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On the Discrete-Analytical Solution Method of the
Problems Related to the Dynamics of Hydro-Elastic

Systems Consisting of a Pre-Strained Moving Elastic Plate,
Compressible Viscous Fluid and Rigid Wall
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Abstract: The discrete-analytical solution method is proposed for the solution
to problems related to the dynamics of the hydro-elastic system consisting of an
axially-moving pre-stressed plate, compressible viscous fluid and rigid wall. The
fluid flow caused by the axial movement of the plate and the pre-stresses in the
plate are taken into consideration as the initial state of the system under considera-
tion. It is assumed that the additional lineally-located time-harmonic forces act on
the plate and these forces cause additional flow field in the fluid and an additional
stress-strain state in the plate. The additional stress-strain state in the plate is de-
scribed by utilizing the equations and relations of the three-dimensional linearized
theory of elastic waves in initially stressed elastic bodies. The additional fluid flow
field is described with linearized Navier-Stokes equations for compressible viscous
fluid. As the fluid flow velocities in the initial state are non-homogeneous, the lin-
earized Navier-Stokes equations have variable coefficients and this situation causes
difficulties in obtaining an analytical solution to these equations. The proposed
discrete-analytical solution method allows this difficulty to be overcome and for
approximate analytical solutions for these types of problems to be obtained. The
proposed solution method is examined with respect to concrete problems. Numer-
ical results obtained with the proposed approach are presented and discussed.
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1 Introduction

Present levels of aeronautical, astronautical, nuclear, chemical, biological, mechan-
ical and civil engineering require more detailed and exact study of the dynamic
problems related to plate - fluid interaction, taking into consideration the viscosi-
ty and compressibility of the fluid as well as the description of the motion of the
plate within the scope of the exact three-dimensional equations and relations of de-
formable body mechanics. As usual in most investigations carried out in this field,
the fluid is modeled as inviscid and the plate motion is described within the scope
of various approximate plate theories. Consequently, such approaches restrict the
application area of the obtained results. Now we consider a brief review of the
literature.

The first attempt in this field was made by Lamb (1921) in which vibrations of a
circular elastic “baffled” plate in contact with still water, which was modeled as
inviscid fluid, were studied. It used the so-called “non-dimensional added virtual
mass incremental” (NAVMI) method which has also been employed for the solution
to plate-fluid interaction problems. According to this method, it is assumed that the
modes of vibration of the plate in contact with still water are the same as those
in a vacuum, and the natural frequency is determined by the use of the Rayleigh
quotient, i.e. natural frequencies of the plate are equated to the ratio between the
maximum potential energy of the plate and the sum of the kinetic energies of both
the plate and the fluid.

The NAVMI method has also been employed in many related investigations such
as in papers by Kwak and Kim (1991), Fu and Price (1987), Zhao and Yu (2012)
and in many others listed therein. It should also be noted that there have also been
investigations (see, for instance, papers by Tubaldi and Armabili (2013), Charman
and Sorokin (2005) and others listed therein) which have been carried out without
employing the NAVMI method.

Another aspect of investigations related to plate-fluid interaction regarding wave
propagation problems was studied in a paper by Sorokin and Chubinskij (2008) and
others listed therein. It should be noted that before this paper the problems of time
harmonic linear wave propagation in elastic structure-fluid systems were investi-
gated within the framework of the theory of compressible inviscid fluid. Sorokin
and Chubinskij (2008) also first investigated the role of fluid viscosity in wave
propagation in the plate-fluid system. However, in this paper and all the papers
indicated above, the equations of motion of the plate were written within the scope
of approximate plate theories using various types of hypotheses, such as the Kirch-
hoff hypothesis for plates. Moreover, in the foregoing investigations (except the
paper by Zhao and Yu (2012) the initial strains (or stresses) in plates, which can
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be one of their characteristics, were not taken into account. These two character-
istics, namely the use of the exact equations of plate motion and the existence of
initial stresses in the plate were taken into consideration in a paper by Bagno, Guz,
and Shchuruk (1994) and others, a review of which is given in a survey paper by
Bagno and Guz (1997). Note that in these papers, in studying wave propagation
in pre-stressed plate+ compressible viscous fluid systems, the motion of the plate
was written within the scope of the so-called three-dimensional linearized theory
of elastic waves in initially-stressed bodies while the motion of the viscous fluid
was written within the scope of the linearized Navier-Stokes equations. Detailed
consideration of related results was made in the monograph by Guz (2009).

Until recently, within this framework, there has been no investigation related to the
forced vibration of the pre-strained plate+ compressible viscous fluid system. The
first attempt in this field was made in a work by Akbarov (2013b) in which the fre-
quency response of the system consisting of the pre-stressed metal elastic plate and
a half-plane with compressible viscous fluid was studied. The subsequent step in
this field was made in a paper by Akbarov and Ismailov (2014a) which considered
the forced vibrations of a system consisting of a pre-stressed highly elastic plate
under compressible viscous fluid loading. In this paper it was also assumed that the
half-plane which is in contact with the plate is filled with a compressible viscous
fluid. Moreover, in another paper by Akbarov and Ismailov (2014b) the foregoing
investigations were developed for the case where the plate material is viscoelas-
tic. It was assumed that the viscoelasticity was described by fractional exponential
operators.

