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Dynamic Response Analysis of the Fractional-Order
System of MEMS Viscometer

X.S. He1, Q.X. Liu1, X.C. Huang2, Y.M. Chen1,3

Abstract: This paper presented dynamic response analysis for an MEMS vis-
cometer. The responses are governed by a set of differential equations containing
fractional derivatives. The memory-free Yuan-Agrawal’s approach was extended to
solve fractional differential equations containing arbitrary fractional order deriva-
tive and then a simple yet efficient numerical scheme was constructed. Numerical
examples show that the proposed method can provide very accurate results and
computational efforts can be significantly saved. Moreover, the numerical scheme
was extended to solve problems with a nonlinear spring. The influences of the non-
linear parameters on the dynamic responses were also efficiently analyzed. The
dependence of the angular frequency on damping parameters was also revealed.
The presented method can provide us a new perspective to measure the fluid vis-
cosity.
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1 Introduction

The measure the viscosity of the fluid is of fundamental importance for the in-
dustry of oil well exploration. Ronaldson, Fitt, and Goodwin (2006) and Fitt,
Goodwin, and Ronaldson (2009) developed a mathematical model, respectively,
for a transversely oscillating micro-electro-mechanical system (MEMS) viscome-
ter. The mode of operation employed a sort of plucking mechanism to measure
the decay. The motions of the machine were modeled by a fractional differential
equation. Therefore, we have to predict the response of the governing equation in
order to measure the viscosity. Well-known, it is difficult to obtain the analytical
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solution of the fractional differential equation. Alternatively, an efficient numerical
method is urgently needed.

In recent decades, fractional derivatives (FDs) were widely investigated because
such mathematical models are useful in describing the behavior of some real sys-
tems. For example, FDs have been used successfully to model frequency dependent
damping behavior of some viscoelastic materials. Bagley and Torvik (1979, 1984)
applied the FDs to describe the frequency dependence materials. After that, excel-
lent performance of the FDs in modeling viscoelastic materials has attracted more
and more attention [Song and Jiang (1998); Shukla, Tamsir, Srivastava, and Kumar
(2014); Chakraverty and Tapaswini (2014)]. Besides, there are a large number of
other applications of FDs in the areas of physics, cybernetics, mechanics, biologies,
economics, etc. [Podlubny (1998); Chen and Moore (2002)].

Many numerical solution techniques were developed to obtain analytical or nu-
merical solutions of fractional differential equations, for example, the finite differ-
ence method [Meerschaert and Tadjeran (2004)], predictor-corrector approach [Di-
ethelm, Neville, and Freed (2002)], variational iteration method [Sweilam, Khader,
and Al-Bar (2007)], homotopy analysis method [Song and Zhang (2007)], to men-
tion a few. Due to the non-local character of the fractional derivative, storing the
past responses requires a large amount of computer memory. Accordingly, it is
cumbersome to search even numerical solutions of fractional dynamic systems in
a long time duration. In order to eliminate the drawback of long memory require-
ment, Yuan and Agrawal proposed a memory-free approach [Yuan and Agrawal
(2002)], i.e., the Yuan-Agrawal’s (YA) approach. In this scheme, the fractional
differential equation can be converted to a set of first order ordinary differential
equations. The YA approach was further extended by Diethelm, Neville, and Freed
(2002); Trinks and Ruge (2002), etc. The computational accuracy is improved by
Agrawal (2009).

In this paper, we presented a simple yet efficient scheme, based on the YA ap-
proach, to solve the dynamic responses of the MEMS viscometer. The YA ap-
proach was extended to dynamic systems with arbitrary fractional order. A widely
used method, the predictor-corrector (PC) method, was utilized to validate the giv-
en scheme. Very accurate numerical results can be provided. Moreover, it is much
more efficient than the PC method as the presented scheme is inherently memory-
free.

2 Equations of motions

The schematic of the spider MEMS viscometer is shown in Fig. 1. A large number
of legs give rise to its informal name: the spider. Also, it edge-clamped plate has
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Figure 1: The sensor of the MEMS spider viscometry device [Fitt, Goodwin, and
Ronaldson (2009)].

been used to determine the density and viscosity of Newtonian fluids, which flow is
modeled by the Navier-Stokes equations. More details of modeling the device are
given in Ronaldson, Fitt, and Goodwin (2006); and Fitt, Goodwin, and Ronaldson
(2009).

