374 138 0.18 9.9 · 10−4

2 108 0.1848 186 1.72 9.9 · 10−4

3 51 0.1450 146 2.86 9.9 · 10−4

4 33 0.1335 134 4.03 9.9 · 10−4

5 25 0.1297 131 5.24 9.9 · 10−4

6 11 0.0716 72 6.37 9.9 · 10−4

7 8 0.0617 62 7.59 9.9 · 10−4

8 7 0.0630 63 8.77 9.9 · 10−4

9 5 0.0529 53 9.87 9.9 · 10−4

10 2 0.0205 21 11.1 9.9 · 10−4

tot. 1036 1 1006 0.97

Table 4: Inferred probabilities of occurrence for the types of events listed in Tab.1.
Values were obtained by means of a bivariate analysis to include also types of
events for which no historical information was available (cf. values in Italics). As
a whole, 41 different types of eruptions were therefore considered.

V ≤ 32
32 <V
≤ 64

64 <V
≤ 96

96 <V
≤ 128

128 <V
≤ 160

0 < D≤ 15 0.2417 0.0683 0.0341
15 < D≤ 30 0.1170 0.0330 0.0164 0.0101
30 < D≤ 60 0.1183 0.0335 0.0166 0.0101 0.0072
60 < D≤ 90 0.0689 0.0194 0.0096 0.0059 0.0042
90 < D≤ 120 0.0408 0.0115 0.0057 0.0035 0.0026
120 < D≤ 150 0.0326 0.0092 0.0045 0.0029 0.0020
150 < D≤ 180 0.0229 0.0065 0.0032 0.0020 0.0014
180 < D≤ 210 0.0169 0.0048 0.0024 0.0015 0.0011
210 < D≤ 240 0.0039 0.0020 0.0012 0.0009

distribution law, up to a maximum, and then gently decrease. Maximum effusion
rate was also imposed, so that it occurred at a given time during the simulated
event. For instance, by applying the effusion-rate function γ1/3, the maximum rate
is produced at the first third of the simulation period (Fig. 3). Furthermore, per each
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of the above-cited combinations of duration and volume, effusion-rate functions
were randomly generated so that, at each step of computation, the actual value
belongs to a fixed range, whose limits are defined by two normal-distribution laws
that satisfy the following conditions: γmax-lb = 2.5 γaverage, and γmax-ub = 3.5 γaverage,
for the lower and upper bounds, respectively; the initial value is equal to the average
between the two cited maximum rates (γmax-lb and γmax-ub).

Figure 3: Example of randomly generated effusion-rate function (γ1/3), generated
for the particular case of a 90-days long effusion, and a peak-rate of ca. 10 m3/s.
Dotted lines define the variation range within which the values of discharge are
randomly computed.

Eventually, in this study, a “tentative” set of r = 240 runs was considered for each
temporal frame ∆t j, j = 1,2, . . . ,4. This number of runs was empirically defined,
based on previous attempts of lava-flow hazard analyses with uniform grids in the
same study area [Crisci, Iovine, Di Gregorio, and Lupiano (2008); Rongo, Avolio,
Behncke, D’Ambrosio, Di Gregorio, Lupiano, Neri, Spataro, and Crisci (2011)].
Please note that, due to the adopted probabilistic approach, the total number of
actually performed simulations, S(∆t j)

p =∑
r
i=1 s(∆t j)

i , for each temporal frame slightly
differed from the expected number, S(∆t j)

e = ∑
r
i=1 s̄(∆t j), as listed in Tab. 2.

A flowchart of the above-mentioned overall procedure for PHMs evaluation is
shown in Fig. 4.

Finally, the behaviour of the adopted approach with respect to the number of per-
formed runs was preliminarily investigated for the four temporal frames, to better
evaluating its predictive capability.