However, in all the foregoing papers related to the interaction of the plate and com-
pressible viscous fluid it was assumed that the fluid is at rest. At the same time,
many cases can exist in which the plate is in contact with the flowing fluid, which,
as usual, is non-homogeneous, before the action of external forces, i.e. the veloci-
ties of the fluid flow depend on the space coordinates. According to this statement,
the linearized Navier-Stokes equations describing the perturbation field in the flu-
id become equations with variable coefficients. The variability of the coefficients
causes serious difficulties in obtaining an analytical solution to these equations. In
the present paper we attempt to develop a discrete-analytical solution to these equa-
tions which uses an analytical solution method to investigate a class of problems
related to the dynamic interaction of the plate with a flowing compressible viscous
fluid. The proposed approach is examined for the hydro-elastic system consisting
of the axially-moving pre-stressed plate, compressible viscous fluid and rigid wall.
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2 Formulation of the problem

Consider a hydro-elastic system consisting of the pre-strained and axially-moving
elastic plate, compressible barotropic viscous fluid and rigid wall. We introduce
the Cartesian coordinate system Ox1x2x3 which is fixed on, and moves with, the
plate and we also introduce the Cartesian coordinate system O0x10x20x30 which is
associated with the rigid wall (Fig. 1). Considered below is the two-dimensional
problem in the plane Ox1x2 (or in the plane O0x10x20). Therefore, in Fig. 1 the
coordinate axes Ox3 and O0x30 are not shown and according to Fig. 1, the plate
occupies the region {|x1| < ∞,−h < x2 < 0} and the fluid occupies the region
{|x1| < ∞,−hd−h < x2 <−h}. Thus we assume that the plate moves in the direc-
tion of the Ox1 (or O0x10) axis with constant velocity V and this movement causes
a corresponding flow of the fluid. According to the foregoing assumptions, there
exists the following relation between the coordinates xi and xi0

x1 = x10−Vt, x2 = x20 (1)

where t is the time.

According to Fig. 1 and the notation shown therein, we can write the following
well-known expression for the fluid-flow velocity caused by the plate’s axial move-
ment.

v0
1 =V

x20

hd
+V (

h
hd

+1), v0
2 = 0. (2)

Figure 1: Sketch of the hydro-elastic system under consideration.

At the same time, we assume that the initial stresses in the plate are caused by the
uniaxial stretching or compressing along the Ox1 axis and are determined within
the scope of the classical linear theory of elasticity, according to which, σ0

11 6= 0
and σ0

i j = 0 if i j 6= 11.

Thus, within the scope of the foregoing expressions and assumptions we have de-
termined the initial state in the hydro-elastic system under consideration. Now we
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attempt to investigate the forced vibration of this system with the foregoing ini-
tial state caused by the additional lineally-located time-harmonic forces acting on
the moving plate, as shown in Fig. 1. We will assume that the amplitudes of the
fluid flow velocities caused by the additional time-harmonic force are significantly
less than the plate moving velocity V . Moreover, we assume that the amplitudes
of the stresses caused by the aforementioned additional force are also significantly
less than the absolute value of the initial stress σ0

11. Consequently, perturbation of
the motion of the hydro-elastic system under consideration can be described within
the scope of the linearized equations. Therefore we use the three-dimensional lin-
earized theory of elastic waves in initially stressed elastic bodies (TDLTEWISB)
to describe perturbation of the plate motion and use the linearized Navier-Stokes
equations for compressible viscous fluid to describe perturbation of the fluid flow.

According to Akbarov (2015) and Guz (2004), the field equations of the TDL-
TEWISB in the moving system of coordinates Ox1x2, are written as follows:

∂σ11

∂x1
+

∂σ12

∂x2
+σ

0
11

∂ 2u1

∂x2
1
= ρ

∂ 2u1

∂ t2 ,
∂σ12

∂x1
+

∂σ22

∂x2
+σ

0
11

∂ 2u2

∂x2
1
= ρ

∂ 2u2

∂ t2 .

σ11 = (λ +2µ)ε11 +λε22, σ22 = λε11 +(λ +2µ)ε22, σ12 = 2µε12,

ε11 =
∂u1

∂x1
, ε22 =

∂u2

∂x2
, ε12 =

1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
(3)

In Eq. (3) conventional notation is used.

Now, according to Guz (2009), we write the linearized Navier-Stokes equations for
the compressible viscous fluid in the fixed coordinate system O0x10x20 (Fig. 1):

ρ
(1)
0

∂v1

∂ t
+ρ

(1)
0 v0

1(x20)
∂v1

∂x10
−µ

(1)
(

∂ 2v1

∂x2
10

+
∂ 2v1

∂x2
20

)
− (λ (1)+µ

(1))

(
∂ 2v1

∂x2
10

+
∂ 2v2

∂x10∂x20

)
+

∂ p(1)

∂x10
= 0,

ρ
(1)
0

∂v2

∂ t
+ρ

(1)
0 v0

1(x20)
∂v2

∂x10
−µ

(1)
(

∂ 2v2

∂x2
10

+
∂ 2v2

∂x2
20

)
− (λ (1)+µ

(1))

(
∂ 2v1

∂x10∂x20
+

∂ 2v2

∂x2
20

)
+

∂ p(1)

∂x20
= 0,

∂ρ(1)

∂ t
+ρ

(1)
0

(
∂v1

∂x10
+

∂v2

∂x20

)
+ v0

1(x20)
∂ρ(1)

∂x10
= 0,

T11 = (−p(1)+λ
(1)

θ)+2µ
(1)e11,

T22 = (−p(1)+λ
(1)

θ)+2µ
(1)e22, T12 = 2µ

(1)e12,
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θ =
∂v1

∂x10
+

∂v2

∂x20
, e11 =

∂v1

∂x10
, e22 =

∂v2

∂x20
,

e12 =
1
2

(
∂v1

∂x20
+

∂v2

∂x10

)
, a2

0 =
∂ p(1)

∂ρ(1) .

