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A Finite Wavelet Domain Method for the Rapid Analysis
of Transient Dynamic Response in Rods and Beams

C.V. Nastos, T.C. Theodosiou, C.S. Rekatsinas and D.A. Saravanos1

Abstract: A computationally efficient numerical method is developed for the pre-
diction of transient response in orthotropic rod and beam structures. The method
takes advantage of the outstanding properties of compactly supported Daubechies
wavelet scaling functions for the spatial approximation of displacements in a finite
domain of the structure, hence is termed Finite Wavelet Domain (FWD) method.
The basic principles and advantages of the method are presented and the discretiza-
tion of the equations of motion is formulated for one-dimensional structures. Nu-
merical results for the simulation of propagating guided waves in rods and strips
are presented and compared against traditional finite elements.

Keywords: Daubechies Wavelets, Wavelet-based Elements, Numerical Analysis,
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1 Introduction

The dynamic transient response and wave propagation in structural components has
attracted substantial interest in many application areas, including the development
of innovative Nondestructive Evaluation (NDE) and Structural Health Monitoring
(SHM) methods and systems, the simulation of impact events, and so forth. Of
particular importance is the design of passive and active SHM systems based on
linear and nonlinear guided waves, which require quick and robust simulations of
ultrasonic wave propagation in pristine and damaged structures. Guided ultrasonic
waves entail very high frequencies and wavenumbers and their numerical solution
requires very fine spatial and temporal discretization. Such analyses based on well-
established finite element methods (FEM) and finite difference methods (FDM) are
computationally expensive and suffer from numerical shortcomings. Thus, there is
an emerging need for development of new modeling methods which can provide
solutions of substantially improved computational speed and accuracy.

1 Corresponding Author: Professor D.A.Saravanos, saravanos@mech.upatras.gr, Tel: +30-2610-
969437, Fax: +30-2610-969417
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Over the past decades, various numerical methods and techniques have been pro-
posed for the simulation of guided wave propagation phenomena in solid struc-
tures. Finite element method (FEM) [Bathe (1996)], Finite Difference Method
(FDM) [Strikwerda (2004)] and Boundary Element Method (BEM) [Katsikadelis
(2002)] have long histories in wave propagation. Spectral Element Method (SEM)
combines the geometrical flexibility of standard low-order FEM, with rapid con-
vergence properties [Patera (1984)]. The Mass-Spring Lattice Models (MSLM),
model the inertia of the analyzed medium using mass particles; the stiffness is
modelled using spring elements connecting the mass particles and employs the
framework of the Local Interaction Simulation Approach (LISA) [Delsanto and
Scalerandi (1998)].

The present paper presents a new approach, which implements Wavelet Scaling
Functions (WSF) for the spatial approximation of the displacement fields and ex-
plores its potential for the solution of wave propagation problems in elastic rods
and 1D and 2D generalized beam models. Numerous wavelets exist in literature,
but the Daubechies (DB) family [Daubechies (1992)] is chosen in the present work
because it exhibits unique properties as a functional basis: (1) compact support
which enables the development of a meshless method with a finite localized domain
of influence and provides banded matrices; (2) orthonormality, which can yield di-
agonal or nearly-diagonal consistent mass matrices thus facilitate and speed-up the
utilization of explicit integration methods; and (3) maximum number of vanish-
ing moments for a given order, compared to any other wavelet family. Numerous
works have appeared in the past exploiting wavelets/WSFs as basis functions for
the solution of differential equations and boundary value problems [Monasse and
Perrier (1998); Qian and Weiss (1993); Dempster and Eswaran (2001)]. Integration
of wavelet theory into FEA has also been successfully demonstrated. Patton and
Marks [Patton and Marks (1995b,a)] have demonstrated the superiority of wavelet-
based FEA vs. traditional approaches using a rod element in static and free vi-
bration problems. Ma, Xue, Yang and He [Ma, Xue, Yang, and He (2003)] have
constructed a wavelet-based beam element by using DB scaling functions and sug-
gested a way for transforming wavelet coefficients into nodal displacements and
rotations. Diaz, Martin and Vampa [Díaz, Martín, and Vampa (2009)] have applied
DB wavelets as interpolating shape functions to construct an Euler-Bernoulli beam
element and a Mindlin-Reisner plate element for static analysis. Ko, Kurdila and
Pilant [Ko, Kurdila, and Pilant (1995)] have developed a class of finite elements
based on compactly supported and shift-invariant functions. In a different direc-
tion, Mitra and Gopalakrishnan [Mitra and Gopalakrishnan (2005)] have developed
wavelet based spectral finite elements for studying wave propagation by converting
the wave equation to a system of ordinary differential equations using DB wavelet
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approximation in time. Also wavelet element models for damage detection, using
Hermite cubic spline wavelets have been designed [Xiang, Matsumoto, Wang, and
Jiang (2011); Xiang, Wang, Jiang, Long, and Ma (2012); Xiang and Liang (2011)].
In the following sections, a new method is described focusing on the numerical so-
lution of transient structural dynamic problems. The introduced method, termed as
Finite Wavelet Domain (FWD) method, exploits the compactly supported nature of
WSFs. The spatial interpolation is introduced in 1D form and is shown to result in
a meshless discretization which include a finite set of grid points. Each grid point is
affected by a domain of influence determined by WSF support. The discretization
formulation follows the Galerkin approach in a way similar to the displacement-
based FEM. Consistent mass and stiffness matrices for rod, shear beam and higher
order generalized beam models are derived. The transient response is predicted
using the central-differences explicit time integration scheme. Although the use of
wavelet functions seems very promising, various computational challenges are also
arising. The most important are the lack of explicit expressions for the DB family
and their highly oscillatory nature, which hinders the implementation of numeri-
cal integration in variational formulations and results in ill-conditioned matrices.
Numerous reported works are exploited in this paper to overcome such limitations.
The paper is organized as follows: Section 2 introduces basic concepts of wavelet
theory and properties of the Daubechies WSF family; Section 3 extensively de-
scribes the concept of the method, its basic features and the construction of a rod
and both a first-order and high-order shear beam element; Section 4 presents nu-
merical examples of wave propagation analyses in rods and beams, convergence
evaluations and comparisons with traditional FEA [Theodosiou, Nastos, Rekatsi-
nas, and Saravanos (2014)]. The superiority of the FWD method compared to tra-
ditional FEA in terms of accuracy, convergence rate, refinement capabilities, and
computational efficiency is quantified.

