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Analysis of Square-shaped Crack in Layered Halfspace
Subject to Uniform Loading over Rectangular Surface

Area

H. T. Xiao1,2,3, Y. Y. Xie1,2 and Z. Q. Yue4

Abstract: This paper examines the problem of a square-shaped crack embedded
in a layered half-space whose external surface is subject to a uniform loading over
a rectangular area. Two novel numerical methods and the superposition principle
in fracture mechanics are employed for the analysis of the crack problem. The
numerical methods are based on the fundamental solution of a multilayered elas-
tic medium and are, respectively, applied to calculate the stress fields of layered
halfspace without cracks and the discontinuous displacements of crack surfaces
in layered halfspace. The stress intensity factor (SIF) values are calculated using
discontinuous displacements and the influence of material properties and crack po-
sitions on the SIF values is analyzed. Using the minimum strain energy density
criterion and the SIF values, the minimum values of the strain energy density factor
are calculated and the crack growth is analyzed. Results show that the heterogeneity
of layered media exerts an obvious influence on the fracture properties of cracked
layered elastic solids.

Keywords: layered halfspace, square-shaped crack, stress intensity factors, crack
growth, minimum strain energy density criterion, numerical methods.

1 Introduction

The study of the fracture mechanics of layered elastic solids has always occupied a
prominent position in the literatures of solid mechanics. The crack problem in lay-
ered solids has applications to many problems of technological importance. Early
studies of specific interests to fracture mechanics of layered elastic media were

1 College of Civil Engineering & Architecture, Shandong Univ. of Sci. & Tech., 266590, Qingdao,
China.

2 Shandong Key Lab of Civil Engineering Disaster Prevention & Mitigation, 266590, Qingdao, Chi-
na.

3 Corresponding Author. Tel: +86-532-80681200. E-mail: xiaohongtian@tsinghua.org.cn
4 Department of Civil Engineering, The University of Hong Kong, Hong Kong.



56 Copyright © 2015 Tech Science Press CMES, vol.109-110, no.1, pp.55-80, 2015

given by [Arin and Erdogan (1971); Dhaliwal (1973)]. In recent years, [Kuo and
Keer (1995); Bai and Pollard (1999); Alaimo, Milazzo, Orlando (2013); Zhang
and Jeffrey (2006)] have developed various methods to analyze the crack prob-
lems in layered solids. [Dong and Atluri (2012,2013a,b)] has developed weakly-
singular symmetric Galerkin boundary elements (SGBEM) and super elements for
fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs.
[Dong and Atluri (2013c)] has further developed SGBEM voronoi cells for direct
micromechanical numerical modeling of heterogeneous composites. It should be
mentioned at this point that [Selvadurai (1998, 2000)] developed boundary ele-
ment techniques to analyze fracture evolution during indentation of a brittle half-
space and illustrated how the load-displacement exhibits a non-linear response due
to the crack extension. The type of problems discussed in these developments
largely focus on two-dimensional cracks [Chao and Wikarta (2012)] and some
three-dimensional simple cracks such as penny-shaped cracks and elliptical cracks
[Wang, Sun and Zhu (2011)].

Rectangular cracks are another type of cracks that are studied in fracture mechanics.
But, because of their complex geometry, it is difficult to determine exact solutions
of rectangular cracks. In some cases, rectangular cracks can be analyzed using nu-
merical methods. [Weaver (1977)] utilized a system of integral equations for the
analysis of rectangular cracks in an isotropic medium of infinite extent. [Murakami
(1987)] presented the SIF values of rectangular cracks in an isotropic medium of
semi-infinite extent under the action of remotely uniform stresses. [Bains (1992);
Bains, Aliabadi, and Rooke (1992)] presented a new procedure for the determina-
tion of the weight functions that are used to evaluate SIFs of a straight-fronted crack
in a rectangular bar subjected to various loadings. [Pan and Yuan (2000); Yue, Xiao
and Pan (2007)] developed the dual BEMs to study rectangular cracks in a trans-
versely isotropic material and a transversely isotropic bi-material, respectively. To
the best of our knowledge, a literature review of the present study indicates that
there are few publications in the open literature on a rectangular crack in a layered
medium.

