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Abstract: A meshless method based on the local Petrov-Galerkin approach is
developed for elasto-dynamic analysis of geometrically nonlinear two dimension-
al (2D) problems in hyper-elastic functionally graded materials. The radial point
interpolation method (RPIM) is utilized to build the shape functions and the Heav-
iside step function is used as the test function. The mechanical properties of func-
tionally graded material are considered to continuously vary in a certain direction
and are simulated using a nonlinear power function in volume fraction form. Con-
sidering the large deformations, it is assumed that the domain be made of large
deformable neo-Hookean hyperelastic materials. Rayleigh damping is employed
to model energy dissipation in analyses. The Newmark finite difference method is
used to treat the time dependence of the variables. At any time step of Newmark
method, the Newton-Raphson iteration technique is employed to solve the nonlin-
ear governing equations. Accuracy of the proposed method is verified using the
results available in the literature. It is shown that the present MLPG method is a
suitable meshless method for large deformation problems. The nonlinear time his-
tories and wave propagations of displacement field for various FG distributions and
damping ratios are studied in detail.

Keywords: Meshless local Petrov-Galerkin (MLPG) method; Geometrically non-
linear problems; Functionally graded materials (FGMs); Neo-Hookean constitutive
model; Nonlinear time history; Wave propagation analysis; Rayleigh damping.

1 Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mash-
had, Iran

2 Corresponding author: Farzad Shahabian, Tel: +98 513 38805047, Fax: +98 513 38763301, E-
mails: fshahabianm@yahoo.com & shahabf@um.ac.ir

3 Industrial Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad,
Mashhad, Iran



136 Copyright © 2015 Tech Science Press CMES, vol.108, no.3, pp.135-157, 2015

1 Introduction

In recent decades, the meshless methods are being increasingly applied for vari-
ous engineering problems. In these methods, the distributed nodes, rather than the
meshing, are used for discretization of problem domain and its boundaries. A va-
riety of meshless methods has been proposed by the researchers. Smooth particle
hydro dynamics (SPH) [Gingold and Monaghan (1977)], reproducing kernel par-
ticle method (RKPM) [Liu, Jun, Li, Adee, and Belytschko (1995)], element-free
Galerkin (EFG) [Belytschko, Lu, and Gu (1994)], meshless local Petrov-Galerkin
method (MPLG) [Atluri and Zhu (1998)], local boundary integral equation (LBIE)
[Atluri, Sladek, Sladek, and Zhu (2000)] and Meshless natural neighbor Galerkin
method [Cai and Zhu (2004)], are the most popular meshless methods. Among
these, the MLPG method due to its special characteristics has been widely used. In
this method the governing equations are satisfied over the local sub-domains with
arbitrary shapes. Since no elements or background cells are required neither for in-
terpolation of the trial and test functions nor for integration of the local weak-form
of governing equations, the MLPG method is known as a truly meshless method.
In addition in this method, the test and trial functions can be selected from different
functional spaces. A review has been presented for analysis of problems in vari-
ous fields of engineering and scientific with the use of the MLPG method [Sladek,
Stanak, Han, Sladek, and Atluri (2013)].

Developments in the field of materials engineering lead to a new type of materi-
als with smooth and continuous variation from one material to the other, which
are called functionally graded materials (FGMs). In some engineering designs,
dynamical prediction and analysis of FG structures under shock loading is very im-
portant. Many researchers have focused on dynamic behavior of these structures
using meshless methods. Sladek, Sladek, Zhang, and Schanz (2006) presented a
meshless local Petrov-Galerkin method for static and dynamic analysis of continu-
ously non-homogeneous and linear visco-elastic solids. Sladek, Sladek, Krivacek,
Wen, and Zhang (2007) for the first time developed the MLPG method to solve
dynamic plate bending problems described by the Reissner-Mindlin theory. Mous-
savinezhad, Shahabian, and Hosseini (2013) developed the meshless local Petrov-
Galerkin method for two dimensional dynamic stress analyses in 2D-FG cylinders.
Hosseini, Shahabian, Sladek, and Sladek (2011) studied on the effects of uncer-
tainty in constitutive mechanical properties for functionally graded thick hollow
cylinders. At the same year, Hosseini, Shahabian, Sladek, and Sladek (2011) suc-
cessfully applied the MLPG method for coupled thermo-elasticity analysis of FG
thick hollow cylinders based on Green-Naghdi theory. In another work, Hosseini,
Sladek, and Sladek (2013) extended this method for analysis of non-Fick diffusion
elasticity problems. The wave propagation of mass diffusion, temperature and elas-
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tic waves in two dimensional problems at various time instants are also presented
and discussed in details by Hosseini, Sladek, and Sladek (2014). Chen, Xu, and
Tong (2015) applied the meshless local natural neighbour interpolation method to
solve linear dynamic problems of FGMs in continuously heterogeneous and linear
viscoelastic media.