There are two modes for this viscometer, i.e., the forced mode and the plucked mod-
e [Fitt, Goodwin, and Ronaldson (2009)]. This study is restricted to the plunked
mode, i.e.; the device is released from an initial displacement and its subsequent
decaying oscillations are measured. It is found that the plucked mode gives rise to a
fractional differential equation, such that the non-dimensional governing equations
can be described as

D2x+ηDx+ x = β

∫ t

0

Dx(τ)
(t− τ)3/2 dτ x(0) = 1,Dx(0) = 0 (1)

Where the Caputo derivative is given as . The parameters are η = r/(k
√

ρsBda),
and β = (µρ/kπ)1/2(Ba/ρ3

s d3)1/4 is the elastic damping provided by the legs of

devise, k =
√

ω2
0 ρs, ω0 is the frequency of the plate, ρs is the density of the plate

material, B is the plate width, a is the plate length, d is the plate depth, and µ is the
fluid viscosity.

3 A memory-free algorithm

Rewrite Eq. (1) in a generalized way as

D2x+β
√

πDγx+ηDx+ x = 0 x(0) = 1, Dx(0) = 0 (2)



162 Copyright © 2015 Tech Science Press CMES, vol.108, no.3, pp.159-169, 2015

The term, Dγ
∗x(t)(1 < γ < 2), is the Caputo derivative of order γ . Rewrite Eq. (2)

as follow

Dx1(t) = x2(t)

Dx2(t) =−β
√

πDγ
∗x1(t)−ηx2(t)− x1(t)

(3)

fractional derivatives comply the law of exponent [Yuan and Agrawal (2002)]

Dγ1+γ2
∗ x(t) = Dγ1

∗ Dγ2
∗ x(t) (4)

with γ1 and γ2 are positive real constants. Equation (4) can be rewritten as

Dx1(t) = x2(t)

Dx2(t) =−β
√

πDγ−1
∗ x2(t)−ηx2(t)− x1(t)

(5)

by denoting the γ−1 = α with 0 < α < 1 and

Dα
∗ x2(t) =

1
Γ(1−α)

∫ t

0

Dx2(τ)

(t− τ)α
dτ, 0 < α < 1 (6)

in which

Γ(α) =
∫

∞

0
e−zzα−1dz (7)

represents the Gamma function, and Dx2(t) represents the first order derivative with
respect to t. Using the following relationship

1
Γ(1−α)

= Γ(α)
sinπα

π
(8)

Substituting Eq. (3) and (4) into Eq. (2), we can obtain

Dα
∗ x2(t) =

sinπα

π

∫ t

0
[
∫

∞

0
e−zzα−1dz]

Dx2(τ)

(t− τ)α
dτ, 0 < α < 1 (9)

Under the transformation

z = (t− τ)y1/α (10)

they further obtained

Dα
∗ x2(t) = 2

sinπα

π

∫
∞

0

∫ t

0
e−(t−τ)y1/α

Dx2(τ)dτdy (11)
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Denote u= sinπα/(πα) and Φ(y, t) =
∫ t

0
e−(t−τ)y1/α

Dx2(τ)dτ , one can rewrite Eq.

(1) as

Dx1(t) = x2(t)

Dx2(t) =−β
√

πu
∫

∞

0
Φ(y, t)dy−ηx2(t)− x1(t)

(12)

The unbounded integral is calculated numerically using Laguerre integration which
gives

∫
∞

0
Φ(y, t)dy =

n

∑
i=1

w(n)
i ey(n)i Φ(y(n)i , t) (13)

Where n represents the number of Laguerre points, w(n)
i ’s are the wrights and y(n)i ’s

are the Laguerre point abscissae. Observe that

DΦ(y, t) = Dx2(t)− y1/α
Φ(y, t) (14)

one can finally rewrite Eq. (1) as a set of first-order differential equations

AAADrrr(t) = BBBrrr(t) (15)

where rrr(t) = [x1(t)x2(t)Φ(y(n)1 , t)Φ(y(n)2 , t) · · ·Φ(y(n)n , t)]T . The coefficient matrixes
are listed as follows:

A =


1 0 0 · · · 0
0 1 0 · · · 0
0 −1 0 · · · 0
...

...
...

. . .
...

0 −1 0 · · · 1



B =



0 1 0 · · · 0
−1 −η −β

√
πuw(n)

1 exp(y(n)1 ) · · · −β
√

πuw(n)
n exp(y(n)n )

0 0 −(y(n)1 )2 ... 0
...

... · · · . . . 0
0 0 · · · 0 −(y(n)n )2
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Figure 2: Comparison of numerical solution between YA scheme with different
Laguerre node points and PC method. Parameters are η = 0 and β = 0.3.