The purpose of this paper is to analyze a square crack problem in layered half-
spaces subject to uniform rectangular loadings on the external surface, as shown in
Fig. 1. Two novel numerical methods and the superposition principle in fracture
mechanics are employed. The proposed numerical methods are based on the fun-
damental solution in a multilayered elastic medium [Yue (1995)]. The fundamental
solution associated with concentrated body force vector used in this paper is also
named as Yue’s solution by [Maloney, Walton, Bruce and Van Vliet (2008)]. For the
past 15 years, Yue’s solution has been used to develop the boundary element meth-
ods for the analysis of fracture mechanics in layered and graded solids [Xiao and
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Yue (2014)]. Yue’s solution is also suitable for the layered media of semi-infinite
extent. In an infinite layered medium, the elastic modulus of the upper semi-infinite
medium is given an extremely small value, such as E0 = 1× 10−10MPa and the
Poisson’s ratio of the medium ν0 = 0.3. In this way, the fundamental solution of a
layered medium of semi-infinite extent is obtained. Yue’s solution based numerical
method is also used for the analysis of the contact problems involving the function-
ally graded materials [Xiao and Yue (2009)].
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Figure 1: A square-shaped crack in a layered half-space 

subjected to uniform loadings on the boundary surface 
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Figure 2: Loading area and crack surface on coordinate systems Oxyz and O x y z     

Figure 1: A square-shaped crack in a layered half-space subjected to uniform load-
ings on the boundary surface.

At first, the novel numerical methods are briefly introduced and the superposition
principle of fracture mechanics is presented for the analysis of the crack problems.
In the ensuing numerical analyses, the stress fields of layered halfspaces without
cracks are first obtained using a numerical method. The tractions on the crack
surfaces are then prescribed according to the superposition principle and the dis-
continuous displacements on crack surfaces are finally calculated using another
numerical method. The SIF values of square-shaped cracks in layered half-spaces
are calculated using the discontinuous displacements on crack surfaces. Using the
SIF values and the minimum strain energy density criterion, the minimum values
of strain energy density factors around the crack tip are calculated and the crack
growth is analyzed. Numerical results illustrate the influence of the positions of the
crack and the non-homogeneity of a layered medium on the fracture properties of
cracked layered bodies.
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2 Numerical methods for analyzing the crack problem in a layered half-space

2.1 Numerical method for elastic fields in a layered medium

Xiao, Yue and Zhao (2012) developed a numerical method for calculating elastic
fields of a heterogeneous medium with depth using Yue’s solution. The stresses
σi j (Q) at any point Q of the layered medium are described as

σi j (Q) =
∫

ΓL

σ
∗
i jk (Q,P) tk (P)dΓ(P), i, j,k = x,y,z, (1)

where σ∗i jk (Q,P) are stresses of Yue’s solution for the field point Q due to the unit
force along the k direction at the source point P, tk (P) is the traction at the source
point P, and the integral domain ΓL is the loading area. It should be noted that the
subscript k is a dummy index.

The corresponding computer program LayerSmart3D was written in FORTRAN.
The techniques adapted in LayerSmart3D primarily involve the discretization of the
loading domain into a finite number of quadrilateral elements. Values of the loads
are inputted at the node points of the discretized domain and the Gaussian numer-
ical quadrature is used for obtaining the integral value on the element. Numerical
verification of LayerSmart3D indicates that numerical solution of high accuracy
can be efficiently calculated for elastic fields induced by the distributed loads in a
layered medium.

2.2 DDM for analyzing crack problems in a layered medium

Xiao and Yue (2011) developed a new displacement discontinuity method (DDM)
for the analysis of crack problems in layered strata of infinite extent. This approach
is also based on Yue’s solution and the corresponding computer program LayerD-
DM3D was written in FORTRAN.

Assume that the crack surfaces consist of Γ
+
C and Γ

−
C . In global coordinates (x,y,z),

the discontinuous displacements of the crack surfaces are defined as ∆u j

(
Q

Γ
+
C

)
=

u j

(
Q

Γ
+
C

)
− u j

(
Q

Γ
−
C

)
. u j is a displacement along the direction j = x,y,z. The

traction on the crack surface is defined as t j

(
P

Γ
+
C

)
. The basic equations of Yue’s

solution based DDM are as follows

t j

(
P

Γ
+
C

)
+ni

(
P

Γ
+
C

)∫
Γ
+
C

T ∗i jk

(
P

Γ
+
C
,Q
)

∆uk (Q)dΓ(Q) = 0 , i, j,k = x,y,z (2)

where ni

(
P

Γ
+
C

)
is the cosine of normal direction at the source point PΓ+ , T ∗i jk

(
P

Γ
+
C
,Q
)

is a new kernel function which can be calculated by using the traction t∗i j of Yue’s
solution.
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In developing the DDM for Eq (2), the nine-node continuous and discontinuous
elements are used to discretize the crack surface. The Kutt’s numerical quadrature
is used to calculate the hyper-singular integral in the discretized integral equation.
By solving the discretized equations of Eq (2), the discontinuous displacements on
the crack surface can be obtained. The numerical verification shows that the present
results are in very good agreement with the existing ones. Notice that the proposed
DDM is suitable only for the analysis of crack problems in layered media of infinite
extent under the action of loadings on crack surfaces.