In geometrically nonlinear analysis, changing in geometry as the structure under-
goes the large deformations must be taken into account. Meshless methods due to
their advantage in eliminating mesh distortion have been successfully employed for
geometrically nonlinear analysis of solids. Hehua, Wenjun, Yongchang, and Yuan-
bin (2007) solved two dimensional problems with incompressible large deforma-
tion using meshless local natural neighbor interpolation method (MLNNIM). They
presented the large-deformation formulae according to the both total Lagrangian
(TL) and updated Lagrangian (UL) methods. Gu, Wang, and Lam (2007) devel-
oped the local Kriging meshless method for large deformation analyses of micro-
electro-mechanical systems [Lin, Naceur, Coutellier, and Laksimi (2014)]. stud-
ied on shell structures undergoing very large deformations using the shell-based
SPH method. A geometrically nonlinear dynamic meshless method for analysis of
FG thick hollow cylinders is presented by Ghadiri Rad, Shahabian, and Hosseini
(2015). In their study, because of large deformations, the neo-Hookean hyperelas-
tic constitutive model was considered for the problem. In another work, Ghadiri
Rad, Shahabian, and Hosseini (2015) developed the MLPG method for nonlinear
dynamic analyses of FG thick hollow cylinder with Rayleigh damping.

The objective of this paper is to develop the well-known MLPG method for the
solution of geometrically nonlinear dynamic equations in 2D domains. For this
purpose the formulations are given in the Cartesian coordinate system in contrast
with Ghadiri Rad, Shahabian, and Hosseini (2015) papers in which the cylindrical
coordinate system was used. It should be mentioned that using the MLPG method
with Heaviside test function in the Cartesian coordinate system leads to a set of
differential equations needed to integrate only over the boundaries of sub-domains.
The linear curve integration over the boundaries rather than the integration over
the area of sub-domains, improve the accuracy and computational efficiency of the
MLPG method especially in geometrically nonlinear dynamic analysis. The me-
chanical properties of FG material are simulated using a nonlinear power function.
Considering the large deformations, it is assumed that the domain is made of large
deformable neo-Hookean hyperelastic materials. The nonlinear equations of mo-
tion are obtained based on total Lagrangian approach. These equations are solved
using the incremental-iterative Newmark/Newton-Raphson technique. Several nu-
merical examples with various loadings and boundary conditions are presented to
demonstrate the convergence and efficiency of developed method. The compari-
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son of numerical results with those reported in the literature shows that the MLPG
method is very effective for the large deformation analyses. In this paper, the t-
wo dimensional nonlinear wave propagation of displacement field for various FG
distributions and damping ratios are studied in details in addition to time history
analysis.

2 Overview of the radial point interpolation method

In radial point interpolation method, the displacement function ‘u’ at a point of
interest ‘xi’ using ‘n’ nodes located in its support domain ‘Ωs’ can be approximated
as follows:

uh = RTa (1)

where ‘uh’ is the approximation of displacements, ‘R’ is a vector of radial basis
function (RBF) and ‘a’ is a vector of coefficients. Multi-quadric (MQ) function,
exponential (Exp) function, thin plate spline (TPS) function and logarithmic radial
basis function are the most commonly used RBFs. In this paper, the multi-quadrics
(MQ) radial basis function is used which is defined as:

Ri =
[
(x− xi)

2 +(y− yi)
2 + c2

]q
(2)

where ‘c’ and ‘q’ are the constant values which have to be determined using nu-
merical investigations.

The radial point interpolation method (RPIM) obtains its approximation at any
point of interest by letting the interpolation function pass through the function val-
ues at each scattered node (field node) within the support domain of point of interest
[Liu and Gu (2005)]. Thus, in order to determine the coefficient vector ‘a’, the R-
PIM approximation should be satisfied at the all nodes located in support domain
as follows:

Us = RQ a (3)

where ‘Us’ is a vector of nodal values of displacements and the moment matrix
‘RQ’ is a matrix of nodal values of RBFs at the all nodes in support domain.

UT
s = {u1 u2 · · · un} (4)

RQ =


R1 (x1) R2 (x1) · · · Rn (x1)
R1 (x2) R2 (x2) · · · Rn (x2)

...
...

. . .
...

R1 (xn) R2 (xn) · · · Rn (xn)

 (5)
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Since the distance is directionless, the moment matrix is symmetric. By solving
the Eq. (3) and then substituting into Eq. (1), the RPIM shape functions ‘N’ can be
obtained as follows:

uh =
(

RT R−1
Q

)
Us = NUs (6)

Figure 1: Two configurations of a body with finite deformation.