2 Theoretical Background

The selection of the most suitable WSF as interpolating function is an issue of much
discussion [Kessler, Payne, and Polyzou (2008)]. Numerous wavelet families ex-
ist, each one with special characteristics. The Daubechies WSFs family seems to
be advantageous [Daubechies (1992); Lin, Kovvali, and Carin (2005)] for the ap-
proximation of state variables and the solution of variational forms of equations
of motion, because they exhibit unique properties as functional bases, summarized
below. The family of compactly supported orthonormal wavelet scaling function-
s φ (x) constructed by I. Daubechies, includes members of variable smoothness,
ranging from highly unsmooth to highly smooth functions of different order. As
seen in Figs. 1-3, each parent member is nested at the point x = 0 and spans over a
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range of grid points, termed the support domain. By definition, every WSF vanishes
beyond its support domain.

Figure 1: DB3 Scaling function and its Derivative.

Figure 2: DB6 Scaling function and its Derivative. (Finish Line with Dot)

Additional scaling functions of the same order can be defined either by translat-
ing the parent WSF at other integer points j, thus creating new WSFs of the type
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Figure 3: DB12 Scaling function and its Derivative. (Finish Lie with Dot)

φ (x− j); or by shrinking/dilating the parent function to new WSFs φ
(
2 jx
)
, re-

spectively. In addition, the following properties are of paramount importance to the
application of WSF as interpolation functions:

Compact support. Each WSF and its integer translates are confined within a bound-
ed interval, which spans over a finite range of adjacent grid points. The value of
the WSF beyond its compact support is zero by definition. Thus, the influence of a
WSF as interpolation function is localized within the interval of compact support.
The size of the interval of compact support depends on the order of the parent WSF.

Orthonormality. The integer translates of the WSF are orthonormal to each other,
hence, the integer translates of WSFs form an orthonormal basis in the functional
space.∫

∞

−∞

φ (x− i) ·φ (x− j)dx = δi j (1)

Vanishing Moments. The number of vanishing moments defines the quality of the
approximation, since it indicates the maximum degree of polynomial function that
can be exactly approximated by a specific WSF. The current paper is focused on the
well-established Daubechies family. A DB WSF of order L has vanishing moments,
which is among the highest regarding common wavelet families [Burgos, Santos,
and e Silva (2013, 2015)].

Dilation Property. The final important property of WSF is provided by the dilation
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equation,

φ
(
2 jx
)
=
√

2 ·
L−1

∑
k=0

hk ·φ
(
2 j+1x− k

)
(2)

where hk is the set of L filter coefficients, with L being the order of the wavelet.
The property is unique, in the sense that it provides a relationship between the
scaling function of a coarse approximation scale ( j = 0) with the WSF of a finer
approximation ( j = 1). The dilatation property provides the basis for the calculation
of WSF values at dyadic points and the calculation of integrals later used and shown
in the Appendix. The dilation property is also employed for the forward and inverse
wavelet transform.

3 The Finite Wavelet Domain Method

In the present section the basic concepts of the FWD method are presented for the
case of 1D problems. The approximation of displacements employing Daubechies
WSFs as basis functions is described and its advantages are enumerated. The
method is applied to the solution of transient dynamic wave problems in rods, Tim-
oshenko shear beams and High Order beams [Rekatsinas, Nastos, Theodosiou, and
Saravanos (2014, 2015)].

3.1 Generalized Approximation of Field Variables

Figure 4 depicts the proposed approximation of a generalized 1D problem. A rod
or beam structure of physical length l has been divided into N segments using N+1
grid points, termed as nodes. The segment length practically defines the scale of
the approximation and is used for the calculation of the basic stiffness and mass
matrices, thus, each segment can be thought as a special element. Additional L−1
nodes are introduced to the left of the physical domain. The case of a DB3 WSF has
been selected in Figure 4 for demonstration purposes, but generalized descriptors
are used in order to preserve generality.

Figure 4: Discretization of Total Domain. (Finish Line with Dot)
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Assuming that the nodes coincide with the main dyadic points, the physical dis-
placements u(x, t) can be approximated as,

u(x, t) =
∞

∑
n=−∞

ûn (t) ·φ (ξ −n) , n ∈ Z, ξ , t ∈ R≥0 : 0≤ x≤ l (3)

where: x, t are the spatial and time variable, respectively; L is the order of WSF; l
the physical length; φ (x−n) are integer translates of the WSF interpolation func-
tion; ûn are a set of unknown coefficients to be determined. The later denote the
projection of the physical degrees of freedom into the wavelet space. A normalized
local coordinate system is associated with each element (Figure 5). The relation be-
tween the global coordinate x to the local non-dimensional coordinate is provided
by

ξ =
x− xi

xi+1− xi
(4)

Figure 5: Global vs. Local Coordinate System.

Since WSFs are compactly supported, there is only a limited number of nodes that
need to be considered for the approximation of the physical displacement within
each element in the context of Eq. (3). Thus, in the interval between subsequent
two-grid points, the displacement approximation is reduced to

u(x, t) =
0

∑
n=−(L−2)

ûn (t) ·φ (ξ −n) (5)

where 0 ≤ x ≤ le and 0 ≤ ξ ≤ 1. The summation limits are confined in the range
determined by the order L of the scaling function. Clearly, the approximation in a
single element is supported within L−1 nodes, as illustrated in Figs. 4 and 6. This
‘Finite Wavelet Domain’ (FWD) of Influence has inspired the employed terminolo-
gy, thus, each element is termed thereafter as a FWD Element. The approximation
over the total length of the structure is obtained by contributions of all elements.

At this point, some important advantages of the FWD method vs. the traditional
FEM can be highlighted. The FWD approximation of a field variable in an element
requires a range of nodes beyond the physical element range, while in traditional
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Figure 6: The Domain of Influence for a FWD Element.