2.1 Numerical simulations

The prefixed set of 240 computational runs was performed, and simulations were
subsequently merged in a GIS environment, to produce lava-flow hazard maps for
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Figure 4: Flowchart of the procedure employed for building the PHMs. The non-uniform
grid of vents must first be defined, based on a suitable PDF, together with a set of repre-
sentative effusion rates, the temporal frame of interest and the number (r) of runs to be
executed. A set of r parallel, independent tasks is then executed to build the snapshot-
s, depicting sectors threatened by lava flows. Within a generic task i, the number Spi of
lava flows to be simulated is defined by considering a Poisson-based roulette-like proce-
dure, with mean set equal to the mean number of historical eruptions occurred in the same
temporal frame. After randomly selecting the effusion rate and the vent, a simulation is
sequentially executed by initializing and applying Sciara-fv2. At the end of each simula-
tion, topography is updated by considering solidified lava flows, thus affecting subsequent
simulations of the same task. After completing the Spi simulations of the generic task i, a
snapshot is obtained by marking to 1 the affected cells of the computational grid. At the
end of the r parallel tasks, snapshots are overlapped and averaged, allowing to build the
PHM.
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Mt. Etna, by considering temporal frames of 1, 25, 50, and 100 years. For each
run, a different seed was adopted to initialize the random number generator, as
requested by the probabilistic approach. Owing to its underlying parallel nature,
Sciara-fv2 can be run by adopting parallel methods, such as by Message Pass-
ing paradigms [e.g., D’Ambrosio and Spataro (2007)], OpenMP [e.g., Oliverio,
Spataro, D’Ambrosio, Rongo, Spingola, and Trunfio (2011)] and recent GPGPU
techniques [e.g., Spataro, D’Ambrosio, Filippone, Rongo, Spataro, and Marocco
(2015)]. Due to the elevated computational efficiency of the model, paralleliza-
tion was adopted only to manage the run phase, whilst each simulation was per-
formed sequentially. More in detail, runs were independent and can be computed
concurrently, by simultaneously exploiting more processing units. For this pur-
pose, a Master-Slave algorithm was developed in MPI (Message Passing Interface)
to assign the task of each run to one of the available processors (slaves) of the
employed distributed-memory machine (an 8-nodes Apple Xserve dual quad-core
Xeon-based cluster, interconnected by a Gigabit Ethernet network).

Figure 5 shows the pseudo-code of the adopted algorithm. The Master process
is dedicated to the scheduling of the runs to the Slaves. These latter can assume
one of the following states: “ready” or “done” (resp., SLAVE_STATE_READY
or SLAVE_STATE_DONE). The first state denotes the availability of the slave to
compute a new run, while the latter marks the termination of the assigned task.

The Master acts as a listener: it waits for one of the above-mentioned signals from
the Slaves, and takes actions accordingly. Specifically, when the Master receives
the “ready” signal from a Slave, it assigns a new run to the Slave by sending the
run_id counter (used also as seed of the random number generator). When the Mas-
ter receives the “done” signal, it increments the run_id counter. If the new run_id is
greater than the number of planned runs, the Master sends the “termination” signal
to the active Slaves, and the algorithm terminates.

A limiting factor of parallel scalability can originate from the exchange of data
between CPUs. Nevertheless, the computational runs are essentially independent
from each other, and thus the adopted procedure can achieve a satisfactory level
of efficiency in terms of parallel speedup. The overall parallel process results in
a typical “embarrassingly parallel” computation [Quinn (2003)], for which small
or no algorithmic efforts are required to separate the runs into a number of paral-
lel tasks. Indeed, no dependency (or communication) occurs between the parallel
tasks. For this reason, the methodology here presented does not suffer from parallel
slowdown.
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Figure 5: Pseudo-code of the adopted Master-Slave algorithm for executing runs
on distributed memory computers.

3 Results

For each of the four considered temporal frames, ∆t1 = 1, ∆t2 = 25, ∆t3 = 50 and
∆t4 = 100 years, lava-flow hazard maps were computed by overlapping and aver-
aging, cell by cell, the r = 240 performed runs. Aiming at favouring the visual
comparison among the results for the considered temporal frames, in Figs. 6–9 the
maps are displayed in relative terms, i.e. by adopting the same range as for the 100
y map (probabilities are ranked into 5 different classes, by means of a logarithmic
scale).