3 Geometrically nonlinear dynamic formulation

3.1 Kinematics

Fig. 1 shows the initial and current configurations of a body. The relation between
the current coordinates ‘xi’ and the initial coordinates ‘Xi’ of a point such as ‘P’ is
given by:

xi = Xi +ui (7)

where, ‘ui’ denotes the displacement of point ‘P’ in the ‘i’ direction. Using the
Chain rule, the last equation can be differentiated as:

dxi =
∂xi

∂X j
dX j = Fi j dX j (8)

here, ‘Fi j’ is the deformation gradient tensor which gives the relationship of a line
‘dX’ at the initial configuration to the line ‘dx’ at the deformed configuration.

Fi j =
∂xi

∂X j
= δi j +

∂ui

∂X j
= δi j +ui, j (9)
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In this paper, a comma denotes the differentiation. The deformation gradient vector
‘F’ is defined as follow:

FT = {Fxx Fyy Fxy Fyx} (10)

Differentiation of Eq. (9) and then replacing the displacement ‘ui’ with its approx-
imation function from Eq. (6), leads to:

∆F = Bl
∆u (11)

where

Bl =


N,x 0
0 N,y

N,y 0
0 N,x

 , u =

[
u
v

]
(12)

3.2 Strain-displacement relationship

The Green’s strain tensor ‘εi j’ in the Cartesian coordinate system is given by:

εi j =
1
2
(
ui, j +u j,i +uk,i uk, j

)
=

1
2
(
Fki Fk j−δi j

)
(13)

Using the Chain rule, one can obtain the differentiated form of Eq. (13) as:

∆εi j =
1
2
(
Fki ∆Fk j +∆Fki Fk j

)
(14)

The last equation can be rewritten in the following matrix form.

∆εεε = F̂∆F (15)

where

F̂ =

Fxx 0 0 Fyx

0 Fyy Fxy 0
Fxy Fyx Fxx Fyy

 (16)

Finally, replacing ‘∆F’ from Eq. (11), the Green’s strain-displacement relation can
be obtained as follows:

∆εεε =
(
F̂ Bl)

∆u = Bnl
∆u (17)

where

Bnl =

 Fxx N,x Fyx N,x

Fxy N,y Fyy N,y

Fxy N,x +Fxx N,y Fyx N,y +Fyy N,x

 (18)
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3.3 Constitutive relationship

For a hyper-elastic material the constitutive relationship can be derived from the
strain energy function ‘ψ (εεε)’ as:

Si j =
∂ψ (εεε)

∂εi j
(19)

Then, the fourth-order constitutive tensor can be obtained from:

Di jkl =
∂Si j

∂εkl
=

∂ 2 ψ (εεε)

∂εi j ∂εkl
(20)

In the present study, a compressible neo-Hooke model is considered for the problem
with the following strain energy function.

ψ (εεε) =
λ

2
(lnJ)2 +

µ

2
(I1−3)−µ lnJ (21)

where ‘λ ’ and ‘µ’ are the Lame constants, ‘I1’ stand for the first strain invariant
and ‘J’ is the determinant of deformation gradient tensor (J = det (Fi j)). Using
Eqs. (19) to (21), the second Piola-Kirchhof stress and constitutive tensors are
given by [Gu, Wang, and Lam (2007)]:

Si j = λ lnJC−1
i j +µ

(
δi j −C−1

i j

)
(22)

Di jkl = λ C−1
i j C−1

kl +(µ−λ lnJ)
(

C−1
ik C−1

jl +C−1
il C−1

k j

)
(23)

where

Ci j = Fki Fk j (24)

Using the constitutive tensor ‘Di jkl’ and Strain-displacement relationship, the in-
crement of second Piola-Kirchhof stress can be obtained with respect to the nodal
displacements.

∆Si j = Di jkl ∆εkl (25)

∆S = D∆εεε = DBnl
∆u (26)

3.4 Elasto-dynamic governing equation

True loading and stresses exist only at the deformed configuration. Hence, the
equilibrium equations of a body with large deformations must be written at the
current configuration which is given by:

σi j, j +bi = ρ üi (27)
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here, ‘σ ji’ is the Cauchy (real) stress tensor with the subscript notation which is
interpreted as follows: the first letter represents the surface on which the stress is
acting, and the second letter represents the direction of the stress. ‘bi’ is the ‘i’
directional body force per unit mass, ‘ρ’ is the mass density at the current config-
uration and ‘üi’ is the ‘i’ directional component of acceleration vector. Due to the
deformed configuration is unknown, in order to solve Eq. (27), all quantities must
be transferred to the solved configuration that can be either the initial configuration
(TL) or the last known configuration (UL). Since in meshless methods the construc-
tion of the shape functions is performed during the analysis, using UL description
needs more computational time. Thus, in this paper the formulation is done based
on TL description. Using TL description, Eq. (27) can be transformed to the initial
configurations, as follows:

Pji, j +bi−ρ0 üi = 0 (28)

where ‘ρ0’ is the mass density at the initial configuration and ‘Pji’ is the 1st Piola-
Kirchhoff stress tensor. However, in order to use the more useful and symmetric
second Piola-Kirchhoff stress tensor ‘S ji’, the Eq. (28) can be transformed into:(
S jk Fik