2.3 The superposition principle of fracture mechanics

In the followings, the above-mentioned two numerical methods, i.e., LayerSmart3D
and LayerDDM3D, and the superposition principle in fracture mechanics are uti-
lized to analyze crack problems in a layered medium. LayerSmart3D is employed
to obtain the stress fields of a layered medium without a crack under the action of
rectangular loadings on the boundary surface. Using the superposition principle
in fracture mechanics, the tractions, which are equal to the stress calculated above
and have opposite directions, are then loaded on the crack surfaces in the layered
medium without rectangular loadings on the boundary surface. LayerDDM3D is
employed to obtain the discontinuous displacements of the crack surfaces under the
action of the above tractions.

3 Stress fields of a homogeneous halfspace without cracks

3.1 General

As shown in Figs. 1 and 2, a square-shaped crack is located in a layered half-
space where a Cartesian coordinate system Oxyz is attached. The crack surfaces
ΓC are parallel to the boundary surface z = 0, have a vertical distance of h from
the boundary and a horizontal distance of d from the coordinate plane Oyz. The
loading area ΓL is a rectangular domain, has 2a wide and 3a long and is located at
the boundary surface, i.e., z = 0. The side length of the square-shaped crack is 2a
and a local Cartesian coordinate system O′x′y′ is attached at the crack surface. A
compressive load p is uniformly distributed on the area ΓL.

Under the action of the compressive load p, the shear stresses σxz, σyz and the com-
pressive stress σzz are distributed on the non-crack area ΓC. According to the super-
position principle in fracture mechanics, the traction on the crack surface fz =−σzz,
is tensile and makes the crack surfaces close. Thus, there is no mode I deformation
and only mode II and III deformations exist. In the following, we discuss only the
distribution of shear stresses σxz and σyz on the non-crack area ΓC in a homoge-
neous half-space without a crack. Assume that the elastic modulus is E and the
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Figure 1: A square-shaped crack in a layered half-space 

subjected to uniform loadings on the boundary surface 
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Figure 2: Loading area and crack surface on coordinate systems Oxyz and O x y z     
Figure 2: Loading area and crack surface on coordinate systems Oxyz and O′x′y′z′.

Poisson’s ratio is 0.3 for a homogeneous half-space.

In order to calculate the stress fields using LayerSmart3D, the loading area ΓL is
discretized into 150 8-noded elements and 501 nodes. The 441 calculating points
are positioned on the non-crack area ΓC and corresponds to the nodes of the element
mesh on the square-shaped crack surfaces to be used in the following.

3.2 The shear stresses on the non-crack area ΓC in a homogenous half-space

3.2.1 The non-crack area ΓC located directly below the loading area ΓL

In this case, the horizontal distance between the centers of the two areas ΓC and ΓL

is equal to zero, i.e., d = 0. Figs. 3 and 4 illustrate the distribution of the shear
stresses σxz and σyz on the area ΓC for h = 0.2a. In Fig. 3, σxz is symmetrical with
respect to y′ = 0 and has maximum absolute values along x′/a = ±1 for different
values. In Fig. 4, σyz is symmetrical with respect to x′ = 0 and has maximum
absolute values along y′/a = ±1 for different x′ values. It can be also found that
the maximum value of σyz is much larger than the one of σxz on the area ΓC.

Figs. 5 and 6 show the variations of σxz along y′ = 0 and σyz along x′ = 0 on ΓC

with the depth h. In Fig. 5, with the depth h increasing, the absolute value of
σxz first increases, arrives at maximum values at about h/a = 1 and then decreases
and approaches an extremely small value near zero. In Fig. 6, the variation of σyz

with h is much similar to the one of σxz whilst the maximum values σyz appear at
h/a = 0.4−0.6.