(4)

whereρ
(1)
0 is the fluid density before perturbation. The other notation used in Eq.

(4) is also conventional.

Moreover, it is assumed that the following boundary, contact and impermeability
conditions are satisfied:

σ21(t,x1,x2)|x2=0 = 0, σ22(t,x1,x2)|x2=0 =−P0δ (x1)eiωt , (5)

∂u1(t,x1,x2)

∂ t

∣∣∣∣ x1=x10−Vt
x2=x20=−h

= v1(t,x10,x20)|x2=x20=−h ,

∂u2(t,x1,x2)

∂ t

∣∣∣∣ x1=x10−Vt
x2=x20=−h

= v2(t,x10,x20)|x2=x20=−h ,

σ21(t,x1,x2)|x1=x10−Vt
x2=x20=−h

= T21(t,x10,x20)|x2=x20=−h ,

σ22(t,x1,x2)|x1=x10−Vt
x2=x20=−h

= T22(t,x10,x20)|x2=x20=−h ,

v1(t,x10,x20)|x2=x20=−h−hd
= 0, v2(t,x10,x20)|x2=x20=−h−hd

= 0. (6)

This completes formulation of the problem.

3 Method of solution

As noted above, the field equations describing the fluid motion and given in (4) are
written for the fixed coordinate system O0x10x20. However, the field equations de-
scribing the plate motion and given in (3) are written with respect to the coordinate
system Ox1x2 which is fixed on the plate’s upper plane and moves with the plate
with respect to the rigid wall or the coordinate system O0x10x20. First, using the re-
lations (1) and g(x10,x20) = g(x1+Vt,x2) = g̃(x1,x2), and omitting the over symbol
“∼”, below we rewrite the field equations in (4) and the contact and impermeabil-
ity conditions in (6) in the moving coordinate system Ox1x2. For this purpose we
must replace the derivatives ∂/∂ t, ∂/∂x10 and ∂/∂x20 in (4) with ∂/∂ t−V ∂/∂x1,
∂/∂x1 and ∂/∂x2, respectively. As a result of these replacements, we obtain the
following equations instead of the equations given in (4):

ρ
(1)
0

∂v1

∂ t
+ρ

(1)
0 (v0

1(x2)−V )
∂v1

∂x1
−µ

(1)
(

∂ 2v1

∂x2
1
+

∂ 2v1

∂x2
2

)
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− (λ (1)+µ
(1))

(
∂ 2v1

∂x2
1
+

∂ 2v2

∂x1∂x2

)
+

∂ p(1)

∂x1
= 0,

ρ
(1)
0

∂v2

∂ t
+ρ

(1)
0 (v0

1(x2)−V )
∂v2

∂x1
−µ

(1)
(

∂ 2v2

∂x2
1
+

∂ 2v2

∂x2
2

)
− (λ (1)+µ

(1))

(
∂ 2v1

∂x1∂x2
+

∂ 2v2

∂x2
2

)
+

∂ p(1)

∂x2
= 0,

∂ρ(1)

∂ t
+ρ

(1)
0

(
∂v1

∂x1
+

∂v2

∂x2

)
+(v0

1(x2)−V )
∂ρ(1)

∂x1
= 0,

T11 = (−p(1)+λ
(1)

θ)+2µ
(1)e11,

T22 = (−p(1)+λ
(1)

θ)+2µ
(1)e22, T12 = 2µ

(1)e12,

θ =
∂v1

∂x1
+

∂v2

∂x2
, e11 =

∂v1

∂x1
, e22 =

∂v2

∂x2
,

e12 =
1
2

(
∂v1

∂x2
+

∂v2

∂x1

)
, a2

0 =
∂ p(1)

∂ρ(1) ,

(7)

and the following contact and impermeability conditions instead of (6).

∂u1(t,x1,x2)

∂ t

∣∣∣∣
x2=−h

= v1(t,x1,x2)|x2=−h ,

∂u2(t,x1,x2)

∂ t

∣∣∣∣
x2=−h

= v2(t,x1,x2)|x2=−h ,

σ21(t,x1,x2)|x2=−h = T21(t,x1,x2)|x2=−h ,

σ22(t,x1,x2)|x2=−h = T22(t,x1,x2)|x2=−h ,

v1(t,x1,x2)|x2=−h−hd
= 0, v2(t,x1,x2)|x2=−h−hd

= 0 (8)

In this way, we have all the field equations and relations in the moving system of
coordinates Ox1x2 and, according to the boundary condition (5), we can represent
all sought quantities as d(t,x1,x2) = d̄(x1,x2)eiωt (over-bar will be omitted below)
in this coordinate system. Substituting this into the foregoing equations and con-
ditions we obtain the corresponding equations and relations for the amplitudes of
the sought values. Moreover, after this procedure we apply the exponential Fourier
transformation

fF(s,x2) =

+∞∫
−∞

f (x1,x2)e−isx1dx1 (9)
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to the foregoing equations and relations. As a result, we obtain field equations and
relations for the Fourier transformations of the sought values. The equations and
relations related to the plate are obtained from (3) and (9) as follows:

isσ11F +
dσ12F

dx2
+(ρω

2−s2
σ

0
11)u1F = 0, isσ12F +

dσ22F

dx2
+(ρω

2−s2
σ

0
11)u2F = 0

σ11F = (λ +2µ)ε11F +λε22F , σ22F = λε11F +(λ +2µ)ε22F , σ12F = 2µε12F ,

ε11F = isu1F , ε22F =
du2F

dx2
, ε12F =

1
2

(
du1F

dx2
+ isu2F

)
. (10)