FEA the approximation is local and strictly confined within each element; i.e. the
displacement field in the interior of a FE is determined only by the nodal displace-
ments of the respective FE. On the other hand, FWD method exploits the overlap of
the influence domain for each element (Figure 6) and FWD elements use nodal dis-
placements of previous elements as well. In fact, the amount of nodal information
utilized for the approximation of a field variable within an element is larger than
any traditional FE of the same approximation order. The amount of nodal infor-
mation depends on the size of the influence domain, which in turn depends on the
order of the selected wavelet. Apparently, the obtained FWD approximation lies
between the global Ritz type approximation and local FEM approximation, hence,
it is expected to blend advantages of both. The FWD can improve the quality of ap-
proximation using either the h-method (keeping the order of interpolation functions
fixed and decreasing the nodal distance h) or the p-method (keeping the nodal dis-
tance fixed and increasing the order p of the polynomial approximation). Due to the
vanishing moment property of the WSF, an increase in the order of a DB WSF in
Eqs. (3) or (5), is related to a measurable improvement in the order of polynomial
approximation. Specifically, an increment in the polynomial order of approxima-
tion requires increasing the order L of the interpolating WSF by a factor of 2. This
increase requires only a simple addition of only two external nodes. In practice, no
remeshing is required in the physical domain; two external nodes are added leaving
the existing internal grid unchanged. On the contrary, in FEM, an increment of the
polynomial order of approximation requires the addition of one node per element
and full remeshing of the physical domain with new finite elements.

The equation of motion is based on the principle of virtual displacements for a
two-dimensional solid defined in terms of axial and transverse coordinates. Taking
advantage of the discretization of the physical domain in grid intervals (Figure 4),
the fore mentioned FWD elements, the equation of motion can be recast as

NrElements

∑
i=1

∫ le

0

(∫ h
2

− h
2

δεεε
T

σσσdz−
∫ h

2

− h
2

δuT
ρüdz+

[
δuT

τ
] h

2
− h

2

)
dx = 0 (6)
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where: σσσ and εεε are the stress and strain respectively, u are the displacements, τ

are the distributed forces and overbar indicates quantities on the boundary using
extended vector notation; h is the thickness or normalized area of the structure.
Combining Eqs. (5) and (6), equivalent stiffness [KKKeee] and mass [MMMeee] matrices, as
well as surface traction vectors can be calculated for each FWD element; there are
defined in

δÛT
e · [Ke] ·Ûe =

∫ le

0

∫ h
2

− h
2

δε
T

σσσdzdx (7)

δÛT
e · [Me] · ¨̂

eU =
∫ le

0

∫ h
2

− h
2

δuT
ρ üuudzdx (8)

δÛT
e ·FFFτe =

∫ le

0

[
δuT ··· τ

] h
2
− h

2
dx (9)

where ÛUUeee is the vector of wavelet coefficients involved in the elemental approxi-
mation of the displacements in Eq. (5). The total matrices can be assembled from
all elemental contributions using typical FEA procedures, which finally provide the
discrete equations of motion expressed in the wavelet space:

[MMM] · ¨̂UUU (t)+ [KKK] ·ÛUU (t) = FFF (t) (10)

In Eq. (10), [MMM] , [KKK] are the total mass/stiffness matrices respectively, FFF is the
external load vector and is the vector containing all unknown wavelet coefficients
in Eq. (3).

3.2 Developement of a FWD Rod Element

Application of the FWD method is primarily demonstrated by considering the anal-
ysis of the axial transient dynamic and wave propagation response in an elastic rod
governed by the well-known wave equation of motion,

u,xx=
ρ

E
ü−bx (11)

where, u is the uniform axial displacement in a cross-section of the rod, subscript
“,x” and overdot indicate spatial and temporal derivatives respectively; ρ is the ma-
terial density; E is the Young modulus of the rod; and bx represents the distributed
axial forces. Assuming arbitrary variation of displacement, the Virtual Work Prin-
ciple provides the variational form of the previous equation of motion,

−
∫ l

0
δεx ·σx ·Adx−

∫ l

0
δu · (ρ ü) ·Adx+

∫ l

0
δu ·bx ·Adx+δu · σ̄x ·A |l0= 0 (12)
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where, σx and εx are the axial stress and strain respectively, A is the cross-sectional
area and overbar indicates quantities on the boundary. Taking into account Eq. (5),
the axial strain is approximated by:

εx (x, t) = u,x (x, t)≈
1
le

0

∑
n=−(L−2)

ûn (t) ·φ ,ξ (ξ −n) (13)

Incorporating Hooke’s law

σx = E · εx (14)

into Eq. (12) and substituting Eq. (13) into the equation of motion, Eq. (12)
yields the stiffness matrix [KKKeee], the mass matrix [MMMeee] and the load vector FFFeee for
an arbitrary FWD element. Taking advantage of the local coordinate system the
integration interval is reduced to [0,1], thus stiffness/mass matrices and load vector
can be explicitly cast in the wavelet space as

[KKKe]≡
[
Kkl
]
=

EA
le

∫ 1

0
φ ,ξ (ξ − k) ·φ ,ξ (ξ − l)dξ =

EA
le

[
Γ

11
kl
]

(15)

[MMMe]≡
[
Mkl
]
= ρAle

∫ 1

0
φ (ξ − k) ·φ (ξ − l)dξ = ρAle

[
Γ

00
kl
]

(16)

[FFFe]≡
[
Fk
]
= Ale

∫ 1

0
bx ·φ (ξ − k)dξ = bxAleR0

k (17)

where, Γ00
kl , Γ11

kl and Rk indicate respective wavelet connectivity coefficients defined
in the Appendix.

Additional advantages of the FWD method are realized in the synthesis of the mass
matrix. Due to the compact support of the WSFs, the stiffness matrices are sym-
metric, sparse and narrow-banded, which enables fast and accurate solution of
large-size static [Li and Chen (2014)] and dynamic problems. Furthermore, the
orthonormality of WSFs combined with their compact support yields a nearly di-
agonal consistent mass matrix [MMM] in Eq. (16). As an example, Figure 7 depicts the
pattern of non-zero terms in the mass matrix of a rod a structured modeled with N
FWD elements of order L.

