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Meshfree Method for the Topological Design of
Microstructural Composites

Y. Wang1, E. Lü1,2, J. Zhao1 and J. Guo1

Abstract: Meshfree methods have found good applications in many new research-
es, which show very good potential to be powerful numerical tools. As an alterna-
tive to the mesh based methods, meshfree methods have the advantage of not using
a predefined mesh for the domain discretization. In this study, a mesh free scheme
based on the radial point interpolation method was used to solve the topological
design of microstructures for composite materials. The explicit form of the radi-
al point interpolation method (RPIM) interpolation augmented with polynomials
is presented, which satisfies range-restricted properties and is applicable to inte-
grate a physically meaningful density interpolation. Meanwhile gauss quadrature
scheme was applied in order to calculate the physical meaningful properties of mi-
crostructure, while the homogenization method is applied to evaluate the effective
macroscopic properties of a periodic microstructure. Typical numerical examples
are used to demonstrate the effectiveness of the proposed method for designing
composite materials with expected effective elasticity tensor.
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1 Introduction

Topology optimization is a mathematical approach to optimize material layout
within a given design space, under a given set of loads and boundary conditions,
so that the resulting layout meets a prescribed set of performance targets. Michell
(1904) introduce the idea of the topology optimization method firstly by the work
of in frame theory. In the past two decades, structural topology optimization as
a new approach in structural optimization has developed rapidly with many new
contributions to theory, computational methods and applications [Bendsoe and Sig-
mund (2003)]. By now, various schemes have been developed, such as the homog-
enization method [Bendsoe and Kikuchi (1988); Guedes and Kikuchi (1990) ]the
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SIMP method [Zhou and Rozvany (1991); Mlejnek (1992); Bendsoe and Sigmund,
(1999)], the ESO method [Xie and Steven (1993)], and the level set-based method
[Sethian and Wiegman (2000); Wang, Wang and Guo (2003); Allaire, Jouve and
Toader (2004); Luo, Wang , Wang and Wei (2008)].

Most recently, several approaches are studied based on nodal design variables [Rah-
matalla and Swan (2004); Matsui and Terada (2004); Guest, Prevost and Belytschko
(2004); Paulino and Le (2009)]. According to these approaches, values of material
density at nodes are considered as design variables, and traditional element material
densities are obtained from nodal values with interpolation schemes. Meanwhile,
a number of researchers concentrated on getting rid of the elements and meshes
in the process of numerical treatment, and the concepts of meshfree methods have
been shaped up [Liu and Gu (2005)]. Meshfree methods use a set of nodes scat-
tered on the boundaries of the domain to represent the problem domain and the
boundaries. These sets of nodes which are called field nodes do not form a mesh
of elements. In this case, contrary to the Finite Element Method (FEM), there is no
relation between nodes and background cells.

By now, there are several mesh free methods being developed, such as the S-
moothed Particle Hydrodynamics [Liu and Liu (2005)], the Element Free Galerkin
Method [Belytschko, Lu and Gu (1994)], Point Interpolation Method [Liu and Gu
(2001)], the hp-clouds method [Duarte and Oden (1996)], the Reproducing Kernel
Particle Method [Liu, Sun and Zhang (1995)], Generalized Finite Element Method
[Babuska, Banerjee and Osborn (2004)] and the Partition of Unity Method [Babus-
ka and Melenk (1997)].Based on the applied function approximation/interpolation
scheme, the Moving Least Square (MLS) approximation and Point Interpolation
Method (PIM) are the most widely used methods [Liu, Gu and Dai (2004)]. The El-
ement Free Galerkin (EFG) and Meshless Petrov-Galerkin (MLPG) [Atluri and Zhu
(1998); Atluri and Shen (2002); Dong, Alotaibi, Mohiuddine and Atluri (2014)]
methods have been developed based on MLS approximation. Compared with the
MLS approximation, PIM using interpolation to construct shape functions to pos-
sess the Kronecker delta function property is useful for implementing the boundary
conditions [Cui, Liu and Li (2010)].