As expected, hazard values generally increase from the first to the last PHM, with
maxima of 0.025, 0.233, 0.450, and 0.675, respectively. Note that, in the first map
(Fig.6, related to ∆t1), even the highest hazard values obtained for the most exposed
sectors fall in the first class of hazard. They are therefore shown in white, as the rest
of the map (characterized by lower hazard values), according to the legend defined
on the base of the results for ∆t4. Nevertheless, the polygons of the simulated lava
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Figure 6: Map of the study area (contour lines dashed), with main toponyms, vil-
lages (grey polygons), and transport infrastructures (cf. legend). Superimposed,
the lava-flow probabilistic hazard map, related to the temporal frame of 1 y, with
polygons of simulated lava flows shown in black. Maximum probabilities: 0.025;
minimum probability: 0.004 (same for all PHMs). Ranking of hazard values into 5
classes is in logarithmic scale, based on the maximum range obtained for the 100 y
map (cf. Fig. 9a).

flows are shown in black to evidence the affected zones. In the remaining maps
(Fig. 7–9, related to ∆t2, ∆t3, and ∆t4, resp.), a progressive increase of hazard
values can be appreciated, as well as the persistence of highest values in the same
sectors.

More in detail, as for the 1 year PHM (cf. Fig. 6), the highest values are to be found
in the southern portion (between Ragalna and Nicolosi) and, subordinately, in the
NE portion of the volcano (between Linguaglossa and Piedimonte Etneo), and to-
ward Randazzo and Passopisciaro at NNW. Among the transport infrastructures,
only the State Road SS.284 (close to Santa Maria di Licodia) and the Provincial
Road SP.411 (close to Nicolosi) appear to be slightly threatened (h∼ 0.009). When
considering the temporal frames from 25 y to 100 y (cf. Figs. 7a, 8a, and 9a), the
sectors exposed to the highest hazard are mainly located on the eastern flank of the
volcano (in the Valle del Bove, between Caselle and Zafferana Etnea; and toward
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Figure 7: a) Lava-flow probabilistic hazard map related to the temporal frame of
25 y. Maximum probabilities: 0.233; minimum probability: 0.004 (same for all
PHMs). Ranking of hazard values into 5 classes is in logarithmic scale, based on
the range obtained for the 100 y map (cf. Fig. 9a). b) Comparison of the lava-
flow PHMs obtained for the temporal frames 25 y vs. 1 y, expressed as relative
differences (see text). Again, the logarithmic ranking of hazard values into 5 classes
is referred to the range obtained for the comparison 100 y vs. 1 y (cf. Fig. 9b).

Linguaglossa and Piedimonte Etneo). Secondary maxima characterize the sector
located south (threatening Ragalna, Belpasso, Nicolosi, and Pedara-Trecastagni) of
the summit. In the 100 y PHM, the worst exposure seems to still characterise the
village of Ragalna (h∼ 0.50); minor relevant values are to be found also northward
(threatening Passopisciaro and Randazzo), WNW (threatening Bronte and Malet-
to), and SW (threatening Biancavilla and Adrano); in addition, the SP.165 (h ∼
0.50), the SP.411 and the SS.120 (h ∼ 0.25) are seen to be appreciably threatened.

Furthermore, in Figs. 7b, 8b, and 9b, hazard values of the PHMs related to ∆t2 =
25, ∆t3 = 50 and ∆t4 = 100 y are respectively compared to those obtained for ∆t1 =
1 y, in terms of relative differences (h∆t j

xy − h∆t1
xy )/h∆t1

xy , where h∆t j
xy is the hazard in

the cell x, y for the temporal frame ∆t j, j = 2, . . . ,4. In such maps, the progressive
increase of exposure to lava-flow hazard is further evidenced, with a marked growth
of values even in the western portion of the volcano.