4 Results and discussions

In order to verify the presented scheme, we compared the results between the YA
method and PC approach [Diethelm (2002)]. As shown in Fig. 2, we can see that
the results by the presented method are converged to the solution by PC as the
number of Laguerre node points increasing.

The time responses of x with different β are shown in Fig. 3. It is very interesting
to observe that the time-dependent periods of Eq. (1) depend on β . Different from
the linear integer-order system, the linear fractional-order system can be expected
to exhibit nonlinear mechanics behaviour.

x

t

β=0.1
β=0.3
β=0.5
β=0.7
β=0.9

Figure 3: The dynamic response of Eq. (1) with different β and η = 0 obtained by
YA scheme.



Dynamic Response Analysis of the Fractional-Order System of MEMS Viscometer 165

The effect of the β on the angular frequency of the Eq. (1) are shown as Fig. 4. The
angular frequency linearly decreases first in the interval [0, 0.5], and then decreases
more and more slowly as the β increasing.

Figure 4: The correlation between the dynamic response angular frequency of Eq.
(1) and parameter β obtained by YA scheme.

This phenomenon provides us a new perspective to determine the viscosity of the
fluid. Due to the existence of a one-to-one correlation between the damping pa-
rameter β and angular frequency ω , thus we can measure the viscosity by measur-
ing the frequency instead of measuring the decay [Fitt, Goodwin, and Ronaldson
(2009)].

When β is very small, it needs a long time to decay for the dynamic responses.
Well-known, due to the non-local nature of the fractional differential operators, the
PC algorithm and/or finite difference method increase rapidly as the discretized
time points (n) increases. Their required computational resources increases by a
magnitude of O(n2). In the presented scheme, the fractional derivative term was
transformed into a set of standard differential equations with no fractional deriva-
tive terms. As a result, the computation resources needed increases linearly at the
magnitude of O(n). It is suitable for seeking a solution during a long duration
interval, such as the case of β = 0.05.

Figure 4 shows the ratios of the computing time of PC approach to that of YA
scheme. It grows rapidly as the duration interval increases. Note that, the duration
interval was discretized by n time points with time step h = 0.01. The presented
approach is much more efficient than the PC method, especially when dynamic
responses are required in a relatively long duration interval.

As shown in Fig. 4, roughly speaking, the ratio increases linearly versus duration
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interval. It is probably because the computational resources for the presented and
the PC are at the order of magnitude of O(n) and O(n2), respectively. Given an
uniform time step h, the number of time points (n) is indirectly proportional to the
duration interval, so is the ratio of respective computational resources.

R
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io
s

Duration interval
Figure 5: The ratios versus duration interval of the computing time of PC approach
to that of YA scheme with the same step length h = 0.01.
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Figure 6: Comparison between YA scheme (dots) and PC method (solid line) for
system (16) with α = 0,β = 0.5 and ε = 2,4,8.

Consider the device as a nonlinear (Duffing-type) springs that is likely to be ex-
actly true in practice [Fitt, Goodwin, and Ronaldson (2009)], where the governing
equation becomes

D2x+β
√

πD1.5x+ηDx+ x+ εx3 = 0 x(0) = 1, Dx(0) = 0 (16)
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It is well known that there appears to be little hope of finding any close-form solu-
tions to Eq. (16), the proposed numerical scheme can easily be modified to nonlin-
ear equations.

In practice, ADu(t)=Bu(t) is replaced by ADu(t)=Bu(t)+ f (t) with the nonlinear
term being treated as an external excitation as f (t) = [0,−x3(t),0, · · · ,0]T . Figure 5
shows a comparison between the proposed scheme and PC approach with η = 0,
β = 0.5 for ε = 0,2,4,8. The dynamic response frequency, phase and amplitude
increase slightly with ε increasing. It easy to observe the similarity between the
dynamic response of nonlinear system (16) and the linear system (1), seen the figure
(6) and (3).

5 Conclusions

Based on the several numerical experimental presented in this paper, we found
that the proposed method can efficiently provide very accurate numerical solution-
s when compared with the PC algorithm. Different from the linear integer-order
damping oscillator, the linear fractional-order damping oscillator is frequency de-
pendent. This gives us a new perspective to determine the viscosity of the fluid.
As the computational effort can be significantly saved compared with PC, the pro-
posed method is especially suitable for analyzing the dynamic responses during a
long time interval and/or multi-term fractional differential equation. More ever, it
can be also extended to a nonlinear model, which does not increase in difficult in
programming effort.
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