The corresponding equations and relations related to the fluid are obtained from (7)
and (9) as follows:

ρ
(1)
0 iωv1F +ρ

(1)
0 V 0

1 (x2) is v1F −µ
(1)
(
−s2v1F +

d2v1F

dx2
2

)
− (λ (1)+µ

(1))

(
−s2v1F + is

dv2F

dx2

)
+ isp(1)F = 0,

ρ
(1)
0 iωv2F +ρ

(1)
0 V 0

1 (x2)isv2F −µ
(1)
(
−s2v2F +

d2v2F

dx2
2

)
− (λ (1)+µ

(1))

(
is

dv1F

dx2
+

d2v2F

dx2
2

)
+

d p(1)F
dx2

= 0,

iωρ
(1)
F +ρ

(1)
0

(
isv1F +

dv2F

dx2

)
+V 0

1 (x2)isρ
(1)
F = 0,

V 0
1 (x2) = v0

1(x2)−V,

T11F = (−p(1)F +λ
(1)

θF)+2µ
(1)e11F ,

T22F = (−p(1)F +λ
(1)

θF)+2µ
(1)e22F , T12F = 2µ

(1)e12F ,

θF = isv1F +
dv2F

dx2
, e11F = isv1F , e22F =

dv2F

dx2
,

e12F =
1
2

(
dv1F

dx2
+ isv2F

)
, a2

0 =
∂ p(1)

∂ρ(1) ,

(11)

Now we consider determination of the solutions to the system of equations (10)
and (11). It should be noted that finding the analytical solution to the system of e-
quations (10) is not difficult. So, after some mathematical manipulations we obtain
from (10) the following equations for u1F and u2F :

Au1F −B
du2F

dx2
+C

d2u1F

dx2
2

= 0, Du2F +B
du1F

dx2
+G

d2u2F

dx2
2

= 0, (12)
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where

A = X2− s2
ω1111, B = s(ω1122 +ω2121), C = ω2112,

D = X2− s2
ω1221, G = ω2222,X2 = ω

2h2/c2
2, c2 =

√
µ/ρ. (13)

Introducing the notation

A0 =
AG+B2 +CD

CG
, B0 =

BD
CG

,

k1 =

√√√√−A0

2
+

√
A2

0
4
−B0, k2 =

√√√√−A0

2
−

√
A2

0
4
−B0,

(14)

we can write the solution of the equation (12) as follows:

u2F = Z1ek1x2 +Z2e−k1x2 +Z3ek2x2 +Z4e−k2x2 ,

u1F = Z1a1ek1x2 +Z2a2e−k1x2 +Z3a3ek2x2 +Z4a4e−k2x2 , (15)

where

a1 =
−D−Gk2

1

Bk2
1

, a2 =−a1, a3 =
−D−Gk2

2

Bk2
2

, a4 =−a3. (16)

However, to find the analytical solution to the system of equations (11) is not so
simple because this system contains the variable coefficient V 0

1 (x2). Therefore, in
the present work we attempt to employ the discrete-analytical solution method to
solve this system of equations, the essence of which is as follows:

The strip S = [−hd−h≤ x2 ≤−h] which is filled with the fluid is divided into the
following M sub-strips

Sk =

[
−k

hd

M
−h≤ x2 ≤−(k−1)

hd

M
−h
]
, k = 1,2, . . . ,M, S =

M

∑
k=1

Sk (17)

and it is assumed that in each of these strips, the function V 0
1 (x2) is constant and

equal to

V 0(k)
1 = V 0

1 (x2)
∣∣
x2=−h−(2k−1)hd/(2M)

. (18)

Taking the relations (17) and (18) into consideration, we suppose that the system
of equations in (11) are satisfied separately within each strip Sk so that within each
strip we obtain the following system of equations with constant coefficients:

ρ
(1)
0 iωv(k)1F +ρ

(1)
0 V 0(k)

1 is v(k)1F −µ
(1)

(
−s2v(k)1F +

d2v(k)1F

dx2
2

)
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− (λ (1)+µ
(1))

(
is

dv(k)2F
dx2
− s2v(k)1F

)
+ isp(1)Fk = 0,

ρ
(1)
0 iωv(k)2F +ρ

(1)
0 V 0(k)

1 isv(k)2F −µ
(1)

(
d2v(k)2F

dx2
2
− s2v(k)2F

)

− (λ (1)+µ
(1))

(
is

dv(k)1F
dx2

+
d2v(k)2F

dx2
2

)
+

d p(1)Fk
dx2

= 0,

iωρ
(1)
Fk +ρ

(1)
0

(
isv(k)1F +

dv(k)2F
dx2

)
+V 0(k)

1 isρ
(1)
Fk = 0,

T (k)
11F = (−p(1)Fk +λ

(1)
θ
(k)
F )+2µ

(1)e(k)11F ,

T (k)
22F = (−p(1)Fk +λ

(1)
θ
(k)
F )+2µ

(1)e(k)22F , T (k)
12F = 2µ

(1)e(k)12F ,

θ
(k)
F = isv(k)1F +

dv(k)2F
dx2

, e(k)11F = isv(k)11F , e(k)22F =
dv(k)2F
dx2

,

e(k)12F =
1
2

(
dv(k)1F
dx2

+ isv(k)2F

)
, for 1≤ k ≤M. (19)