)
, j +bi−ρ0 üi = 0 (29)

The 1st and the second Piola-Kirchhoff stress tensors can be related to the Cauchy
stress tensor as:

Si j = J F−1
ik σkl F−1

jl (30)

Pi j = Sik Fjk (31)

Following the weighted residual method, the weak form of Eq. (29) in a quadrature
domain ‘Ωq’ of an arbitrary node ‘xq’ at the initial configuration can be obtained as
follows:∫

0Ωq

Ŵ
((

S jk Fik
)
, j +bi−ρ0üi

)
dΩ = 0 (32)

where ‘Ŵ ’ is the weight function at node ‘xq’. Applying the Gauss divergence
theorem to Eq. (32) and neglecting the body forces the governing equation takes
the following form:

−
∫

Γqi+Γqu

(
Ŵ S jk Fik n j

)
dΓ+

∫
Ωq

Ŵ, j S jk Fik dΩ+
∫

Ωq

Ŵ ρ0 üi dΩ =
∫

Γqt

(
Ŵ Ti

)
dΓ (33)
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Figure 2: Local domains and their boundaries.

where (Γq = Γqi∪Γqu ∪Γqt) and ‘Γqi’ is the internal boundary, ‘Γqu’ is the essential
boundary and ‘Γqt’ is the natural boundary of local sub-domain ‘Ωq’ (see Fig. 2).
In Eq. (13) ‘Ti’ is the ‘i’ directional traction applied on the natural boundary ‘Γqt’.
Using the chain rule, the incremental form of Eq. (33) can be obtained as:∫

0Ωq

W′ (F∆S+S∆F
)

dΩ−
∫

0Γqi+0Γqu

Wn
(
F∆S+S∆F

)
dΓ+

∫
0Ωq

ρ0 W∆üdΩ

=
∫

0Γqt

WTdΓ+
∫

0Γqi+0Γqu

Wn
(
FS
)

dΓ−
∫

0Ωq

W′ (FS
)

dΩ−
∫

0Ωq

ρ0 WüdΩ (34)

where ‘∆S’, ‘∆F’ and ‘∆ü’ respectively are the second Piola-Kirchhof stress, de-
formation gradient and acceleration increments from time ‘t’ to ‘t +∆t’. The last
equation can be rewritten in the following matrix form:∫

0Ωq

W′ (F∆S+S∆F
)

dΩ−
∫

0Γqi+0Γqu

Wn
(
F∆S+S∆F

)
dΓ+

∫
0Ωq

ρ0 W∆üdΩ

=
∫

0Γqt

WTdΓ+
∫

0Γqi+0Γqu

Wn
(
FS
)

dΓ−
∫

0Ωq

W′ (FS
)

dΩ−
∫

0Ωq

ρ0 WüdΩ (35)

where

W =

[
Ŵ 0
0 Ŵ

]
(36)
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W′ =

[
Ŵ,x 0 0 Ŵ,y

0 Ŵ,y Ŵ,x 0

]
, n =

[
nx 0 0 ny

0 ny nx 0

]
(37)

S =


Sxx 0 Sxy 0
0 Syy 0 Sxy

0 Sxy 0 Sxx

Sxy 0 Syy 0

 , F =


Fxx 0 Fxy

0 Fyy Fyx

Fyx 0 Fyy

0 Fxy Fxx

 (38)

ST =
{

Sxx Syy Sxy
}

(39)

T =

{
T x

T y

}
, u =

{
ux

uy

}
, ü =

{
üx

üy

}
(40)

Replacing ‘∆F’ and ‘∆S’ from Eqs. (11) and (26) into Eq. (35), the incremental
equation of motion at the time step ‘n’ can be obtained as:

M∆ün +C∆u̇n +KT ∆un = ∆Pn (41)

where ‘∆ün’, ‘∆u̇n’ and ‘∆un’ are the incremental acceleration, velocity and dis-
placement vectors, respectively. ‘M’ and ‘KT’ are the mass and tangent stiffness
matrices and ‘∆Pn’ is the equivalent nodal force vector which are defined as:

M =
∫

0Ωq

ρ0 W dΩ (42)

KT =−
∫

0Γqi+0Γqu

Wn
(
FDBnl +SBl )dΓ+

∫
0Ωq

W′ (FDBnl +SBl )dΩ (43)

∆Pn =
∫

0Γqt

WTdΓ+
∫

0Γqi+0Γqu

Wn
(
FS
)
dΓ−

∫
0Ωq

W′ (FS
)
dΩ−

∫
0Ωq

ρ0 WüdΩ (44)

In this paper, the Rayleigh damping is employed to model the energy dissipation in
the system. In this model the damping matrix is considered to be proportional of
both stiffness and mass matrices.