3.2.2 The non-crack area ΓC located at different positions along the x axis

In this case, the area ΓC is located at the depth h/a = 1 and has different horizontal
distances d along the x axis. Figs. 7 and 8 show the variations of σxz along x′ = 0
and σyz along y′ = 0 on ΓC. In the neighborhood of x′/a =−1, σxz first decreases,
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Figure 3: The stress xz  on C  at 0d  and ah 2.0  in a homogeneous half-space 

 

 

 

 

Figure 4: The stress yz  on C  at 0d  and ah 2.0  in a homogeneous half-space 

Figure 3: The stress σxz on ΓC at d = 0 and h = 0.2a in a homogeneous half-space.
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Figure 3: The stress xz  on C  at 0d  and ah 2.0  in a homogeneous half-space 

 

 

 

 

Figure 4: The stress yz  on C  at 0d  and ah 2.0  in a homogeneous half-space Figure 4: The stress σyz on ΓC at d = 0 and h = 0.2a in a homogeneous half-space.
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Figure 5: Variations of xz  with h along 0y  in a homogeneous half-space 

 

 

 

 

Figure 6: Variations of yz  with h along 0x  in a homogeneous half-space 

  

Figure 5: Variations of σxz with h along y′ = 0 in a homogeneous half-space.
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Figure 5: Variations of xz  with h along 0y  in a homogeneous half-space 

 

 

 

 

Figure 6: Variations of yz  with h along 0x  in a homogeneous half-space 

  

Figure 6: Variations of σyz with h along x′ = 0 in a homogeneous half-space.
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Figure 7: Variations of xz  with d ( 1/ ah  and 0/  ay ) in a homogeneous half-space 

 

 

 

 

Figure 8: Variations of yz  with d ( 1/ ah  and 0/  ax ) in a homogeneous half-space 

 

 

 

 

 

 

Figure 7: Variations of σxz with d (h/a = 1 and y′/a = 0) in a homogeneous half-
space.
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Figure 7: Variations of xz  with d ( 1/ ah  and 0/  ay ) in a homogeneous half-space 

 

 

 

 

Figure 8: Variations of yz  with d ( 1/ ah  and 0/  ax ) in a homogeneous half-space 

 

 

 

 

 

 

Figure 8: Variations of σyz with d (h/a = 1 and x′/a = 0) in a homogeneous half-
space.
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arrives at minimum values at d/a = 3, then increase and approaches an extremely
small value near zero with d increasing. In the neighborhood of x′/a = 1, σxz first
decreases, arrives at minimum values at d/a = 1.5, then increase and approaches
an extremely small value near zero with d increasing. In Fig. 8, the absolute values
of σyz decrease as d increases.

4 Analytical methods of square-shaped cracks in layered media

4.1 General

The two cases are analyzed: Case 1: a square-shaped crack in a homogeneous
half space, Case 2: a square-shaped crack in a layered half-space with two finite
layers and a homogeneous halfspace. According to the superposition principle in
fracture mechanics, the absolute values of the tractions on the crack surfaces in a
layered half space without the surface force p are equal to the ones of the shear
stresses on the area ΓC in a layered half-space without a crack whilst the directions
of the tractions and the shear stresses are completely opposite. As shown in Fig. 9,
fx =−σxz and fy =−σyz.
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Figure 10: Variations of KII with h for Case 1-1 (d=0 and y=0) 

 

 

 

 

 

Figure 9: A square crack subjected to xf  and yf  and a 

moving local coordinate L attached at crack tip 
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Figure 9: A square crack subjected to fx and fy and a moving local coordinate L
attached at crack tip.

A square-shaped crack (the side length 2a) needs to be discretized to calculate the
discontinuous displacements on the crack surfaces. [Xiao and Yue (2011)] ana-
lyzed the square crack in layered rocks and the mesh of the crack surface shown
in Fig. 6 of their paper can be further employed. One hundred (10×10) nine-node
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elements are used to discretize the crack surface. Among these elements, there
are 64 nine-node isoparametric elements, 32 discontinuous elements of type I, and
four discontinuous elements of type II. The above-mentioned tractions are applied
on 441 nodes of this element mesh.

4.2 Formulae of calculating SIF values

The SIF values can be calculated by using the discontinuous displacements. For
the crack in multilayered solids but no located at the interface of two materials,
the stress and displacement fields are the same as the ones of the crack in the ho-
mogenous solid. And the material parameters exert an influence on the SIFs. Based
on the relationship of displacements and the SIFs, the formulae of the SIFs are as
follows

KII =
E

4(1−ν2)

√
π

2r
∆uy′ (or ∆ux′) (r,θ =±π,ϕ = 0) , (3a)

KIII =
E

4(1+ν)

√
π

2r
∆ux′ (or ∆uy′) (r,θ =±π,ϕ = 0) , (3b)

where (r,θ ,ϕ) is the spherical coordinates located at the crack front. Note that ∆ux′

or ∆uy′ are needed to calculate KII and KIII for different sides of a square-shaped
crack.