3.3 Developement of a FWD Shear Beam Element

The previous formulation is further extended to the transient dynamic analysis of
Timoshenko shear beams, i.e. to include axial extensional and rotational inertia
terms. Compared to the previous case of simple rods, the analysis of shear beams
induces two major challenges: (i) Additional field variables are introduced, which



FWD Method of Rods and Beams 389

Figure 7: Typical pattern of non-zero terms in the mass matrix of the rod FWD
method for the case of N elements and L order scaling functions.

can capture both the longitudinal and the first antisymmetric (A0) guided wave mod-
e; and (ii) The application of shear beam FEs in transient dynamic problems suffer-
s from well-known numerical problems, such as “shear locking” which is usually
treated with reduced integration and spurious “hour-glass” modes.

According to the first order shear beam theory, the axial and transverse displace-
ment, u and w respectively, of the cross-section are

u(x,z, t) = u0 (x, t)+βx (x, t) · z (18)

w(x,z, t) = w0 (x, t) (19)

where u0 and w0 are the axial and transverse displacement at the midplane of the
beam; βx is the rotation of the cross-section; and z is the local thickness coordinate.
The axial (εx) and shear (εxz) strains

εx (x,z, t) = ε
0
x (x, t)+ kx (x, t) · z (20)

εxz (x,z, t) = ε
0
xz (x, t) (21)

are described in terms of the generalized strains ε0
x = u0,x, kx = βx,x and ε0

xz =
βx +w0,x. The equivalent Hooke’s law for the generalized stresses and strains of a
beam cross-section has the form

Nx

Nxz

Mx

=

A11 0 0
0 A55 0
0 0 D11

 ·


ε0
x

ε0
xz

kx

 (22)

where Nx,Nxz,Mx are the axial forces, the shear forces and the bending moment
respectively; A11,A55,D11 are the extensional, shear and flexural stiffness of the
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cross-section. The equation of motion provided by the Virtual Work Principle is

−
∫ l

0

(
δε

0
x ·Nx +δε

0
xz ·Nxz +δk0

x ·Mx
)

dx+
∫ l

0
δuuuT ·ρρρ · üuudx+

∮
S

δ ūuuT · τ̄dS = 0 (23)

where uuu =
[
u0,w0,βx

]T are the generalized displacements of the cross section;
ρρρ = diag

(
ρA,ρA,ρD

)
is the density matrix containing the linear density (ρA) and

rotational inertia (ρD); τττ are the surface tractions on the boundary S. Expanding
Eq. (5), the generalized state variables of the beam are approximated within an
WFD element

u0

w0

βx

=
0

∑
n=−(L−2)


û0

n
ŵ0

n
β̂x n

 ·φ (ξ −n) (24)

while the approximation of generalized strains in an element takes the form
ε0

x
ε0

xz
kx

=
0

∑
n=−(L−2)

φ ,ξ (ξ −n) 0 0
0 φ ,ξ (ξ −n) φ (ξ −n)
0 0 φ ,ξ (ξ −n)

 ·


û0
n

ŵ0
n

β̂x n

 (25)

Incorporation of the approximated variables into Eq. (23) yields the following
element stiffness and mass matrices

[
KKKkl

e

]
=


A11
le

Γ11
kl 0 0

0 A55
le

Γ11
kl A55Γ01

kl
0 A55Γ10

kl A55leΓ00
kl +

D11
le

Γ11
kl

 (26)

[
MMMkl

e

]
= ρρρ · le ·Γ00

kl (27)

and the external surface load vector:

FFFk (t) = le ·
∫ 1

0
τ̄ (ξ , t) ·φ (ξ − k)dξ (28)

Again, the total matrices may be assembled from the element ones using Eq. (23)
yielding the discrete system of equation as in Eq. (10).

3.4 Developement of a FWD High-Order Beam Element

The FWD method is finally employed within the analysis of dynamic response in
thick beams and the highly demanding task of simulating ultrasonic antisymmetric
and symmetric straight-crested guided waves. For this purpose, the FWD method
is combined with a High-Order Laminate Theory (HOT) developed by the authors
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[Plagianakos and Saravanos (2009)]. In order to make this paper self-consistent,
the basic points of this theory are briefly presented. HOT assumes cubic variation
of the axial and transverse displacements u and w, as follows,

u(x,z, t) = u1 (x, t)Ψ
1 (ζ )+u2 (x, t)Ψ

2 (ζ )− γx (x, t)
ζ 2−1

2
−δx (x, t)ζ

ζ 2−1
6

(29)

w(x,z, t) = w1 (x, t)Ψ
1 (ζ )+w2 (x, t)Ψ

2 (ζ )− γζ (x, t)
ζ 2−1

2
−δζ (x, t)ζ

ζ 2−1
6

(30)

where the coefficients u1,w1,u2,w2 denote the displacements at the bottom and
top surfaces respectively; γ and δ are hyper-rotations of the strip [Saravanos and
Heyliger (1995)]; ζ = 2z

h is a normalized thickness coordinate; Ψ1 (ζ ) = 1−ζ

2 and
Ψ2 (ζ ) = 1+ζ

2 . HOT effectively represents 2D plane strain conditions in the cross
section of the beam and provides approximations of the axial (εx), transverse (εz)
and shear (εxz) strain, as derived from Eqs. (31)-(33).

ε1 ≡ εx =
u,1x +u,2x

2
+

γx,x
2

+

(
u,1x−u,2x

2
+

δx,x
6

)
·ζ − γx,x

2
·ζ 2− δx,x

6
·ζ 3 (31)

ε3 ≡ εz =
w2−w1

h
+

δz

3h
− 2γz

h
− δz

h
ζ

2 (32)

ε5 ≡ εxz =
u2−u1

h
+

w,1x +w,2x
2

+
γz,x
2

+
δx

3h
+(

w,2x−w,1x
2

− 2γx

h
+

δz,x
6

)
−
(

γz,x
2

+
δx

h

)
·ζ 2

n −
δz,x
6
·ζ 3

n (33)

3.4.1 Generalized Equations of Equilibrium and Laminate Matrices

According to the principle of virtual work the equations of motion are expressed
as:

∫ l

0

{∫ h
2

− h
2

δεεε
T · [QQQC] · εεεdz+

∫ h
2

− h
2

δu · (−ρ ü)+δw · (−ρẅ)dz+[δu · τxz +δw · τz]
h
2
− h

2

}
dx = 0

(34)

where [QQQCCC] is the stiffness matrix of a an orthotropic composite ply and ρ is the
mass density. Incorporation of Eqs. (31)-(33)into (34) leads to∫ l