In (19), through the upper and lower index k, the corresponding quantities belong-
ing to the k− th sub-strip are shown. In this way, we obtain the system of equations
(19) with constant coefficients instead of the system of equations (11) with variable
coefficients. Moreover we assume that on the upper plane of the plate, on the inter-
face between the strip S1 and plate, on the interfaces between the strips S1, . . . ,SM

(17) and on the interface between the strip SM and rigid wall, the following condi-
tions are satisfied:

σ21F(s,x2)|x2=0 = 0, σ22F(s,x2)|x2=0 =−P0,

iωu1F(s,x2)|x2=−h = v(1)1F (s,x2)
∣∣∣
x2=−h

, iωu2F(s,x2)|x2=−h = v(2)1F (s,x2)
∣∣∣
x2=−h

,

σ21F(s,x2)|x2=−h = T (1)
21F(s,x2)

∣∣∣
x2=−h

, σ22F(s,x2)|x2=−h = T (1)
22F(s,x2)

∣∣∣
x2=−h

,{
v(k−1)

1F (s,x2),v
(k−1)
2F (s,x2),T

(k−1)
21F (s,x2),T

(k−1)
22F (s,x2)

}∣∣∣
x2=−h−(k−1)hd/M

={
v(k−1)

1F (s,x2),v
(k)
2F (s,x2),T

(k)
21F(s,x2),T

(k)
22F(s,x2)

}∣∣∣
x2=−h−(k−1)hd/M

, 2≤ k ≤M

v(M)
1F (s,x2)

∣∣∣
x2=−h−hd/M

= 0, v(M)
2F (s,x2)

∣∣∣
x2=−h−hd/M

= 0 (20)

Now we attempt to find the solution to the system of equations in (19). According
to Guz (2009), the solution to the system of equations related to each k-th system
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of equations in (19) is reduced to finding the two potentials ϕ
(k)
F and ψ

(k)
F which are

determined from the following equations:[(
1+

λ (1)+2µ(1)

a2
0ρ

(1)
0

i(ω + sV (k)
1 )

)
∆F +

(ω + sV (k)
1 )2

a2
0

]
ϕ
(k)
F = 0,

(
ν
(1)

∆F − i(ω + sV (k)
1 )
)

ψ
(k)
F = 0, ∆F =−s2 +

∂ 2

∂x2
2
, (21)

where ν(1) is the kinematic viscosity, i.e. ν(1) = µ(1)/ρ
(1)
0 .

The Fourier transformations of the velocities v(k)1F and v(k)2F , and the pressure p(1)Fk are
expressed by the potentials ϕ

(k)
F and ψ

(k)
F as below.

v(k)1F = isϕ
(k)
F +

dψ
(k)
F

dx2
, v(k)2 =

dϕ
(k)
F

dx2
− isψ

(k)
F ,

p(1)Fk = ρ
(1)
0

(
λ (1)+2µ(1)

ρ
(1)
0

∆F − i(ω + sV (k)
1 )

)
ϕ
(k)
F . (22)

We consider determination of ϕ
(k)
F and ψ

(k)
F from the equation (21). Introducing the

notation

ϕF = (ω + sV (k)
1 )h2

ϕ̃F , ψF = (ω + sV (k)
1 )h2

ψ̃F (23)

according to Guz (2009) and assuming that λ (1) =−2µ(1)/3 it can be written from
(21) that

d2ϕ̃
(k)
F

dx2
2

+

(
Ω2

1

1+ i4Ω2
1/(3N2

w)
− s2

)
ϕ̃
(k)
F = 0,

d2ψ̃
(k)
F

dx2
2
−
(
s2 + iN2

w
)

ψ̃
(k)
F = 0, (24)

where

Ω1 =
ωh
a0

+
hsV (k)

1
a0

= Ω10 +Ω1s, Ω10 =
ωh
a0

, Ω1s =
hsV (k)

1
a0

,

N2
w =

ωh2

ν(1) +
sV (k)

1 h2

ν(1) = N2
w0 +N2

ws. N2
w0 =

ωh2

ν(1) ,N
2
ws =

sV (k)
1 h2

ν(1) . (25)

The dimensionless parameter Nw in (25) can be taken as the parameter which char-
acterizes the influence of the fluid viscosity on the mechanical behavior of the sys-
tem while the dimensionless frequency Ω1 in (25) can be taken as the parameter
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which characterizes the influence of the compressibility of the fluid on the mechan-
ical behavior of the system.

Thus, the solutions to the equations in (24) are found as follows:

ϕ̃
(k)
F = Z(k)

5 eδ1x2 +Z(k)
7 e−δ1x2 , ψ̃

(k)
F = Z(k)

6 eγ1x2 +Z(k)
8 e−γ1x2 , (26)

where

δ1 =

√
s2−

Ω2
1

1+ i4Ω2
1/(3N2

w)
, γ1 =

√
s2 + iN2

w. (27)

Using (26), (23) and (22) we obtain the following expressions for the Fourier trans-
formations of the fluid velocities:

v(k)1F = (ω + sV (k)
1 )h

[
−Z(k)

5 seδ1x2−Z(k)
7 se−δ1x2 +Z(k)

6 eγ1x2 +Z(k)
8 e−γ1x2

]
,

v(k)2F = (ω + sV (k)
1 )h

[
Z(k)

5 δ1eδ1x2−Z(k)
7 δ1e−δ1x2−Z(k)

6 seγ1x2−Z(k)
8 se−γ1x2

]
. (28)

Substituting the expressions (28) into the relations for the stresses given in (19)
we obtain the expressions for the stresses in each k− th layer. It follows from the
solutions (15) and (28) that they contain the unknown constants Z1, Z2, Z3, Z4, Z(k)