In order to plot the SIF values along the crack lines, a line coordinate Lshown in
Fig. 9 is attached at the crack front. The origin of the coordinate system is located
at the corner A. L/a increases along the lines AB, BC, CD to DA. Correspondingly,
L/a increases from 0-2, from 2-4, from 4-6, and from 6-8, respectively.

4.3 Analytical method of crack propagation

Growth of a crack in elastic solids subject to complex stress states can be assessed
using the minimum strain energy density criterion (i.e., S-criterion) proposed by
[Sih (1973); Sih and Cha (1974)]. The S-criterion was developed on the basis of
the strain energy density concept. It states that local instability is assumed to occur
when the local minimum energy factor Smin reaches a critical value Scr.

Since only SIF values of modes II and III exist, the strain energy density factor S
of a three-dimensional crack can be defined as [Hartranft and Sih (1997)]

S (θ) = a22 (θ)K2
II+a33 (θ)K2

III (4)

where

a22 (θ) =
1

16πµ
[4(1−ν)(1− cosθ)+(3cosθ −1)(1+ cosθ)]
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a33 =
1

4πµ

where µ is the shear modulus of elasticity, ν is the Poisson’s ratio and θ is an angle
in the coordinate plane normal to the crack line of crack front.

The direction of crack propagation should satisfy

∂S
∂θ

= 0 and
∂ 2S
∂θ 2 > 0 (5)

According to Eq. (5), we have

2(1−2ν)sinθ −3sin2θ = 0 and 2(1−2ν)cosθ −6cos2θ > 0 (6)

In Eq. (6), it can found that the angle of crack propagation is only related to the
Poisson’s ratio of the material where the crack is located. For ν = 0.3, the angle of
crack propagation θc =±82.34o. Thus, substituting the SIF values obtained above
and the propagation angle θc into Eq. (5), the minimum energy factor Smin can be
calculated.

5 Case 1: square-shaped crack in a homogeneous half-space

5.1 Case 1-1: The crack is located at the position with d=0 and different h
values

5.1.1 SIF values of the crack

In this case, the crack is located directly below the loading area, i.e., d=0. Figs.
10 and 11 illustrate the variations of KII and KIII induced by p with the depth h.
Because of symmetry, only the SIF values along 0 < L/a < 4 are presented in these
figures. As shown in Fig. 10, except for h/a = 0.1, the KIIvalues are negative along
0 < L/a < 2. At the depth h/a = 0.1, the KIIvalues approach zero, are negative
along a part of the crack front and positive along another part of the crack front.
With the depth hincreasing, the absolute KII values increase for 0.1≤ h/a≤ 1 and
decrease for h/a≥ 1.

In Fig. 11, KIIIis positive along 0< L/a< 1 and negative along 1< L/a< 2, and the
absolute values of KIII are equal for two symmetric points with respect to L/a = 1.
With the depth h increasing, the absolute KIII values increase for 0.1 ≤ h/a ≤ 0.6
and decrease for h/a ≥ 0.6 along 0 < L/a < 2. KIII is negative along 2 < L/a <
3 and positive along 3 < L/a < 4, and the absolute values of KIII are equal for
two symmetric points with respect to L/a = 3. With the depth h increasing, the
absolute KIII values increase for 0.1≤ h/a≤ 1.0 and decrease for h/a≥ 1.0 along
2 < L/a < 4.
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Figure 10: Variations of KII with h for Case 1-1 (d=0 and y=0) 

 

 

 

 

 

Figure 9: A square crack subjected to xf  and yf  and a 

moving local coordinate L attached at crack tip 

L 

x  

y

 

xf

 

yf  

A:L/a=0 

B:L/a=2 
C:L/a=4 

D:L/a=6 

A:L/a=8 

L 

L 

L 

Figure 10: Variations of KII with h for Case 1-1 (d = 0 and y = 0).