0

(
δεεε

T
L · [KKKL] · εεεL

)
dx+

∫ l

0

(
δUUUT

L · [ρρρL] ·UUUL
)

dx+[δ ū · τxz +δ w̄ · τz]
h
2
− h

2
= 0 (35)
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where [KKKLLL] is the generalized stiffness matrix of the laminate and [ρρρLLL] is the gen-
eralized laminated density matrix:

[KKKL] =

 [KKKL11 ] [KKKL13 ] 000
[KKKL13 ]

T [KKKL33 ] 000
000 000 [KKKL55 ]

 (36)

The subscripts “11”, “33”, “55” and “13” denote the axial, transverse, shear and
coupling stiffness terms, respectively. The laminate stiffness submatrices are fur-
ther related to generalized laminate stiffness coefficients,

[KKKL11 ] =


A11 B11 D11 E11

D11 E11 F11
F11 G11

sym H11

 (37)

[KKKL13 ] =


A13 B13 D13
B13 D13 E13
D13 E13 F13
E13 F13 G13

 (38)

[KKKL33 ] =

A33 B33 D33
D33 E33

sym F33

 (39)

[KKKL55 ] =


A55 B55 D55 E55

D55 E55 F55
F55 G55

sym H55

 (40)

where〈
Ai j,Bi j,Di j,Ei j,Fi j,Gi j,Hi j

〉
=

h
2

Np

∑
k=1

∫
ζk+1

ζk

[QC i j]
〈
1,ζ ,ζ 2,ζ 3,ζ 4,ζ 5,ζ 6〉dζ (41)

where Np is the number of plies and ζk,ζk+1 are the normalized thickness coordi-
nates at the bottom and top face of each ply.

After expressing the generalized laminate DOFs in extended vector notation, i.e.
UUULLL =

[
u1,u2,w1,w2,γx,γz,δx,δz

]T , their wavelet interpolation along the x-axis takes
the form,

UUUL (x, t) =
0

∑
n=−(L−2)

ÛUULn (t) ·φ (ξ −n) (42)

Combining Eqs. (36)-(41) into Eq. (42) the elemental stiffness and mass matrices
are derived. Their explicit expressions are shown in the Appendix.
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3.5 Boundary Constraints for Displacements

The equation of motion Eq. (10) is solved in the domain of wavelet coefficients,
however, all boundary conditions are imposed on the physical degrees of freedom.
The link between the physical DOFs and the unknown wavelet coefficients is pro-
vided by Eq. (5), therefore, each constraint on a physical DOF imposes an equality
constraint, also known as multi-point constraint in FEA literature, between the un-
known wavelet coefficients in the domain of support. There are many direct and in-
direct methods proposed in the literature for the application of equality constraints,
however, we take advantage of the finite support range in Eq. (5) to propose a
method which is applicable to any physical DOF. In brief and without loss of gen-
erality, the application of the physical constraint uk (t) = u(xk, t) at the grid point k
is illustrated.

Application of Eq. (5) yields

u(xk, t) = ûk−1 (t) ·φ (−1)+
−2

∑
n=−(L−2)

ûk−n (t) ·φ (−n) (43)

Solving Eq. (43)for ûk−1:

ûk−1 (t) =
1

φ (−1)
·

(
uk (t)−

−2

∑
n=−(L−2)

ûk−n (t) ·φ (−n)

)
(44)

Based on Eq. (44), the L− 2 wavelet coefficients in the support domain of the
constraint node k, are related to the physical DOF by a square matrix RRRk

BC:

[ûk−1, ûk−2, . . . , ûk−L+2]
T =

[
RRRk

BC

]
· [û, ûk−2, . . . , ûk−L+2]

T (45)

The later is exploited to replace the wavelet coefficient at the node preceding the
application node of the physical constraint, by the physical DOF. The replacement
involves only the range of L−2 wavelet coefficients in the support domain of node
k. Considering the diagonal and banded structure of the mass and stiffness matrices
respectively, only a small subset of L−2 equations of motion corresponding to the
support of node k is involved. In general the application of Eq. (45) yields new
stiffness, mass and force submatrices of the following form[
RRRk

BC

]T
·
[
MMMkk

]
·
[
RRRk

BC

]
· ¨̃UUUk (t)+

[
RRRk

BC

]T
·
[
KKKkk
]
·
[
RRRk

BC

]
·ŨUUk (t) =

[
RRRk

BC

]T
·FFFk (t)

(46)

where ŨUUk = [uk, ûk−2, . . . , ûk−L+2]
T and superscript k indicates the subset of L− 2

equations of motion corresponding to the wavelet coefficients in the support do-
main of node k. After the replacement, the physical constraint is eliminated from
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the subsystem of Eq. (46). The previous method for the application of boundary
conditions, is easily repeated and applied to other physical DOFs, causes minimal
disturbance in the structure of the mass and stiffness matrices and is computation-
ally efficient.

3.6 Time Integration

As previously discussed, one of the main advantages of the FWD method is its
capability to provide near diagonal consistent mass matrices. This feature yields
a clear advantage in the development of fast and accurate explicit time integration
schemes, as traditional FEM employs lump-mass matrices to achieve mass diag-
onalization, which in turn leads to loss of accuracy. The discrete system of the
equations of motion Eq. (10) is solved employing the central difference explicit
integration scheme, i.e.

1
∆t2 · [MMM] ·UUU (t +∆t) = RRR(t) (47)

RRR(t) = FFF (t)−
(
[KKK]− 2

∆t2 [MMM]

)
·UUU (t)− 1

∆t2 · [MMM] ·UUU (t−∆t) (48)

Solution of the later requires inversion of the mass matrix in every time step for
the calculation of UUU (t +∆t) . Considering the structure of the FWD mass matrix
shown in Figure 7, the solution of the above system is divided in two independent
stages. The N−2 · (L−1) rows of Eq. (47) are uncoupled and can be rapidly and
separately calculated without inversion. The mass coupled 2 · (L−1)× 2 · (L−1)
part of the above system requires inversion to be solved, but its size is very small
and has very little impact on the computational speed. Hence, the solution of Eq.
(47) is expected to be much faster and accurate compared to traditional FEM.