As stated above, the behaviour of the approach with respect to the number of com-
putational runs was preliminarily investigated for the considered temporal frames.
At such purpose, 480, 960, and 1920 runs were considered for each PHM (result-
s related to smaller sets of runs were, in fact, included in the already performed
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Figure 8: a) Lava-flow probabilistic hazard map related to the temporal frame of
50 y. Maximum probabilities: 0.450; minimum probability: 0.004 (same for all
PHMs). Ranking of hazard values into 5 classes is in logarithmic scale, based on
the range obtained for the 100 y map (cf. Fig. 9a). b) Comparison of the lava-flow
PHMs obtained for the temporal frames 50 y vs. 1 y, expressed as relative differ-
ences (see text). Logarithmic ranking of hazard values into 5 classes is referred to
the range obtained for the comparison 100 y vs. 1 y (cf. Fig. 9b).

experiments). For the sake of synthesis, only the maps obtained for the 1-year tem-
poral frame are shown in Fig. 10; the trends of the maximum values of hazard for
the 1-year and 25-years maps are shown in Figs. 11.

Table 5: Maximum and minimum hazard values for the 1y and 25 y PHMs, as a
function of the number of the performed computational runs. Key: runs) number
of runs; sim) total number of performed simulations in the set of runs; sim/run)
average number of simulations performed per run; max/min) maximum/minimum
value of hazard obtained for the considered PHM; max98%) maxima obtained by
excluding the greatest 2% values.

1 year PHM 25 years PHM
runs sim sim/run max max98% min runs sim sim/run max max98% min
240 42 0.18 0.025 0.018 0.004 240 790 3.29 0.233 0.096 0.004
480 67 0.14 0.019 0.009 0.002 480 1550 3.23 0.223 0.083 0.002
960 118 0.12 0.016 0.007 0.001 960 3052 3.18 0.218 0.077 0.001

1920 258 0.13 0.015 0.006 0.0005 1920 6215 3.24 0.229 0.065 0.0005
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Figure 9: a) Lava-flow probabilistic hazard map related to the temporal frame of
100 y. Maximum probabilities: 0.675; minimum probability: 0.004 (same for all
PHMs). b) Comparison of the lava-flow PHMs obtained for the temporal frames
100 y vs. 1 y, expressed as relative differences (see text). In both maps, the ranking
of hazard values into 5 classes is in logarithmic scale.

4 Discussion and Conclusions

In the present analysis, lava-flow hazard conditions at Mt. Etna were computed
by adopting a non-uniform distribution of potential vents and applying the model
Sciara-fv2. Types of eruptions were defined by considering the statistics of histor-
ical events (in terms of durations and erupted volumes). The density of potential
sources in the different sectors of the volcano was derived from the distribution of
historical lateral and eccentric vents, fractures, and faults, by adapting the PDF by
Lupiano (2011). As a whole, 4 distinct PHMs were evaluated, related to tempo-
ral frames of 1, 25, 50 and 100 years, respectively. Each PHM was computed by
performing 240 computational runs, i.e. sets of simulations corresponding to the
expected number of events in each temporal frame, according to a Poisson distribu-
tion of probabilities. Within each run, simulations were performed sequentially, so
that a given flow may affect later simulations by locally changing the topographic
context.

The resulting probabilistic hazard maps related to the four considered temporal
frames were computed by taking into account whether the cells were affected or not
by the simulations during each run, and averaging over the number of performed
runs. The obtained probabilities of hazard point out that, for the 1 year PHM, the
highest values are to be found in the southern portion and, subordinately, toward
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Figure 10: Analysis of behaviour of the adopted technique with respect to the num-
ber of runs (PHM related to ∆t1 = 1 y). Hazard values obtained by performing a)
240 runs (maximum probability: 0.025; minimum probability: 0.004), b) 480 runs
(maximum probability: 0.019; minimum probability: 0.002), c) 960 runs (maxi-
mum probability: 0.016; minimum probability: 0.001), and d) 1920 runs (maxi-
mum probability: 0.015; minimum probability: 0.0005). Ranking of hazard values
into 5 classes is in logarithmic scale, based on the range obtained with 1920 runs
(note that maxima for 240, 480, and 960 runs exceed the one for 1920 runs).