23 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.20

-0.16

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0.16

0.20

K
II

I/(
p
a
)1

/2

L/a

Case 1-1: d/a=0

 d/a=0.1,  d/a=0.2

 d/a=0.6,  d/a=1

 d/a=1.4,  d/a=1.8

 d/a=2,    d/a=2.5

 d/a=3

 

Figure 11: Variations of KIII with h for Case 1-1 (d=0 and y=0) 
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Figure 12: Variations of Smin with h for Case 1-1 (d=0 and y=0) 

 

 

 

Figure 11: Variations of KIII with h for Case 1-1 (d = 0 and y = 0).
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Figure 12: Variations of Smin with h for Case 1-1 (d=0 and y=0) 
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In summary, the absolute values of KII and KIII first increase and then decrease with
the depth h increasing for a given distance d. This variation tendency is closely
related to the distribution of fx and fy with the depth h, shown in Figs. 5 and 6.

5.1.2 Analysis of crack growth

Fig. 12 shows the variations of Smin along the crack tips AB and BC using Eq. (5)
and the SIF values presented in Figs. 10 and 11. From this figure, we can have the
following observations:

• Along the crack front AB, the values of Smin are symmetrical with respect to
the central point L/a = 1. At a given depth h, the maximum value of Smin

appears between 0 < L/a < 0.5, for the value of KIII arrives at the maximum
value in this interval. As the depth h increases, the maximum value of Smin

first increases, arrives at the maximum value at h/a= 0.6 and then decreases.
When h/a = 3, the maximum value of SminE/(p2a) is 0.4149×10−3. As the
depth continues to increase, Smin approaches zero.

• Along the crack front BC, the values of Smin are symmetrical with respect
to the central point L/a = 3. At most of given depths, the maximum val-
ues of Smin appear at the central point L/a = 3, for the value of KII arrives
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at the maximum value L/a = 3. As the depth h increases, the maximum
value of Smin first increases, arrives at the maximum value at h/a = 0.6
and then decreases. When h/a = 3, the maximum value of SminE/(p2a)
is 0.4422×10−3. As the depth continues to increase, Smin approaches zero.

• For a given depth, the maximum value of Smin along the crack front AB and
BC appears at the central point of the crack front BC. This means that if
Smin = Scr, the crack growth initiates at the crack tip L/a = 3.

5.2 Case 1-2: The crack is located at the positions with h/a= 1 and different d
values

5.2.1 SIF values of the crack

In this case, the crack is located at the depth h/a = 1 and has different distances
from the loading area along x-axis. Figs. 13 and 14 illustrate the variations of KII
and KIII with the horizontal distance d. Because of symmetry, the absolute values of
KII and KIII have the same and their positive and negative symbols are completely
opposite along 2 < L/a < 4 and 6 < L/a < 8. Thus, Figs. 13 and 14 present only
the SIF values along 0 < L/a < 6.
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Figure 14: Variations of KIII with d along x-axis for Case 1-2 (h/a=1 and y=0) 
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Figure 15: Variations of Smin with d along x-axis for Case 1-2 (h/a=1 and y=0) 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 16: A square-shaped crack in a layered half-space 

consisting of two finite layers and a homogeneous half-space 
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Figure 15: Variations of Smin with d along x-axis for Case 1-2 (h/a = 1 and y = 0).
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In Fig. 13, it can be found that KII is symmetrical with respect to L/a = 1 along 0 <
L/a< 2. On the crack front of this side, KII increases for 0≤ d/a≤ 2, decreases for
d/a≥ 2.5 and approaches zero with the distance d increasing. Along 2≤ d/a≤ 4,
the KII values are negative and are not symmetrical with respect to L/a = 1. On
the crack front of this side, the absolute values of KII decrease and approach zero
with the distance d further increasing. Along 4 ≤ L/a ≤ 6, KII is symmetrical
with respect to L/a = 5, the KII values increases for 0≤ d/a≤ 1 and decrease for
d/a > 1 with the horizontal distance dfurther increasing.

In Fig. 14, it can be found that KIII is positive along 0 < L/a < 1 and negative along
1 < L/a < 2, and the absolute values of KIII are equal for two symmetric points
with respect to L/a = 1. On the crack front of this side, the absolute values of KIII
increases for 0≤ d/a≤ 0.5, decreases for d/a > 0.5 and approaches zero with the
distance d increasing. Along 2≤ d/a≤ 4, the KIII values are not symmetrical with
respect to L/a = 3. Along 2≤ L/a≤ 3, the KIII values increase for 0≤ d/a≤ 1.5,
and decrease and approach zero d/a > 2 with the distance d further increasing.
Along 3 < L/a ≤ 4, the KIII values increase for 0 ≤ d/a ≤ 1.0, and decrease for
d/a ≥ 1.5 and approach zero with the distance d further increasing. Along 4 ≤
L/a ≤ 6, KIII is negative along 4 < L/a < 5 and positive along 5 < L/a < 6, and
the absolute values of KIII are equal for two symmetric points with respect to L/a =
5. On the crack front 4 ≤ L/a ≤ 6, and the absolute values of KIII decrease and
approach zero with the distance d increasing.