4 Numerical Results

The efficiency of the introduced FWD method is evaluated using cases focused
on the prediction of guided wave propagation in isotropic (Aluminum) rods and
strips. These evaluations quantify the accuracy and computational efficiency of the
proposed approach. The simulation of ultrasonic guided waves is a very challeng-
ing task, since it typically requires fine spatial discretization to capture the high
wavenumbers, and the pursued dispersive characteristics and group velocity suf-
fer from many numerical issues. The results of the FWD method are compared to
traditional explicit FEA using 2-node and 3-node FEs. Geometry parameters and
material properties are provided in Table 1.

All strip cases are considered clamped at their left- and free at their right-end re-
spectively. Waves are excited by application of a concentrated force on the free end
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Table 1: Material Properties and Geometric Parameters of Aluminum Specimen.

Quantity Symbol Value Units
Axial Modulus E1 70.0 GPa

Transverse Modulus E3 70.0 GPa
Shear Modulus G13 26.9 GPa
Poisson’s ratio ν13 0.34

Density ρ 2,700 kg ·m−3

Length L 6 m
Width W 1 m

Thickness t 0.06 m

in the form of a Hanning windowed pulse of central frequency 15 kHz (Figure 8).
The maximum amplitude is arbitrarily - and without loss of generality - selected to
be 0.5N for rods and shear beams, and 1N for HOT beam models respectively.

Figure 8: Applied Excitation; Normalized Amplitude is Employed.

Wave propagation is simulated using DB3, DB6 and DB12 FWD elements; DB18
is also employed, but only as a demonstrator for the HOT beam model. Conver-
gence is determined by comparing the obtained solutions to a reference response,
obtained by a rigorous model employing DB12 FWD elements with 1200 nodes.
Each investigated model is considered to have converged, when the RMS error with
respect to the reference solution is lower than 2%. This criterion ensures that the
achieved accuracy in convergence is comparable for all models. There is a min-
imum number of nodes (grid points) associated with the central wavenumber or
wavelength of a certain wave packet, not with the central frequency, which relates
to the order of DB wavelet. The relationship to the central frequency - wavenum-
ber is implicit and provided by the dispersion equation of the respective structural
dynamics problem. On the other hand, the computational efficiency of each FWD
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Table 2: Simulation of a longitudinal wave in a rod structure; Minimum number of
nodes and respective solution time needed for each model to converge.

Element Type Number of Nodes Solution Time (s)
DB12 99 0.36
DB6 130 0.55
DB3 404 2.61

3-node FE 250 1.85
2-node FE 1000 16.3

element is reflected on the number of nodes and the size of each model being inves-
tigated. The computation time required by each FWD model to achieve converge
with a 2% RMS error is also monitored.

4.1 Wave Propagation in Rods

An aluminum rod with length l = 6 m is investigated. This is the simpler case of
ultrasonic wave simulation, because the longitudinal waves are non-dispersive and
the rod finite element does not suffer from shear locking; hence the main challenge
is the modeling of the small wavelengths. As shown in Figure 9, all FWD and FE
models finally converge to identical predictions, however, the DB6 and DB12 FWD
models require substantially coarser discretization and lower computational time to
converge compared (Table 2).

Figure 9: Predicted transient wave response of a rod structure at t=0.705 ms upon
convergence of all FWD elements. Numbers in parenthesis indicate number of
nodes required for convergence with a 2% RMS error.

The superiority of the DB12 FWD model is demonstrated in Figure 10, which
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presents the predictions using a coarse discretization of 99 nodes. The DB12 el-
ement has already converged, while the 2-node and 3-node finite elements yield
artificial dispersion and erroneous group velocity/amplitude.

Figure 10: Predicted transient wave response in an Aluminum rod using a uniform
grid of 99 nodes. The superiority of DB12 FWD Elements vs traditional FE models
is demonstrated.

In order to better support this observation, a convergence study for the FWD ele-
ments is shown in Figure 11, which presents the respective RMS error with respect
to the reference solution vs. the number of the nodes implemented in each FWD
and FE model. Figure 11 reveals that as the order of the wavelet increases, the
convergence of the FWD models is improved dramatically. The 3-node FE seems
to be slightly better than the DB3-based FWD Element. The advantage of using
FWD element appears when the wavelet order increases. Clearly, the DB6 and D-
B12 based elements converge much faster than the traditional FEs. As intuitively
expected, the benefits of the FWD method are realized from its capability to utilize
higher order WSF without altering the discretization.

Figure 11: Resultant RMS error vs. number of nodes for the Rod Structure modeled
with FWD and FEA elements.
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Table 3: Simulation of a wave in a Timoshenko Beam; Minimum number of nodes
and respective solution time needed for each model to converge.

Element Type Number of Nodes Solution Time (s)
DB12 197 10.10
DB6 290 34.84

3-node FE 450 69.47
2-node FE 1250 712.68

4.2 Wave Propagation is Timoshenko Shear Beams

The same structure is considered as a shear beam model with rotational inertia.
The structure is subjected to transverse loading and simulated using the developed
FWD shear elements. The beam is transversely excited at its free end by a pair
of antisymmetric concentrated forces which excites the first antisymmetric wave
mode (A0). The simulation of an antisymmetric guided wave is more challenging
compared to the longitudinal axial wave; not only because smaller wavelengths
appear, but also because the dispersive nature of A0 has to be handled. First-order
shear finite elements typically exhibit shear locking, therefore, selectively reduced
integration is used in the calculation of the shear stiffness submatrices of the finite
elements.

Figure 12 shows predicted snapshots of the transverse displacement w0 at an arbi-
trary time (t = 0.696 ms) predicted by DB6 and DB12 FWD models, and 2-node
and 3-node finite element models. Again, convergence is assumed when the RMS
error get lower than 2%. The required number of uniformly spaced nodes and the
computation time needed for each model to converge is shown in Table 3. The
DB6 and DB12 FWD elements exhibit superior spatial convergence. The attained
convergence rates for each FWD beam element are shown in Figure 13. The FWD
method shows improved convergence with respect to the 2-node and 3-node finite
elements in the simulation of the A0 wave as compared to the previous case of
longitudinal waves.

The superiority of the DB12 FWD element against the 3- and 2-node traditional
FEs is restated in Figure 14, which shows predicted snapshots using a uniform a
grid of 197 nodes. While the DB12 element provides excellent prediction of the A0
wavepacket, the FE models provide inferior predictions with lower amplitude and
artificial dispersion.