C = α M+β K0 (45)

where ‘α’ and ‘β ’ are the coefficients which can be determined from two specified
damping ratios, using the following equation:

1
2

[
1/ωi ωi

1/ω j ω j

]{
α

β

}
=

{
ξi

ξ j

}
(46)

where ‘ωi’ is the natural frequency of ‘i’th mode. In this paper, both the first and
second modes are assumed to have the same damping ratio ‘ξ ’ which is reasonable
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based on experimental data [Chopra (2001)]. Thus, one can write:

α =
2ξ ωi ω j

ωi +ω j
, β =

2ξ

ωi +ω j
(47)

4 Method of solution

4.1 Time steps

The equations of motion are solved using the Newmark/Newton-Raphson tech-
nique with suitable time steps. Newmark proposed the following approximation
for velocity and acceleration at the ‘n’th time step [Chopra (2001)].

∆u̇n =
γ

β ∆t
∆un−

γ

β
u̇n−1 +∆t (1− γ

2β
) ün−1 (48)

∆ün =
1

β ∆t2 ∆un−
1

β ∆t
u̇n−1−

1
2β

ün−1 (49)

where ‘γ’ and ‘β ’ are the Newmark’s parameters. The stability and convergence of
this method can be achieved by typical choosing ‘γ = 0.5’ and ‘β = 0.25’. Substi-
tution Eqs. (48) and (49) into Eq. (41) yields Eq. (50).

KT ∆un = ∆Pn (50)

With:

a1 =
1

β ∆t2 M+
γ

β ∆t
C (51)

a2 =
1

β ∆t
M+

γ

β
C (52)

a3 =

(
1

2β

)
M+∆t

(
γ

2β
−1
)

C (53)

KT = KT +a1 (54)

∆Pn = ∆Pn +a2 u̇n−1 +a3 ün−1 (55)

Since the Eq. (50) is nonlinear, the nodal incremental displacement vector ‘∆un’
must be computed using an iterative procedure which is presented in the next sub-
section.

4.2 Iteration steps

According to Eq. (50), it is necessary to solve the set of discretized equations
for ‘∆un’ with the r.h.s. being dependent on the displacements ‘un = un−1 +∆un’.
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Since ‘∆Pn’ is nonlinear function of ‘un’, it is necessary to solve Eq. (50) iteratively,

Figure 3: Flowchart of geometrically nonlinear dynamic analysis using MLPG
method.
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i.e. ‘∆un’ at ‘k+1’ iterative step is calculated from the equation:

KT ∆uk+1
n = ∆Pk

n (56)

∆uk+1
n = ∆uk

n +δuk+1
n (57)

Where ‘δuk+1
n ’ is the incremental displacement vector at ‘k+1’ iterative step and

‘∆Pk
n’ is created by using ‘uk

n = un−1 +∆uk
n’. Hence:

KT δuk+1
n = ∆Pk

n−KT ∆uk
n = ∆Pk

n−∆Pk−1
n = ∆Pk

n−∆Pk−1
n = Rk

n (58)

Thus, the term ‘δuk+1
n ’ at the ‘k+1’ iteration can be obtained as:

δuk+1
n = K−1

T Rk
n (59)

At the first iteration one can writes:

δu1
n = K−1

T R0
n = K−1

T ∆P0
n = ∆u1

n (60)

Iterations are stopped, when δuk+1
n ≈ 0 with prescribed tolerance. The Newmark/

Newton-Raphson technique can be implemented as a sequence of the flowchart
presented in Fig. 3.

5 Numerical examples and discussions

In this section, the governing equations are analytically solved for nonlinear analy-
sis of 2D hyper-elastic domains to show the capability of the MLPG method.

5.1 Verification of the present method: Nonlinear static analysis of cantilever
deep beam

In the first example, a cantilever deep beam subjected to uniformly distributed shear
stress at the free end of the beam is analyzed and the present results are compared
with those of Gu, Wang, and Lam (2007). The thickness and the length of the deep
beam are 2m and 10m, respectively. In this example, the beam is considered to be
made of hyper-elastic neo-Hookean material with Lame constants µ = 5×103 Pa,
λ = 3.3×103 Pa. The following boundary conditions are assumed for the problem:

u(0,y) = 0 v(0,y) = 0 (61)

T x (L,y) = 0 T y (L,y) = fk (62)

T x (x,0) = 0 T y (x,0) = 0 (63)

T x (x,h) = 0 T y (x,h) = 0 (64)
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where at the kth loading step, the uniformly distributed shear stress ‘ fk’ is:

fk = βk (65)

where ‘β ’ is load scaling factor which is equal to ‘β = 10’. In table 1 the vertical
displacement of point ‘A’ (see Fig. 4) obtained by the MLPG method with various
nodal distribution are compared with those obtained by LoKriging method [Gu,
Wang, and Lam (2007)]. As can be seen in this table, in node distribution (6×11)
a good agreement with the LoKriging solution is achieved.

Table 1: Vertical displacement of node A.