In summary, the absolute values of KII and KIII first increase and then decrease with
the distance d increasing for a given depth h. The variations of KII and KIII are
closely related to the distribution of fx and fy with the distance d, shown in Figs. 7
and 8.

5.2.2 Analysis of crack growth

Fig. 15 shows the variations of Smin along the crack tips AB, BC and CD using Eq.
(4) and the SIF values presented in Figs. 13 and 14. From this figure, we can have
the following observations:

• Along the crack front AB, the values of Smin are symmetrical with respect
to the central point L/a = 1. For d/a = 0,0.5,1, the maximum values of
Smin appears between 0 < L/a < 0.5, for d/a = 1.5 the maximum values of
Smin appears at L/a = 0.6 and for d/a = 2− 4 the maximum values of Smin

appears at L/a = 1. As the distance d increases, the maximum value of Smin

first increases, arrives at the maximum value at d/a = 2 and then decreases.
When d/a = 4, the maximum value of SminE/(p2a) is 0.3193×10−3. As the
distance continues to increase, Smin approaches zero.
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• Along the crack front BC, the values of Smin are not symmetrical with respect
to the central point L/a = 3 except for d/a = 0. For d/a = 0 the maximum
values of Smin appears at L/a = 3, for d/a = 0.5,1 the maximum values
of Smin appears between 3 < L/a < 4 and for d/a = 1.5− 4 the maximum
values of Smin appears between 2 < L/a < 3. As the distance d increases,
the maximum value of Smin first increases, arrives at the maximum value
at d/a = 1.5 and then decreases. When d/a = 4, the maximum value of
SminE/(p2a) is 0.1098×10−3. As the distance continues to increase, Smin

approaches zero.

• Along the crack front CD, the values of Smin are symmetrical with respec-
t to the central point L/a = 5. For d/a = 0 the maximum values of Smin

appear at L/a = 4.2,5.8 and for d/a = 0− 4 the maximum values of Smin

appears at L/a = 5. As the distance d increases, the maximum value of Smin

first increases, arrives at the maximum value at d/a = 1 and then decreases.
When d/a = 4, the maximum value of SminE/(p2a) is 0.2134×10−4. As the
distance continues to increase, Smin approaches zero.

• For different distances d, the maximum values of Smin appears at different
crack fronts AB, BC and CD. This causes the crack growth first initiates at
different positions of the crack front for different distances d.

6 Case 2: square-shaped crack in a layered half-space

6.1 General

Fig. 16 shows a square-shaped crack in a layered half-space with two finite layers
and a homogeneous half-space. The thicknesses of the finite layers are a/2 and
a. The elastic moduli of Materials 1 and 2 and the homogeneous half-space are
E1, E2 andE3, respectively. The Poisson’s ratios for three materials are 0.3. In the
following, two cases, i.e., E1 = E3 = 2E2E1 = E3 = E2/2, will be discussed. The
crack is located at Material 2 and is parallel to the boundary surface z = 0. The
above-mentioned mesh is further employed.

6.2 Case 2-1: E1 = E3 = 2E2

6.2.1 SIF values of the crack

Figs. 17 and 18 illustrate the variations of KII and KIII for Case 2-1. From these
figures, it can be found that the absolute values of KII and KIII for a homogeneous
medium are much larger than the ones for a layered half-space. This is because the
elastic moduli of Materials 1 and 3 are larger than the ones of Material 2 and Mate-
rials 1 and 3 restrict the relative sliding of crack surfaces. As the depth h increases,
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Figure 16: A square-shaped crack in a layered half-space 

consisting of two finite layers and a homogeneous half-space 
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Figure 16: A square-shaped crack in a layered half-space consisting of two finite
layers and a homogeneous half-space.
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Figure 17: Variations of KII with h for Case 2-1 (d=0) 
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Figure 18: Variations of KIII with h for Case 2-1 (d=0) 
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Figure 19: Variations of Smin with h for Case 2-1 (d=0) 
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Figure 19: Variations of Smin with h for Case 2-1 (d=0).
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the absolute values of KII slightly increase along 0 < L/a < 2 and obviously de-
crease along 2 < L/a < 4. As the depth h increases, the absolute values of KIII
decrease in the neighborhood of L/a = 0.25 and L/a = 1.75 and slightly increase
along 2 < L/a < 4.