Even though meshfree methods have been applied successfully in vast variety of ar-
eas and shown very good potential to be powerful numerical tools, the application
of methods are still in their developing stage. On the application of topology opti-
mization for material design, the early work was made by Sigmund by applying an
inverse homogenization method [Sigmund (1995); Sigmund and Torquato (1997)].
The microstructural composites microstructural composites periodic microstruc-
tures, and the layout including the geometric shape and topology of the microstruc-
ture is of great importance for achieving the effective properties of the composite.
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It is known that inverse homogenization method (IHM) [Sigmund (1994); Hassani
and Hinton (1998)] searches for an appropriate material architecture in the base cell
model, which has been employed to create various microstructures for composite
with desired properties [Sigmund (1995); Sigmund and Torquato (1996), Larsen,
Sigmund and Bouwstra (1997); Diaz and Sigmund (2010); Zhou, Li and Li (2010);
Zhou, Li, Chen, Sun and Li (2011); Dong, Gamal and Atluri (2013); Dong and
Atluri (2013)] or extreme properties [Sigmund and Torquato (1996); Sigmund and
Torquato (1997); Sigmund (2000); Guest and Prévost (2007); Huang, Zhou, Xie
and Li (2013); Wang, Luo, Zhang and Kang (2014)].

In this study, a mesh free method based on the RPIM is implemented to solve the
topology optimization problem in the design of microstructural composite. The nu-
merical homogenization method, to determine the effective properties of the com-
posite, is combined with the RPIM to implement the inverse design of composite
materials. The proposed meshfree method will be employed to optimize the shape
and topology of the microstructure. Numerical examples will be used to demon-
strate the effectiveness of the proposed method for the design of composites.

2 Radial Point Interpolation Method

Since the mesh free methods get rid of using mesh of elements, the field variable
u(x) at a point of interest x is interpolated in the problem domain using the function
values at neighbor nodes of the point x. The neighbor nodes are called local support
domain, and anon-local support domain of a point x determines the number of
nodes n to be used to approximate the function value at x which can be expressed
as

u(x) = Φ
T (x)Us =

n

∑
i=1

ϕiui (1)

Where n is the number of neighbor nodes within the non-local support domain of
the arbitrary point x, ui is the nodal field variable at field node i and ϕi is the RPIM
shape function corresponding to field node i. The non-local support domain of a
point x determines the number of nodes n to be used to approximate the function
value at x.

The RPIM interpolation augmented with polynomials can be written as

u(x) =
n

∑
i=1

Ri (x)ai +
m

∑
j=1

pj (x)bj = RT (x)a+pT (x)b (2)

where Ri(x) is a compactly supported radial basis function (CSRBF), n is the num-
ber of CSRBFs, p j(x) is a polynomial in the space coordinate and m is the number
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of polynomial basis functions, ai and b j are the coefficients to be determined. In
radial basis functions, the variable is only the distance between the point of interest
x and a node at xi, for 2D problem

r =
√
(x− xi)2 +(y− yi)2 (3)

There are a variety of CSRBF types and their characteristics have been widely
investigated [Wu (1995); Wendland (1995)]. The CSRBFs are strictly positive def-
inite for all r less than or equal to some fix value, and can be constructed to have
desired amount of smoothness of 2k. In a CSRBF, there is a shape parameter, δ ,
that determines the size of non-local support domain of the CSRBF. When r≥ δ ,
their value is regarded as zero [Liu and Gu (2005)]. In this study, the Wendland-C6
CSRBF [Wendland (1995)] is applied, which is stated as

R(x,y) = (1− r
δ
)8
(

1+8
r
δ
+25

r2

δ 2 +32
r3

δ 3

)
(4)