5 ,
Z(k)

6 , Z(k)
7 and Z(k)

8 (k = 1,2, . . . ,M) for which we obtain a closed system of linear
algebraic equations from the conditions given in (20). In this way we completely
determine the Fourier transformation of the sought quantities, after which these
quantities are found from the inverse transformation.{

σ22,σ11,u1,u2,T
(k)

22 ,T (k)
11 ,T (k)

12 ,v(k)1 ,v(k)2

}
=

1
2π

Re
{

eiωt
∫ +∞

−∞

[
σ22F ,σ11F ,u1F ,u2F ,T

(k)
22F ,T

(k)
11F ,T

(k)
12F ,v

(k)
1F ,v

(k)
2F

]
eisx1ds

}
(29)

It should be noted that under the foregoing solution procedure the number M is
determined from the convergence requirement of the numerical results obtained
from the calculation of the integrals in (29).

Note that the solution approach developed here was also used in a paper by Akbarov
(2006) for investigation of the frequency response of a strip made of functionally-
graded material and resting on a rigid foundation. The results obtained in that paper
were also discussed in the monograph by Akbarov (2015) and a paper by Akbarov
(2013a). Therefore the solution method proposed above can also be considered as a
development of the method presented in Akbarov’s (2006) paper for the considered
type of hydro-elastic problems. Now we attempt to employ the proposed solution
method to obtain numerical results for concrete selected problem parameters.
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4 Numerical results and discussions

We assume that the material of the plate-layer is Steel with mechanical constants:
µ = 79×109Pa, λ = 94.4×109Pa and density ρ = 1160kg/m3 (Guz and Makhort
(2000), Guz (2004)), but the material of the fluid is Glycerin with viscosity co-
efficient µ(1) = 1,393kg/(m · s), density ρ = 1260kg/m3 and sound speed a0 =
1927m/s (Guz (2009)). We also introduce the notation c2 =

√
µ/ρ which is the

shear wave propagation velocity in the plate material. After selection of these ma-
terials, the dimensionless parameters such as Ω1 and Nw in (25) and dimensionless
parameter Mω (= µ(1)ω/µ) which arises in contact conditions between the S1 fluid
sub-strip and the plate, can be determined through the three quantities: h (the thick-
ness of the plate-layer), hd (the thickness of the fluid strip) and ω (the frequency of
the time-harmonic external forces). At the same time, it should be noted that the
main parameter of the present investigation is the plate moving velocity V in the
initial state. As a result of this moving velocity, all solution difficulties and new
mechanical effects appear, as discussed below. Therefore, in all the numerical in-
vestigations the focus is on the influence of the moving velocity V on the frequency
response of the hydro-elastic system under consideration. For simplicity, we con-
sider the case where the initial stress in the plate is absent, i.e. we consider only the
case where σ0

11 = 0.

Before discussion of the numerical results we note that under calculation proce-
dures, the improper integral

∫ +∞

−∞
f (s)eisx1ds in (29) is replaced by the correspond-

ing definite integrals
∫ +S∗1
−S∗1

f (s)eisx1ds. The values of S∗1 are determined from the
convergence requirement of the numerical results. Note that under calculation of
the integral

∫ +S∗1
−S∗1

f (s)eisx1ds, the integration interval [−S∗1;+S∗1] is further divided
into a certain number of shorter intervals, which are used in the Gauss integration
algorithm. The values of the integrated expressions at the sample points are cal-
culated through the equations (20) and expressions (15), (10), (28) and (19). All
procedures were performed automatically with the PC programs constructed by the
authors in MATLAB.

Thus, we begin discussion of the numerical results with consideration of the con-
vergence of the calculation algorithm.

4.1 Convergence of the numerical algorithm

Under numerical investigation we assume that 0 ≤ V/h ≤ 2500(1/s) and h =
0.01m, according to which 0≤V ≤ 90km/h and this change diapason of the plate-
moving velocity is quite real. Moreover, we assume that 4hs≤ ω ≤ 500hs.

The convergence of the numerical results will be tested with respect to the three
parameters: M which shows the number of fluid sub-strips, S1 and the number of
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the shorter intervals (denoted by N) to which the integration interval [−S∗1;+S∗1]
is divided. Note that the convergence with respect to S∗1 and N will be discussed
below. Now we consider the numerical results illustrating their convergence with
respect to the sub-strip number M. These results relate to the frequency response
of the normal stress and velocity which arise on the interface plane between the
plate and fluid. We recall that this stress and velocity are caused by the action of
the additional time-harmonic force (Fig. 1). Thus, we consider the graphs given in
Figs. 2 and 3 which are constructed in the cases where hd/h = 2 and 6, respectively
and illustrate the frequency response of T22h/P0 (Figs. 2a and 3a) and v2µh/(P0c2)
(Figs. 2b and 3b). Note that these graphs are obtained for various values of the
number M in the case where V/h = 2500hz, h = 0.01m, ωt = 0 and x1/h = 0
under S∗1 = 5 and N = 2000.

It follows from the numerical results given in Figs. 2 and 3, (and others which
are not given here) that for the considered range of the problem parameters the
difference between the results obtained in the cases where M = 13 and M = 15 is
less than 10−5. Therefore, we can conclude that for the cases considered in the
present paper, the case where M = 15 is sufficient to obtain guaranteed numerical
results in the sense of their convergence with respect to the number M. According
to this conclusion, all the numerical results, which will be discussed below, have
been obtained in the case where M = 15. At the same time, it should be noted that
the final value of the number M depends significantly on the plate moving velocity,
i.e. on the ratio V/h and it is evident that the final value of the number M must
increase with V/h.