Loading steps N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 N = 8
LoKriging vA 0.786 1.562 2.305 2.997 3.685 4.262 4.791 5.259

MLPG vA 0.730 1.462 2.176 2.854 3.484 4.060 4.580 5.047
(4×7) dif (%) 7.12 6.40 5.60 4.77 5.45 4.74 4.40 4.03
MLPG vA 0.735 1.472 2.191 2.873 3.508 4.088 4.612 5.081
(4×11) dif (%) 6.49 5.76 4.95 4.14 4.80 4.08 3.74 3.38
MLPG vA 0.759 1.521 2.261 2.963 3.612 4.203 4.735 5.211
(5×11) dif (%) 3.44 2.62 1.91 1.13 1.98 1.38 1.17 0.91
MLPG vA 0.771 1.544 2.296 3.006 3.662 4.258 4.793 5.271
(6×11) dif (%) 1.91 1.15 0.39 0.30 0.62 0.09 0.04 0.23

Figure 4: A sketch of cantilever deep beam subjected to shear force and nodal
distribution.

In Fig. 5 the vertical displacement along the top surface of the beam (y = h) for
loading steps ‘N = 2’, ‘N = 4’, ‘N = 6’, and ‘N = 8’ are plotted and compared with
the FEM results [Gu, Wang, and Lam (2007)]. The percentage of differences in all
points in this figure is less than 3 percent. This figure demonstrates the accuracy of
the MLPG method for very large deformation problems.
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Figure 5: The comparison of obtained results with those using FEM [Gu, Wang,
and Lam (2007)] at various load steps.

5.2 FGM cantilever deep beam under shock loading

After verifying the results, the aforementioned beam is analyzed under the mechan-
ical shock loading. The beam is supposed to be made of continuous combination
of two distinct kinds of materials ‘M1’ and ‘M2’. So that, the bottom and the top
surfaces of the beam are entirely made of materials ‘M1’ and ‘M2’, respectively and
the material properties at an arbitrary point of beam can be obtained as follows.

E (x,y) = (E2−E1)
( y

h

)n
+E1 (66)

ρ (x,y) = (ρ2−ρ1)
( y

h

)n
+ρ1 (67)

where ‘n’ is non-negative volume fraction exponent, ‘E’ is elasticity modulus and
‘ρ’ is mass density of material. The mechanical properties of materials ‘M1’ and
‘M2’ are listed in Table 2.

Table 2: Basic constituents of FGM.
Constituents E (GPa) ρ

(
kg/m3

)
M1 300 3470
M2 69 2715

The first five linear natural periods of vibration of the beam for various volume
fraction exponents are listed in Table 3. As would be expected, the natural periods
is decreased by increasing the volume fraction exponent.
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Table 3: Effect of volume fraction exponent on linear periods.

Periods T1 (s) T2 (s) T3 (s) T4 (s) T5 (s)
n = 0 0.0578 0.0110 0.0075 0.0047 0.0028
n = 0.01 0.0566 0.0108 0.0074 0.0046 0.0028
n = 0.5 0.0430 0.0082 0.0054 0.0034 0.0021
n = 1 0.0403 0.0076 0.0049 0.0032 0.0019

The same boundary conditions introduced in previous example (Eqs. (61) to (64))
are considered with the following uniformly distributed time dependent shear stress
‘ fk’.

fk (t) =

{
P0 t t ≤ 0.25
0 t > 0.25

(68)

where ‘P0 = 18e8Pa/s’. Fig. 6 shows the time history of the vertical displacement
at the point ‘A’ obtained from nonlinear analysis with neo-Hookean constitutive
model for ‘n = 0’ and ‘ξ = 0’. The obtained results from linear analysis are also
plotted in the same figure. As can be seen in Fig. 6, the vertical displacement
amplitude of point ‘A’ in nonlinear analysis is smaller than the linear result. It
means that the nonlinear analysis makes the beam stiffer than the linear analysis.
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Figure 6: The comparison between linear and nonlinear time histories of vertical
displacement of point ‘A’ for ‘n = 0’ and ‘ξ = 0.

Fig. 7 shows the time history of vertical displacement at the point ‘A’ for ‘ξ = 0’.
This figure is plotted with different values of volume fraction exponent. Increasing
in the frequency and decreasing in the amplitude of vibration with increasing in
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volume fraction exponent ‘n’ is obvious in this figure. According to this figure it
can also be seen that the period of free vibration is almost the same fundamental
(first) natural period of the system presented in table. 3.
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Figure 7: Effect of material grading pattern on time history of vertical displace-
ment.

Fig. 8 shows the effects of damping ratio ‘ξ ’ on time history of vertical displace-
ment for ‘n = 0’. This figure shows that, in typical range of damping ratios, the
damping does not have significant influence on value of maximum vertical dis-
placement and frequency of vibration. Also, it can be found that by increasing the
damping ratio the rate of vibration decays will be increased.
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Figure 8: Effect of damping ratio on time history of vertical displacement.
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Figure 9: Two dimensional domain: geometry and boundary conditions.