The polynomial term in Eq. 2 is not always necessary. A number of advantages
such as improvement in accuracy and stability of interpolations have been found for
adding the polynomial terms [Liu and Gu (2005)]. Via the studies, it is concluded
that the RPIM shape functions with pure CSRBFs usually can not pass the standard
patch tests. It means that the pure CSRBFs can not construct a linear polynomial
field exactly. Thus, polynomial terms are added to ensure the C1 consistency in
order to pass the standard patch test. Meanwhile, it is also found that adding poly-
nomials is beneficial to improve the accuracy of the results and the interpolation
stability for CSRBFs, and reduce the sensitivity of the shape parameters. Due to
these advantages, in this study CSRBFs augmented with linear order polynomial
term have been used to construct the shape functions.

p(x, y)T = {1, x, y} (5)

In order to obtain the shape functions, coefficients ai and b j in Eq. 2 should be
determined. For this purpose, a support domain including a number of field nodes
is formed for the point of interest x. Coefficients ai and b j in Eq. 2 can be evaluated
by enforcing Eq. 2 to be satisfied at the n nodes surrounding the point of interest
x (non-local support domain). This leads to n linear equations, one for each node.
The matrix form of Eq. 2 can be expressed as

Us = R0a+Pmb (6)

Where the vector of function values Us is

Us = {u1,u2, · · · ,un}T (7)
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The moment matrix of CSRBFs can be expressed as:

R0 =


R1 (r1) R2 (r1)
R1 (r2) R2 (r2)
· · · · · ·

R1 (rn) R2 (rn)

· · · Rn (r1)
· · · Rn (r2)
· · · · · ·
· · · Rn (rn)


(n×n)

(8)

The polynomial moment matrix can be expressed as

PT
m =


1 1
x1 x2
y1 y2
...

...
Pm (x1) Pm (x2)

1 1
· · · xn
· · · yn
. . .

...
· · · Pm (xn)


(m×n)

(9)

There are n+m variables in Eq. 9, and the additional m equations can be added
using the following m constraint conditions.

n

∑
i=1

pj (xi)ai = PT
ma = 0, j = 1,2, · · · ,m (10)

Combining Eq. 6 and 10 yields the following set of equations in the matrix form:

Ũs =

[
Us
0

]
=

[
R0 Pm
PT

m 0

]{
a
b

}
= Ga0 (11)

The matrix R0 is symmetric, and the matrixGwill also be symmetric, thus we can
obtain

a0 =

{
a
b

}
= G−1Ũs (12)

From Eq. 2 and 12 we can obtain

u(x) = RT(x)a+pT(x)b =
{

RT(x)+pT(x)
}{ a

b

}
=
{

RT(x)+pT(x)
}

G−1Ũs

(13)

Thus the RPIM shape functions can be expressed as

Φ̃ΦΦ
T
(x) =

{
RT (x)+pT (x)

}
G−1 = {φ1 (x)φ2 (x) · · ·φn (x)φn+1 (x) · · ·φn+m (x)}
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(14)

Radial point interpolation shape function ΦΦΦT (x) is the main differences of the Mesh
free methods and FEM is at the stage of shape function construction. The RPIM
shape functions corresponding to the nodal variables vector are finally expressed as

ΦΦΦ
T (x) = {φ1 (x)φ2 (x) · · ·φn (x)} (15)

Using CSRBFs as a basis to construct RPIM shape function has several advan-
tages: 1) CSRBFs can solve the singularity problem of the RPIM effectively; 2)
RPIM shape functions are stable, which is flexible for arbitrary and irregular n-
odal distribution. The RPIM shape functions satisfy six basic properties: 1) Delta
function property; 2) Partitions of unity; 3) Compact support; 4) Continuity; 5) Re-
producibility; 6) Compatibility. More details and discussion about the properties of
the above shape functions which are called RPIM shape functions can be found by
[Liu and Gu (2005)].