It is obvious that the homogeneous medium (Material 3) exert a stronger influence
on the sliding discontinuous displacements than the finite layer (Material 1).

6.2.2 Analysis of crack growth

Fig. 19 shows the variations of Smin along the crack front AB and BC using Eq. (4)
and the SIF values presented in Figs. 17 and 18. From this figure, we can have the
following observations:

• Along the crack front AB, the Smin values are symmetrical with respect to
L/a = 1 and the maximum values of Smin appear at L/a = 0.2,1.8 for all
h/a values. Along the crack front BC, the Smin values are symmetrical with
respect to L/a = 3 and the maximum values of Smin appear at L/a = 3 for all
h/a values.

• The Smin values of the crack for Case 2-1 become much smaller than the ones
of the crack in a homogeneous half-space. This means that the crack growth
for Case 2-1 becomes more difficult than the ones in a homogeneous half-
space. For Case 2-1, the Smin values become small with the depth increasing.
Along the crack front BC, the variations of Smin with the depth h are more
obvious than along the crack front AB.

6.3 Case 2-2: E1 = E3 = E2/2

6.3.1 SIF values of the crack

Figs. 20 and 21 illustrate the variations of KII and KIII for Case 2-2. From these
figures, it can be found that the absolute values of KII and KIII for a homogeneous
medium are much smaller than the ones for a layered half-space. This is because
the elastic moduli of Materials 1 and 3 have smaller values than Material 2 and
the different materials induce larger sliding discontinuous displacements. Along
0 < L/a < 2, the absolute values of KII increase for 0.6≤ h/a≤ 1 and decrease for
1 ≤ h/a ≤ 1.4 as the depth h increases. Along 2 < L/a < 4, the absolute values
of KII decrease as the depth h increases. As the depth h increases, the absolute
values of KIII decrease in the neighborhood of L/a = 0.25 and L/a = 1.75 whilst
the absolute values of KIII slightly increase for 0.6 ≤ h/a ≤ 1 and decrease for
1 ≤ h/a ≤ 1.4 along 2 < L/a < 4. Similarly, the homogeneous medium (Material
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3) exert a stronger influence on the sliding discontinuous displacements than the
finite layer (Material 1).
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Figure 20: Variations of KII with h for Case 2-2 (d=0) Figure 20: Variations of KII with h for Case 2-2 (d=0).
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Figure 21: Variations of KIII with h for Case 2-2 (d=0) 
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Figure 22: Variations of Smin with h for Case 2-2 (d=0) 

Figure 21: Variations of KIII with h for Case 2-2 (d=0).
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Figure 22: Variations of Smin with h for Case 2-2 (d=0) Figure 22: Variations of Smin with h for Case 2-2 (d=0).

6.3.2 Analysis of crack growth

Fig. 22 shows the variations of Smin along the crack front AB and BC using Eq. (4)
and the SIF values presented in Figs. 20 and 21. From this figure, we can have the
following observations:

• Along the crack front AB, the Smin values are symmetrical with respect to
L/a = 1 and the maximum values of Smin appear at L/a = 0.2,1.8 for all
h/a values. Along the crack front BC, the Smin values are symmetrical with
respect to L/a = 3 and the maximum values of Smin appear at L/a = 3 for all
h/a values.

• The Smin values of the crack for Case 2-2 become much larger than the ones
of the crack in a homogeneous halfspace. This means that the crack growth
for Case 2-1 becomes easier than the ones in a homogeneous half-space. For
Case 2-2, the Smin values become small with the depth increasing. Along the
crack front BC, the variations of Smin with the depth h are more obvious than
along the crack front AB.

7 Conclusions

This paper develops novel methods for the analysis of square-shaped crack prob-
lems in a layered half-space subject to the uniform rectangular loadings on the
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boundary surface. The two numerical methods use the fundamental solution of a
layered medium and also utilize the superposition principle in fracture mechanics.

The numerical results show that the fracture modes of the crack under the action of
this loading are coupled and the material in the neighborhood of a square-shaped
crack exerts an obvious influence on the SIF values of the crack. They also illus-
trate that the distribution of the SIF values is much related to the horizontal and
vertical distances between the crack and the loading. Using the SIF values and the
S-criterion on the basis of the strain energy density concept, the minimum values
of strain energy density factor at the crack front are calculated and the position and
direction of potential crack growth is discussed. It can be found that the strain en-
ergy density factor values are obviously affected by the positions of the crack and
the materials in the neighborhood of the crack
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