5.3 Nonlinear wave propagation in two dimensional domains

In this section, the nonlinear horizontal displacement wave propagation of the two
dimensional domain (5m×5m) with the following boundary conditions is studied
(see Fig. 9).

u(L,y) = 0 v(L,y) = 0 (69)

T x (0,y) =

{
P0t y≤ h/3
0 y > h/3

T y (L,y) = 0 (70)

u(x,0) = 0 v(x,0) = 0 (71)

u(x,h) = 0 v(x,h) = 0 (72)

It is assumed that ‘P0 = 8e12Pa/s’. The material properties are simulated using the
rule of mixture as follows:

E (x,y) = (E2−E1)
( x

L

)n
+E1 (73)

ρ (x,y) = (ρ2−ρ1)
( x

L

)n
+ρ1 (74)

The wave propagation of horizontal displacement obtained by linear and nonlinear
analysis can be tracked in Figs. 10a and 10b, respectively. Comparing these figures
reveals that there is no any significant difference between linear and nonlinear wave
propagation speed.

Fig. 11 depicts the 2D horizontal displacement wave propagation for a FG domain
with various grading patterns through horizontal direction. As would be expected,
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Figure 10: Linear and nonlinear 2D wave propagation of horizontal displacement
for ‘n = 0’ and ‘ξ = 0’. (a) Linear analysis (b) Nonlinear analysis.
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Figure 11: The 2D wave propagation of horizontal displacement for ‘ξ = 0’ and
various volume fractions. (a) ‘n = 0.01’ (b) ‘n = 1’.

the grading pattern has significant effect on wave propagation so that by increasing
the value of volume fraction exponent, the wave propagation speed is increased but
the values of horizontal displacement contours are decreased.

The influence of damping ratio on nonlinear wave propagation is studied in Fig. 12.
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Figure 12: The 2D wave propagation of horizontal displacement for ‘n = 0’ and
various damping ratios. (a) ‘ξ = 0.02’ (b) ‘ξ = 0.08’.

It can be seen that by increasing the value of damping ratio, the wave propagation
speed is identical but the values of radial displacement contours are decreased. It
should be mentioned that the effect of the damping ratio on wave propagation is
not very significant.

6 Conclusions

In this paper, the MLPG method is applied to study the time history and nonlinear
wave propagation in 2D domains. Considering the large deformations, it is assumed
that the domain be made of large deformable neo-Hookean materials. The mechan-
ical properties of FG domain are simulated using volume fractions exponent. The
domain is analyzed under mechanical shock loading applied on its bounding sur-
faces. Rayleigh damping is employed to model energy dissipation in analyses. To
obtain the solution of nonlinear equation of motion in time domain, the MLPG
method is combined with the Newmark/Newton-Raphson technique with suitable
time steps. Several numerical examples are given to demonstrate the accuracy and
effectiveness of the presented method for two-dimension large deformation prob-
lems. The brief outline of the paper is as follows:

• Numerical examples demonstrate the accuracy and effectiveness of presented
MLPG method for large deformation problems.
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• A comparison between the time histories of linear and nonlinear analyses of
cantilever deep beam under mechanical shock loading applied at the free end,
shows that the nonlinear analysis makes the beam stiffer compared with the
linear analysis.

• The volume fraction exponent increasing causes the decreasing of the ampli-
tude of vibration and the increasing of the frequency of vibration.

• By increasing the damping ratio, the rate of vibration decays is increased.
The damping does not have significant influence on value of maximum ver-
tical displacement and frequency of vibration.

• The obtained results from linear and nonlinear analysis in 2D rectangular
domain show that there is no any significant difference between linear and
nonlinear results. It means that the obtained results from linear analysis can
be employed for 2D wave propagation assessment.

• By increasing the value of volume fraction exponent, the wave propagation
speed is increased and the values of radial displacement contours are de-
creased.

• By increasing the value of damping ratio, the wave propagation speed is al-
most identical and the values of horizontal displacement contours are slightly
decreased.

References

Atluri, S. N.; Sladek, J.; Sladek, V.; Zhu, T. (2000): The local boundary integral
equation (LBIE) and its meshless implementation for linear elasticity. Computa-
tional Mechanics, vol. 25, pp. 180–198.

Atluri, S. N.; Zhu, T. (1998): A new meshless local Petrov-Galerkin (MLPG)
approach in computational mechanics. Computational Mechanics, vol. 22, pp. 117–
127.

Belytschko, T.; Lu, Y. Y.; Gu, L. (1994): Element free Galerkin methods. Inter-
national Journal for Numerical Methods in Engineering, vol. 37, pp. 229–256.

Cai, Y. C.; Zhu, H. H. (2004): A meshless local natural neighbour interpolation
method for stress analysis of solids. Engineering Analysis with Boundary Elements,
vol. 28, pp. 607–613.