3 Implementation of RPIM

3.1 Material Interpolation

Considering the RPIM shape function ϕi, the density ρ(x) at computational point x
can be expressed as

ρ (x) =
n

∑
i=1

φiρi (16)

Where i=1,. . . ,n represents the total number of field nodes located within the non-
local influence demain of the computational point, and ρ(x) are the corresponding
nodal densities (design variables).

To solve the material design problem using the meshfree method, this paper intro-
duces the concept of material representation model in SIMP [Gibiansky and Sig-
mund (2000)] into the mesh free method. Thus The tensors of elasticity C at point
x can be calculated based on the nodal variable ρ(x)

C (x) = ρ(x)pCbase (17)

Where P is the penalty, and the elastic moduli of the solid material phase isCbase.

3.2 Calculation of Effective Material Properties

Homogenization theory is based on the asymptotic expansion of the governing e-
quation, enabling a separation of the macro- and microscopic length scales, so as
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to extract homogeneous effective material properties from heterogeneous medi-
a. As shown in Fig 1, to evaluate the effective properties of the composite us-
ing the homogenization method [Guedes and Kikuchi (1990)], we assume that (1)
the metamaterials consist of an assembly of microstructures (base cell); (2) the
size of the microstructure is much smaller than the buck composite to allow scale-
decomposition; and (3) the effective homogenized property of the composite can
be predicted by a single unit cell.

Figure 1: Schematic of microstructural composite.

According to the theory of homogenization, the effective homogenized properties
of the composite can be computed as follows:

CH
i jkl =

1
|Y |

∫
Y

Cpqrs

(
ε

0
pq− ε

∗(i j)
pq

)(
ε

0
rs− ε

∗(kl)
rs

)
dY (18)

In this study, the topological shape optimization will be performed within the unit
cell Y that is regarded as the design domain. The period Y is assumed to be very
small in comparison with the dimension of the overall domain Ω of the medium.
where CH

i jkl is the effective elasticity tensor, |Y | is the volume (area) of the cell;
Cpqrs is the locally varying elasticity tensor; ε is the prescribed macroscopic strain
field including the unit strain in the horizontal and vertical directions and the unit
shear strain. In the above equations:

(1) The locally varying strain fields ε
∗(i j)
pq are defined by

ε
∗(i j)
pq = ε

∗
pq
(
χ

i j)= 1
2

(
∂ χ

i j
p

∂yq
+

∂ χ
i j
q

∂yp

)
(19)

in which the displacement fields χkl can be obtained by solving the following e-
quation∫

Y
Cpqrsε

∗
pq
(
χ

i j)
ε
∗
rs(v

kl)dY =
∫

Y
Cpqrsε

0
pqε
∗
rs(v

kl)dY , ∀vkl ∈ Ū (Y ) (20)

where ν is the virtual displacement field.
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3.3 Formulation of the optimization problem

The aim of this work is to optimize the topology and shape of the microstructure un-
der specified effective elasticity tensors. An optimization problem including these
features can be written as:

Minimize : J=1
2

d
∑

i, j,k,l
wi jkl(CH

i jkl−C∗i jkl)
2

(i, j = 1,2, ...,d, d isthedimensionofspace)
Subjectto : a(χχχ,vvv,ρ) = l (vvv,ρ) ,∀vvv ∈ Ū(Y )

V 1
min ≤V 1 ≤V 1

max,
ρmin ≤ ρ(x)≤ ρmax

(21)

where wi jkl is the weighting factor associated with corresponding component of
elasticity tensor, ρmin and ρmax are the lower and upper bounds of the design vari-
ables to guarantee a stable iteration, Vmin and Vmax are lower and upper bounds to
limit the volume fractions of solid phase. The bilinear energy form a(χχχ , v, ρ) and
the linear load form l(v, ρ) are described by

a(χχχ,vvv,ρ) =
∫

Y
Cpqrs (ρ)ε

∗
pq(v)ε

∗
rs

(
χ

kl
)

dY (22)

l (vvv,ρ) =
∫

Y
Cpqrs (ρ)ε

∗
pq(v)ε

0
rsdY (23)

3.4 Design sensitivity analysis

In this study, the Method of Moving Asymptotes (MMA) [Svanberg (2005)] is ap-
plied to solve the optimization problem. Once the nodal design variables are updat-
ed by the MMA, the first-order derivatives of the objective function and constraints
with respect to the design variables is required.