The previous numerical results strongly support the high accuracy and computa-
tional efficiency of high order wavelet elements (DB6 and DB12) vs. traditional
FEs. Interestingly, the FWD method appears to be free of spurious shear overstiff-
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Figure 12: Predicted transient wave response of a Timoshenko Beam structure at
t = 0.696 ms upon convergence of all FWD elements. Numbers in parenthesis
indicate number of nodes required for convergence with a 2% RMS error.

Figure 13: Resultant RMS error vs. number of nodes for beam structure modeled
with FWD and FEA shear beam elements.

Figure 14: Predicted transient wave response in a Timoshenko beam by a DB12
FWD vs traditional FEs models using a uniform grid of 197 nodes.

ening, thus, offering another advantage compared to the shear beam finite elements.
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Table 4: Simulation of a wave in a High Order Beam; Minimum number of nodes
and respective solution time needed for each model to converge.

Element Type Number of Nodes Solution Time (s)
DB18 191 231
DB12 202 264
DB6 310 703

3-node FE 630 2,304
2-node FE 1500+ 21,600+

4.3 Wave Propagation in High-Order Beams

The previous model has been upgraded to include high-order theory (HOT) beam
FWD elements. Performance evaluations include the simulation of the first sym-
metric (S0) and anti-symmetric (A0) waves. The FWD results are compared with
predictions of 2-node and 3-node HOT finite elements with reduced stiffness inte-
gration.

Figure 15 presents snapshots of the transient beam response at t = 0.7002 ms, as
predicted by various models. All models have converged according to the 2% RMS
criterion and contain both the S0 and A0 wave packets. As in the previous cases,
the DB12 and DB6 FWD models have converged in the simulation of waves using
substantially lower number of nodes compared to the finite elements (Table 4).

Figure 15: Predicted transient wave response of a HOT Beam structure at t=0.7002
ms upon convergence of all FWD elements. Numbers in parenthesis indicate num-
ber of nodes required for convergence with a 2% RMS error.

As seen in in Figure 16, the high-order beam theory is rather computationally de-
manding, however the difference in the convergence rates of the HOT FWD beam
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models vs. the FE models is higher than in the case of Timoshenko beams.

Figure 16: Resultant RMS error vs. number of nodes for the beam structure mod-
eled with FWD and FEA HOT beam elements.

Figure 17 presents the excellent simulation of the S0 and A0 wavepackets obtained
by the DB12 FWD of only 202 nodes. On the other hand, the traditional FEs pro-
duce only errors and artificial dispersion for the same number of nodes. Moreover,
the 2-node element does not achieve convergence even if more than 1500 nodes are
used.

Figure 17: Predicted transient wave response in a HOT beam by a DB12 FWD vs
traditional FEs models using a uniform grid of 202 nodes.

Figures 16 also illustrates the convergence of the FWD HOT element with higher
order (DB18) scaling function. Figure 18 shows a comparison between DB12 and
DB18 Daubechies wavelet at the minimum number of nodes that DB18 requires to
converge.

Both figures show that the implementation of the DB18 scaling function yields ad-
ditional gains in the number nodes required for convergence compared to DB12.
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Figure 18: Predicted transient wave response in a HOT beam by a DB18 FWD vs
DB12 model using a uniform grid of 191 nodes.

The obtained results in Figure 16 also suggest that the effectiveness of the present-
ed method above a certain order of Daubechies scaling function, in this case DB12,
may be reduced. The procedure for increasing the order of Daubechies scaling
functions remained the same, but as the order of Daubechies scaling functions in-
creases the ill-condition of the matrices is also increasing. We found evidence that
the process of wavelet order promotion can be enhanced by improving the method
of calculation of the connection coefficients; however this is beyond the scope of
the current work and may be addressed in the future.

In addition to the high spatial convergence rate illustrated in Figure 16, the FWD
method requires substantially less computation time than traditional FEs for the
simulation of all previous wave propagation cases, as shown in Table 4. This is
primarily attributed to two factors: (1) the nearly-diagonal mass matrices obtained
by the FWD models, which boosts the speed of explicit integration; and (2) the
substantially lower numbers of nodes and DOFs required for convergence, which
reduces the size of the discrete problem. Table 5 provides the computation time
required for the simulation of the previous cases, using the same number of nodes
in all models.

The results in Table 5 indicate that a substantial computational speedup is obtained
during the explicit time integration phase due to the near diagonal mass matrices of
the FWD models vs. the FEs, which increases with the size of the discretization.
In closing, the overall computational time required to obtain converged solutions
in each case of wave propagation predictions are overviewed in Figure 19. Appar-
ently, the gains in computation time obtained by the DB12, also by the DB6 FWD,
elements are dramatic compared to the finite elements. As the problem complexity
increases, these benefits become clearer. For example, the simulation of A0 and S0
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Table 5: Time needed for time integration through number of nodes between DB12
and 3-node HOT beam elements.

Number of Nodes DB12 3-node FE Difference
222 55.2 63.3 8.1
322 100.8 142.5 41.7
422 156.3 248.9 92.6
522 221.7 381.4 159.7
622 292.9 562.8 269.9
722 373.1 749.4 376.3

Figure 19: Computation time needed (logarithmic scale) for converged solutions of
rod and beam structures modeled by each type of element.

waves using the DB12 FWD HOT beam element (Case 3) is nearly 10 times faster
than the respective 3-node finite element and 100 times faster than the respective
2-node element.