At the same time, it follows from the graphs that the results approach a certain
limit with the number M and this means that the proposed approach is justified for
the problem under consideration. Similar results are also obtained for the other
problem parameters. Moreover, these results (and others which are not given here)
show that as a result of the plate moving there exists such a value of the frequency
under which a jump arises in the values of the studied quantities. We will call this
frequency a “critical frequency” (denoted by ωcr) and provide some analysis below.

Now we analyze the convergence of the numerical results with respect to the num-
ber N. The results obtained for various possible values of the problem parame-
ters show that the very disadvantaged cases in the convergence sense arise under
low frequencies of the external force and under small values of the ratio hd/h.
Moreover, these disadvantages become more considerable in the cases where the
frequency of the external force is near to the critical frequency. Therefore, for il-
lustration of this convergence, we consider the case where 4hz ≤ ω ≤ 100hz and
hd/h = 2, and analyze the graphs given in Fig. 4a which illustrate the frequen-
cy response of the dimensionless stress T22h/P0 obtained for various values of the
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(a)

(b)

Figure 2: Convergence of the numerical results with the number of fluid sub-layers
in the case where hd/h= 2: frequency response of the dimensionless stress T22h/P0
(a) and dimensionless velocity v2µh/(P0c2) (b).

number N in the case where S∗1 = 5 and V/h = 2500hz under ωt = 0 and x1/h = 0.
It follows from Fig. 4a that the values of the stress approach a certain asymptote
with the number N. In other words, the numerical results obtained for the studied
quantities approach a certain limit with the number N. In addition, after a certain



104 Copyright © 2015 Tech Science Press CMES, vol.108, no.2, pp.89-112, 2015

(a)

(b)

Figure 3: Convergence of the numerical results with the number of fluid sub-layers
in the case where hd/h= 6: frequency response of the dimensionless stress T22h/P0
(a) and dimensionless velocity v2µh/(P0c2) (b).

value of N (denoted by N∗) the numerical results obtained for the various N > N∗

coincide with each other with accuracy of 10−5−10−6. It should be noted that the
value of N∗ depends not only on the frequency, but also on the other problem pa-
rameters and mainly on h and hd/h. For instance, for the case under consideration
it can be taken that N∗ = 2000.

Consider also the graphs which illustrate the convergence of the numerical results
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(a) (b)

(c)

Figure 4: Convergence of the numerical results with respect to the number N (a)
and with respect to the integration interval S∗1 in the cases where 4hz≤ ω ≤ 100hz
(b) and 100hz≤ ω ≤ 500hz (c).

with respect to the integration interval, i.e. with respect to the values of S∗1. These
graphs are given in Figs. 4b and 4c which are constructed for the dimensionless
stress T22h/P0 in the cases where 4hz ≤ ω ≤ 100hz and 100hz ≤ ω ≤ 500hz, re-
spectively. It is assumed that N = 2000 and the problem parameters have the same
values as those selected for the previous graphs. It follows from these results that
the numerical results approach a certain asymptote with S∗1 and the frequency ω .
The convergence of the numerical results with respect to S∗1 requires an increase in
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the values of S∗1. In obtaining the numerical results all the foregoing characteris-
tics related to the convergence of the numerical results are taken into consideration
and it is established that the case where S∗1 = 5 and N = 2000 is sufficient to ob-
tain accurate numerical results. Thus, we assume that S∗1 = 5 and N = 2000. At
the same time, it should be noted that the foregoing results on the convergence of
the numerical results can also be used as validation of the algorithm and programs
which were composed by the authors. Unfortunately, we have not found any related
results of other authors for comparison with the present ones. Therefore validation
of the present results can be proven with the convergence of the numerical results
and with their agreement to mechanical considerations.

(a) (b)

Figure 5: The influence of the plate moving velocity on the frequency response
of the dimensionless stress T22h/P0 in the cases where 4hz ≤ ω ≤ 100hz (a) and
ωcr < ω ′ ≤ ω ≤ 500hz (b).

4.2 Some results related to the influence of the plate moving velocity on the
frequency response of the stress and velocities

Although detailed analysis of the numerical results will be the subject of further
papers by the authors, here we illustrate the usefulness of the proposed solution
approach. For this purpose we consider the influence of the plate moving velocity V
on the frequency response of the normal stress and velocities arising on the interface
plane between the plate and fluid. The graphs given in Figs. 5, 6 and 7 show the
dependence among the dimensionless stress T22h/P0 (Fig. 5 under ωt = 0), the
dimensionless velocity v2µh/(P0c2) (Fig. 6 under ωt = π/2), the dimensionless
velocity v1µh/(P0c2) (Fig. 7 under ωt = π/2) and the frequency ω which are
constructed for various values of V/h in the case where hd/h = 2, and x1/h = 0.
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Note that for a clear illustration of the influence of the moving plate velocity on
the values of the critical frequency as well as on the values of the studied quantities
the graphs related to the cases where 4hz ≤ ω ≤ 100 and ωcr < ω ′ ≤ ω ≤ 500hz
are presented separately by letters a and b, respectively. Here the values of ω ′ vary
according to V/h and these values can be easily determined from the foregoing
figures. Moreover, note that in these figures the dashed lines show the frequency
response of the corresponding quantity in the case where the plate in the initial state
is at rest, i.e. the case where V/h = 0.

(a) (b)

Figure 6: The influence of the plate moving velocity on the frequency response of
the dimensionless velocity v2µh/(P0c2) in the cases where 4hz ≤ ω ≤ 100hz (a)
and ωcr < ω ′ ≤ ω ≤ 500hz (b).