∂J
∂ρ(x)

=
d

∑
i, j,k,l

wi jkl(CH
i jkl−C∗i jkl)

∂CH
i jkl

∂ρ(x)
(24)

The sensitivities of the effective elasticity tensor respect to the design variables can
be given by

∂CH
i jkl

∂ρ(x)
=

1
|Y |

∫
Y

(
ε

0
pq− ε

∗
pq
(
χ

i j)) ∂Cpqrs

∂ρ(x)

(
ε

0
rs− ε

∗
rs

(
χ

kl
))

dY (25)

∂Cpqrs

∂ρ(x)
= Pρ(x)(p−1)Cbase (26)
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4 Numerical Results and Discussions

In this section, two classic test problems are used to demonstrate the effective-
ness of the RPIM meshfree method. The design domain is discretized with a set
of meshfree nodes, and the regular background virtual cells are used only in the
procedure of numerical integration. In each cell, 4×4 Gauss quadrature is used to
evaluate the stiffness matrix of the structure. Fig. 2 shows the relationship between
the background cells, field nodes and Gauss points. The convergence criteria is the
change of the design variables of two consecutive iterations is lower than 1e-4, or
the maximum number of iterations is 200 based on our numerical experience.

      
H

0 * 0 *1
d     

(x) (x)

ijkl pqrsij kl

pq pq rs rs
Y

C C
Y

Y
     

 

 
  

    (25) 

  
(p-1)

(x
ρ x

)

pqrs

base

C
P C







 (26)  
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4.1 Material with Desired Elasticity Tensor

In the case, it aims to achieve the effective elasticity tensor CH
1111 = 2 and CH

2222 =
0.2, under the constraint of volume fraction V =35%. For the base material, the
artificial material properties are given as: Young’s moduli E=10, Poisson’s ratios
ν=0.3.

For representing local geometric details of topology plots, the Gauss points are ap-
plied to describe structural topology. The contours of the densities on Gauss points
are displayed as Fig.3, in which the red colour indicates the solid material (ρ =
ρmax =1), while the blue colour shows the weak material/holes (ρ = ρmin =0.01).
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(1) initial design                                                (2) iteration 20 

    
(3) iteration 40                                              (4) iteration 60 

   
(5) iteration 80                                                 (6) final solution 

Figure 3. Contour plots of point-wise densities on Gauss points 
Figure 3: Contour plots of point-wise densities on Gauss points.

The results of Case (a) given in Fig. 3 from (1) to (6) as the initial design, four
intermediate designs, and the optimized design, respectively. It can be seen that the
topology optimization is actually an iterative process to re-distribute the material in
the design space until the objective is achieved. When selecting the initial design,
as Fig. 3(1), the initial structure must include holes to provide an inhomogeneous
initial design for the calculation using homogenization method, and the location
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and shapes of those holes may influence the result. Fig.4 shows the discrete plots
of the design distribution of optimized microstructure on field nodes. To display
the layout of the optimized microstructural composite, the contour for solid mate-
rial on Gauss points is plotted and the corresponding array are generated as seen in
Fig. 5.

 

Figure 4.Topology plots of nodal material densities 

 

   

Figure 5. Contour for solid material on Gauss points and the 3×3 array of base cell 

 

 

 

 

 

Figure 4: Topology plots of nodal material densities. 

Figure 4.Topology plots of nodal material densities 

 

   

Figure 5. Contour for solid material on Gauss points and the 3×3 array of base cell 

 

 

 

 

 

Figure 5: Contour for solid material on Gauss points and the 3×3 array of base
cell.