5 Conclusions

Taking advantage of the appealing properties of Daubechies wavelets, a novel
wavelet-based method, termed as finite wavelet domain (FWD) method has been
developed for the prediction of high-frequency transient dynamic responses and
guided wave propagation in rods and strips. Formulations of the FWD method in
the context of rod, first shear order and high-order beam theory were employed, and
wavelet-based elements were developed. Demonstration cases establish the ultra-
high convergence rate and the tremendous speed-up that emanates from Daubechies
wavelets, even in demanding cases, such as the simulation of symmetric and anti-
symmetric waves using a high-order beam theory. Two key advantages are demon-
strated: (1) the ability to increase the order of approximation and computational
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speed (p-method) without remeshing; and (2) the amenability of the FWD method
to explicit formulations because of the consistent nearly-diagonal mass matrices.
The higher order FWD elements are shown to perform much better than the lower
order elements (DB12 vs. DB6); however, both outperform drastically traditional
2-node and 3-node finite elements. The developed FWD method has shown tremen-
dous potential for application in demanding transient dynamic simulations, such as
the analysis of Lamb wave-based SHM and NDE systems. Future work focus on
the expansion of the method to laminated composite plate structures and 2D spatial
interpolation problems.
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Appendix

Calculation of DB WSFs

As already mentioned there are no explicit expressions for DB WSF. Instead, they
can be calculated at special points, namely the “dyadic points”, using the dilation
equation

φ
(
2 j · x

)
=
√

2 ·
L−1

∑
k=0

hk ·φ
(
2 j+1 · x− k

)
(49)

Following Eq. (49) a DB WSF at resolution j is uniquely defined by a set of “filter
coefficients” (hk). The number (L) of filter coefficients determines the “order of
the wavelet” and is required to be an even integer. Each WSF is named based on
its order using the notation DBn, where n = L

2 . Clearly, L defines the support of
the WSF. An interesting remark from the previous equation is that any WSF can
be constructed as a linear combination of translated and dilated instances of the
same WSF at a finer resolution. For resolution j = 0, this leads to the following
homogeneous system of equations:

{φφφ i}=
[√

2h2i−k

]
· {φφφ k} , i,k ∈ N : i,k ≤ L−1 (50)

which provides the values of the WSF. This is an eigenvalue problem, satisfied by
the eigenvector corresponding to the eigenvalue λ = 1. The generic solution has to
be scaled using the normalization condition:∫

∞

−∞

φ (x)dx = 1 (51)

After the WSF has been calculated at resolution j = 0, any other resolution can be
calculated from Eq. (49) increasing progressively the value of j.

Calculation of WSF Quadratures

As described in the next section, WSF quadratures in a bounded interval will be
required. These are termed as “Connection Coefficients” and their generalized form
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can be represented as:

Γ
m,n
kl ≡ [Γkl]

m,n =
∫ 1

0
φ
(m) (ξ − k) ·φ (n) (ξ − l)dξ (52)

where φ (i) denotes the ith derivate of the scaling function. The lack of explicit
expressions prohibits direct analytical integration. On the other hand, the highly-
oscillatory nature of WSFs makes numerical integration computationally very ex-
pensive, because ultra-fine discretization is required. Fortunately, interesting works
exist in literature that can be exploited towards the elevation of such numerical is-
sues. Beylkin [Beylkin (1992)] has described exact and explicit representations for
differential operators and shift operators in orthonormal bases. Chen, Hwang and
Shih [Chen, Hwang, and Shih (1996)] have described exact evaluations of various
connection coefficients, updated and corrected by Zhang, Tian, Tade and Utomo
[Zhang, Tian, Tade, and Utomo (2007)].

Regarding the calculation of stiffness and mass matrices employing connection co-
efficients, Chen, He, Xiang and Li [Chen, He, Xiang, and Li (2006)] have presented
an efficient method incorporating Eq. (49) into Eq. (52) and applying appropriate
normalizing conditions. Following their approach, Eq. (52) can be cast into

Γ
m,n
kl = 2m+n−1

∑
s,t
(hs−2tht−2l +hs−2s+1ht−2l+1)Γ

m,n
st , k, l ∈ Z− :−2 · (L−1)≤ k, l

(53)

Rearranging terms further leads to the following eigenvalue problem:(
2m+n−1 [AAA]− [III]

)
· [ΓΓΓ]m,n = 0 (54)

where AAA is the matrix of filter coefficients derived from Eq. (53) and III is the identity
matrix. Again normalization conditions are required:

q!
(q−m)!

· w!
(w−n)!

· 1
q+w−m−n+1

= ∑
k,l

cq
k · c

w
l ·Γ

m,n
kl , q,w ∈ N : q,w≤ L

2
−1

(55)

In the previous equation, denotes the vanishing moments of the WSF defined as:

ci
j =
〈
xi,φ (x− j)

〉
(56)

In the same sense, projecting load vectors (RRR) into wavelet space requires the cal-
culation of integrals of the form:

Rm
k =

∫ 1

0
ξ

m ·φ (ξ − k)dξ , m ∈ N : m≤ L
2
−1 (57)
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assuming polynomial representation of the applied load in the physical space. Eq.
(57) is iteratively solved starting from m = 0, replacing the WSF with Eq. (49) and
normalizing with

1
q+1

= ∑
k

cq
k ·R

0
k . (58)

After the basic solution is derived, the rest of the terms can be obtained by(
2m+1III−∑

i,k
(hi−2k +hi−2k+1)

)
·Rm

k = ∑
i

hhi−2k+1

m

∑
s=1

(
m
s

)
Rm−s

i (59)

which finally provides the load vector in wavelet space.

It is clear that the followed approach always leads to a respective eigenvalue prob-
lem. It has to be noticed that as the order of the WSF increases, the ill-conditioning
of the eigenvalue problem and the resultant connectivity matrices seems to increase,
thus affecting the quality of the solution. In such cases, special solvers may be re-
quired, a topic which exceeds the scope of this work and may be addressed in future
work.

Stiffness and Mass Matrices for the HOT-based FWD Element

[
KKKkl

e

]
=

[
KKKkl

e 11 KKKkl
e 12

KKKkl
e 21 KKKkl

e 22

]
(60)

[
MMMkl

e

]
=



ρAle
Γ00

kl
3 M21

e 0 0 −M21
e 0 M71

e 0

ρAle
Γ00

kl
6 M11

e 0 0 −M21
e 0 −M71

e 0
0 0 M11

e 0 0 −M21
e 0 M71

e
0 0 M21

e M11
e 0 −M21

e 0 −M71
e

−M21
e −M21

e 0 0 2ρAle
Γ00

kl
15 0 0 0

0 0 −M21
e −M21

e 0 M55
e 0 0

−ρAle
Γ00

kl
90 −ρAle

Γ00
kl

90 0 0 0 0 2ρAle
Γ00

kl
945 0

0 0 −M71
e −M71

e 0 0 0 M77
e


(61)

where h is the thickness and le is the element length.