Chen, S. S.; Xu, C. J.; Tong, G. S. (2015): A meshless local natural neighbour
interpolation method to modeling of functionally graded viscoelastic materials. En-
gineering Analysis with Boundary Elements, vol. 52, pp. 92–98.



156 Copyright © 2015 Tech Science Press CMES, vol.108, no.3, pp.135-157, 2015

Chopra, A. K. (2001): Dynamics of structures: Theory and applications to earth-
quake engineering. Prentice Hall: New Jersey.

Ghadiri Rad, M. H.; Shahabian, F.; Hosseini, S. M. (2015): Geometrically
nonlinear elastodynamic analysis of Hyper-Elastic Neo-Hookean FG cylinder sub-
jected to shock loading using MLPG method. Engineering Analysis with Boundary
Elements, vol. 50, pp. 83–96.

Ghadiri Rad, M. H.; Shahabian, F.; Hosseini, S. M. (2015): A meshless local
Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick
hollow cylinder with Rayleigh damping. Acta Mechanica, vol. 226, pp. 1497–1513.

Gingold, R. A.; Monaghan, J. J. (1977): Smoothed particle hydrodynamics:
theory and application to non-spherical stars. Monthly Notices of the Royal Astro-
nomical Society, vol. 181, pp. 375–389.

Gu, Y. T.; Wang, Q. X.; Lam, K. Y. (2007): A meshless local Kriging method
for large deformation. Computer Methods in Applied Mechanics and Engineering
analyses, vol. 196, pp. 1673–1684.

Hehua, Z.; Wenjun, L.; Yongchang, C.; Yuanbin, M. (2007): A meshless lo-
cal natural neighbor interpolation method for two-dimension incompressible large
deformation analysis. Engineering Analysis with Boundary Elements, vol. 31, pp.
856–862.

Hosseini, S. M.; Shahabian, F.; Sladek, J.; Sladek, V. (2011): Stochastic mesh-
less local Petrov-Galerkin (MLPG) method for thermo-elastic wave propagation
analysis in functionally graded thick hollow cylinders. CMES: Computer Modeling
in Engineering & Sciences, vol. 71, no. 1, pp. 39–66.

Hosseini, S. M.; Sladek, J.; Sladek, V. (2011): Meshless local Petrov-Galerkin
method for coupled thermoelasticity analysis of a functionally graded thick hollow
cylinder. Engineering Analysis with Boundary Elements, vol. 35, pp. 827–835.

Hosseini, S. M.; Sladek, J.; Sladek, V. (2013): Application of meshless Lo-
cal Integral Equations to two dimensional analysis of coupled non-Fick diffusion-
elasticity. Engineering Analysis with Boundary Elements, vol. 37, pp. 603–615.

Hosseini, S. M.; Sladek, J.; Sladek, V. (2014): Two dimensional transient anal-
ysis of coupled non-Fick diffusion-thermoelasticity based on Green-Naghdi theory
using meshless local Petrov-Galerkin (MLPG) method. International Journal of
Mechanical Sciences, vol. 82, pp. 74–80.

Lin, J.; Naceur, H.; Coutellier, D.; Laksimi, A. (2014): Efficient meshless
SPH method for the numerical modeling of thick shell structures undergoing large
deformations. International Journal of Non-Linear Mechanics, vol. 65, pp. 1–13.



Large Deformation Hyper-Elastic Modeling for Nonlinear Dynamic Analysis 157

Liu, G. R.; Gu, Y. T. (2005): An Introduction to Meshfree Methods and Their
Programming. Springer.

Liu, W. K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T. (1995): Reproducing ker-
nel particle methods for structural dynamics. International Journal for Numerical
Methods in Engineering, vol. 38, pp. 1655–1679.

Moussavinezhad, S. M.; Shahabian, F.; Hosseini, S. M. (2013): Two dimen-
sional stress wave propagation in finite length FG cylinders with two directional
nonlinear grading patterns using MLPG method. Journal of Engineering Mechan-
ics, vol. 140, pp. 575–592.

Sladek, J.; Sladek, V.; Krivacek, J.; Wen, P. H.; Zhang, C. H. (2007): Meshless
local Petrov-Galerkin (MLPG) method for Reissner-Mindlin plates under dynam-
ic load. Computer Methods in Applied Mechanics and Engineering, vol. 196, pp.
2681–2691.

Sladek, J.; Sladek, V.; Zhang, C. H.; Schanz, M. (2006): Meshless lo-
cal Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic
solids. Computational Mechanics, vol. 37, pp. 279–289.

Sladek, J.; Stanak, P.; Han, Z. D.; Sladek, V.; Atluri, S. N. (2013): Applica-
tions of the MLPG method in engineering & sciences: A review. CMES: Computer
Modeling in Engineering & Sciences, vol. 47, no. 1, pp. 61–96.