Thus, it follows from the results that the values of ωcr decrease with decreasing
plate axial-moving velocity V/h. Moreover the graphs show that there exists a
certain value of the frequency (denoted by ω∗) before which (i.e. for ω ′ < ω < ω∗)
the plate moving velocity in the initial state causes a decrease (an increase) in the
absolute values of the dimensionless stress T22h/P0 (of the dimensionless velocities
v2µh/(P0c2) and v1µh/(P0c2)) with respect to the corresponding ones obtained in
the case where V/h = 0. However, after this frequency (i.e. in the cases where ω >
ω∗) the plate moving velocity causes the absolute values of T22h/P0 with respect to
those obtained in the case where V/h = 0 to increase slightly.

To demonstrate the influence of the fluid viscosity on the values of the studied
quantities, graphs of the frequency response of the dimensionless stress T22h/P0 in
the case where the fluid is modelled as inviscid are given in Fig. 8. Comparison of
these graphs with the corresponding ones given in Fig. 5 shows that the influence
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(a) (b)

Figure 7: The influence of the plate moving velocity on the frequency response of
the dimensionless velocity v1µh/(P0c2) in the cases where 4hz ≤ ω ≤ 100hz (a)
and ωcr < ω ′ ≤ ω ≤ 500hz (b).

Figure 8: The influence of the plate moving velocity on the frequency response of
the dimensionless stress T22h/P0 in the case where the fluid is modeled as inviscid.

of the fluid viscosity on the studied frequency response has important significance,
not only qualitatively but also quantitatively. We recall that in the case where the
plate is in contact with the inviscid fluid, the plate moving in the initial state does
not cause the fluid flow. Consequently, the inviscid fluid model is not adequate for
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(a) (b)

(c)

Figure 9: The influence of the plate moving velocity on the distribution of T22h/P0
(a), v2µh/(P0c2) (b) and v1µh/(P0c2)) (c) with respect to x1/h.

mathematical modelling of the type of problems studied. This result shows again
the significance of the proposed approach for solution to the dynamic problems
related to hydro-elastic systems containing a viscous fluid.

Another characteristic of the influence of the plate’s axially-moving velocity on the
plate-fluid interaction under consideration is illustrated in the case where V/h = 0,
i.e. in the case where the plate is at rest in the initial state and the distribution
of the stresses and velocities caused by the additional time harmonic forces with
respect to the moving coordinate x1/h is symmetric or asymmetric with respect to
the point x1/h = 0. However, as can be predicted according to expressions and
equations (21)–(25), in the case where V/h > 0 this distribution becomes non-
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symmetric or non-asymmetric with respect to x1/h= 0, i.e. with respect to the point
at which the external additional time-harmonic force acts. The results that prove
this conclusion are illustrated in the graphs in Fig. 9 which show the distribution
for the dimensionless stress T22h/P0 (Fig. 9a) and velocities v2µh/(P0c2) (Fig. 9b)
and v1µh/(P0c2) (Fig. 9c) in the case where ω = 100hz and ω t = 0.

This completes consideration of the numerical results obtained by employing the
proposed approach for the problem under consideration. More detailed analysis of
these and other numerical results will be the subject of further investigations by the
authors.

5 Conclusions

In the present paper the discrete-analytical solution method has been developed
for the solution to problems related to the dynamics of hydro-elastic systems con-
sisting of a compressible viscous fluid which has non-homogeneous laminar flow,
an initially-stressed axially-moving elastic plate and rigid wall. It is assumed that
the non-homogeneous flow of the fluid is caused by the plate moving and that on
the plate an additional lineally-located time-harmonic force acts with respect to the
forces causing the initial stresses in the plate. This additional force causes an ad-
ditional fluid flow field. The additional stress-strain field in the plate is described
by utilizing the three-dimensional linearized theory of elastic waves in initially
stressed bodies and the additional fluid flow field is described by utilizing the lin-
earized Navier-Stokes equations for compressible viscous fluids. As a result of the
heterogeneity of the fluid flow in the initial state the linearized Navier-Stokes e-
quations have coefficients which are variable with respect to the coordinates. This
situation causes difficulties in obtaining an analytical solution to the problem un-
der consideration. To overcome this difficulty, we propose the discrete-analytical
solution method, the essence of which is as follows. The fluid layer which has
non-homogeneous laminar flow is replaced with a certain number of sub-layers
each of which has homogeneous flow. For each sub-layer the linearized Navier-
Stokes equations are written and the corresponding contact conditions between the
sub-layers are satisfied. In this way the solution to the boundary-value problem
for the linearized Navier-Stokes equations with variable coefficients is reduced to
the series of the corresponding boundary-value problems for the linearized Navier-
Stokes equations with constant coefficients which in turn allows an analytical solu-
tion to be obtained. The applicability of the proposed approach is illustrated with
the solution of the concrete problem considered in the present paper. The numer-
ical convergence of the developed solution method is also discussed with respect
to the concrete problems under consideration. Moreover, some numerical results
are given and discussed, which illustrate the influence of the heterogeneity of the



On the Discrete-Analytical Solution Method 111

fluid flow in the initial state on the stress and flow field in the hydro-elastic system
caused by the additional time-harmonic force.

It should be noted that the proposed approach can also be developed and applied for
more complicated initial fluid flow cases for more complex hydro-elastic systems.
These cases as well as more detailed investigations and analyses of the numerical
results related to the problem considered in the present paper, will be the subject of
further works by the authors.
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