NE and NNW. Among the transport infrastructures, the SS.284 and SP.411 are s-
lightly threatened. Nevertheless, for longer temporal frames, the sectors exposed to
the highest hazard are located on the eastern flank of the volcano, while secondary
maxima are to be found southward. As concerns the 100 y PHM, the worst expo-
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Figure 11: Analysis of behaviour of the adopted technique with respect to the num-
ber of runs (PHM related to ∆t1 = 1 y on the left, and ∆t2 = 25 y on the right).
The maximum values of hazard are plotted against the number of computational
runs (diamonds, upper curve). Similarly, the maxima obtained by excluding the
greatest 2% values (to minimize the effects of local maxima due to morphological
unfavourable conditions) are shown with squares (lower curve). Obtained maxima
and minima are listed in Tab.5.

sure characterises the village of Ragalna (h ∼ 0.50) – constantly threatened by the
worst conditions with respect to the other villages also for shorter reference periods
– with secondary values northward, at WNW and SW; as for the transportation in-
frastructures, SP.165, SP.411 and SS.120 roads are notably threatened (with strong
implications for Civil Protection). The railway Messina-Siracusa and the highway
A18 Messina-Catania do not seem to be exposed to notable hazard (except for a
short segment of highway in the vicinity of Aci Sant’Antonio and Santa Maria La
Stella).

When taking into account the trends in hazard values from ∆t1 = 1 to ∆t4 = 100 (cf.
Figs. 6–9), the highest values tend to progressively characterize 3 distinct sectors,
located ESE, NE, and S from the summit, with a quite constant relative increase by
ca. 9 times. If the behaviour of the adopted technique with respect to the number
of runs for the 4 temporal frames (cf. Fig. 10) is considered, maximum values of
hazard tend to slightly decrease (ca. 1% and 0.5% for 1 y and 25 y, respectively)
with increasing number of runs. Results were obtained by progressively doubling
the set of runs and verifying the trend of the obtained maximum probabilities. Ac-
cordingly, the unsuitability of the prefixed number of runs (240) was evidenced for
the 1 y PHM (ca. 1000 runs are in fact needed to get a stable prediction), whilst
it looks sufficient for evaluating the remaining PHMs. Note that, for runs smaller
than 240, incongruous diverging estimates were instead evidenced.

Moreover, if the results of the present approach are qualitatively compared to un-
published data we recently obtained by applying a uniform grid of potential vents,
a rather good agreement can be appreciated in terms of maximum expected prob-
abilities. With respect to the classic approach of lava-flow hazard evaluation, the
method here described allows to obtain a more accurate zoning of the most threat-
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ened sectors of the study area (thanks to the greater density of potential vents),
by also considering potential topographic interferences among the flows. By the
way, quite shorter computational efforts are needed, thanks to the smaller number
of simulations to be performed (5528, cf. Tab.2) with respect to the overall set re-
quired in case of an exhaustive approach (41 types of eruption times 1006 vents =
41246 simulations – cf. Tabs.3 and 4). On the other hand, the adopted non-uniform
technique implies the need of re-executing the set of simulations in case changes to
the model parameters are necessary.

Nevertheless, as discussed in previous papers concerning similar modelling ap-
proaches [Crisci, Avolio, Behncke, D’Ambrosio, Di Gregorio, Lupiano, Neri, Ron-
go, and Spataro (2010); Rongo, Avolio, Behncke, D’Ambrosio, Di Gregorio, Lupi-
ano, Neri, Spataro, and Crisci (2011)], the method here described may be suitably
applied for Civil Protection purposes - e.g. if properly included within an early-
warning support system. If combined with an automated optimization technique
(e.g. genetic algorithms) [cf. D’Ambrosio, Spataro, Rongo, and Iovine (2013c)], it
could also be employed for planning of countermeasures for lava-flow diversion, as
recently suggested by Filippone, Parise, Spataro, D’Ambrosio, Rongo, and Spataro
(2014). Thanks to the ability of Sciara-fv2 to simulate lava-flow thickness, velocity
and temperature, the mitigation structures (e.g., barrier or ditch) could suitably be
dimensioned, and the expected damage to the exposed elements predicted.

The proposed approach is presently undergoing further tests against different s-
tudy cases, and could be easily extended to allow for hazard evaluations related to
different types of dangerous natural phenomena (e.g. soil slip-debris flows).
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