It is also noticed that all the boundaries related to the topological designs are suf-
ficient smooth for providing curves and distinct material interface, which is bene-
ficial to manufacturing procedure. From the iteration history in Fig. 6, it can be
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found that the proposed method can effectively find the optimal structures with less
than 200 iterations, and the volume constraints are mass conservative.

 

 

Figure 6. Iteration histories of the objective function and volume constraint 

4.2  Material with Desired Poisson’s ratio 
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4.2 Material with Desired Poisson’s ratio

In this case, a microstructural composite with negative Poisson’s ratios ν=-0.5,
under the constraint of volume fraction V =35%. For the base material, the artificial
material properties are given as: Young’s moduli E=10, Poisson’s ratios ν=0.3.

In this paper, the materials designed are subject to the plane stress condition, thus,
the elasticity tensor can be written in the following matrix form:

C =

 C1111 C1122 0
C1122 C2222 0

0 0 C1212

=
E

1−ν2

 1 ν 0
ν 1 0
0 0 (1−ν)/2


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Figure 7. Contour plots of point-wise densities on Gauss points 
Figure 7: Contour plots of point-wise densities on Gauss points.

For convenience, the factor of the matrix is set as an constant d = E/(1-ν2). Positive
energy term in the classic theory of elasticity requires that the Poisson’s ratio can
be evaluated within the interval [-1, 1] for plane problems. The objective effective
elasticity tensor is set as

C∗ = 0.4

 1 −0.5 0
−0.5 1 0

0 0 0


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Figure 8.Topology plots of nodal material densities 
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Figure 9: Contour for solid material on Gauss points and the 3×3 array of base
cell.

The topological changes during the optimization progress are given in Fig. 7. The
optimized structure turned out with district interface of weak and solid materials,
and the boundaries are sufficient smooth with curves. It can be figure out that to
achieve the negative value of Poisson’s ratio, the re-entrant structure are generated
within the microstructure. Fig.8 shows the discrete plots of the design distribution
of optimized microstructure on field nodes. The contour for solid material on Gauss
points is plotted and the corresponding array are given in Fig. 9. The iteration
history in Fig. 10, it can be found that the volume constrains are achieved within
60 iterations and topological changes are also finished with 80 iterations. The rest
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Figure 10. Iteration histories of the objective function and volume constraint 

6 Numerical Results and Discussion 

This study presented a topology optimization method for designing composite with desired 

elasticity properties using meshfree method. The meshfree field nodes are defined to denote the 

design variables and RPIM is employed to construct a physical meaningful density interpolation 

between nodal density variables and practical material properties. The method has provided a new 

possibility for meaningfully combining the CSRBFs based RPIM with the well-established 

optimization methods. With the interpolation scheme devised in this work, we can create any 

artificially microstructural composite under periodicity. Our ongoing research is to extend the 

proposed topological shape optimization method to design problems of metamaterials. 
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Figure 10: Iteration histories of the objective function and volume constraint.

iterations mainly contribute to the shape changes at the detailed structures. The
effective elasticity tensor of the optimized design is shown in Fig. 10 as well,
which illustrate that the Possion’s ratio satisfies the objective ν=-0.5. Similar as
the first case, the proposed method can converge with less than 200 iterations, and
the volume constraints are mass conservative.

5 Numerical Results and Discussion

This study presented a topology optimization method for designing composite with
desired elasticity properties using meshfree method. The meshfree field nodes are
defined to denote the design variables and RPIM is employed to construct a physi-
cal meaningful density interpolation between nodal density variables and practical
material properties. The method has provided a new possibility for meaningfully
combining the CSRBFs based RPIM with the well-established optimization meth-
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ods. With the interpolation scheme devised in this work, we can create any ar-
tificially microstructural composite under periodicity. Our ongoing research is to
extend the proposed topological shape optimization method to design problems of
metamaterials.
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