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Large Eddy Simulation Combined with
Characteristic-Based Operator-Splitting Finite Element

Method

Da-guo Wang1,2, Bin Hu1, Qing-xiang Shui1

Abstract: A numerical large eddy simulation (LES) method combined with the
characteristic-based operator-splitting finite element method is proposed. The sub-
grid eddy viscosity model is used to calculate sub-grid stress in LES. In each time
step, the governing equations are split into diffusive and convective parts. The con-
vective part is first discretized by using the characteristic Galerkin method and then
solved explicitly. The backward-facing step flow and the flow past a single cylinder
are adopted to validate the model. Results agree with existing numerical results or
experimental data. The flow past two cylinders in tandem arrangement is also s-
tudied at Re = 1000. The critical spacing is obtained in the range of 2.25D to 2.5D
through the change characteristics of the streamlines and hydrodynamic forces as
spacing. We further analyze the hydrodynamic forces at the critical spacing range.

Keywords: large eddy simulation; characteristic-based operator-splitting finite
element method; backward-facing step flow; flow past a single cylinder; flow past
two cylinders in tandem arrangement.

1 Introduction

Numerical simulations are crucial in the study and control of turbulence, which is
a common phenomenon in fluid motion. Three numerical simulation methods are
mainly used to simulate turbulence, namely, direct numerical simulation (DNS)
[Piller, Nobile, and Hanratty (2002)], Reynolds averaged Navier-Stokes (RAN-
S) [Shur, Spalart, Strelets, and Andrey (2008)], and large eddy simulation (LES)
[Breuer (1998a)]. LES has been widely used to study some complex flows, such as
turbulent mixing and aerodynamic noise, because of its lower computational cost
and higher accuracy than DNS and RANS [Mahesh, Constantinescu, and Moin

1 School of Environmental and Resources, Southwest University of Science and Technology, Mi-
anyang, 621010, China

2 Corresponding author. Email address: dan_wangguo@163.com



298 Copyright © 2015 Tech Science Press CMES, vol.107, no.4, pp.297-320, 2015

(2004); Moin and Mahesh (1998)]. LES involves the division of turbulent fluctu-
ation into large-scale and small-scale motions by applying a low-pass filter, direct
computation of the resolved large-scale motions, and modeling of the influence of
the filtered small-scale motions on the resolved large scales [Mahesh, Constanti-
nescu, and Moin (2004)].

The finite element method (FEM) has been widely used to solve various fluid
dynamic problems; it is a powerful tool particularly for solving problems with
complex geometry or boundary conditions. However, the conventional Galerkin
FEM is known to have the potential to lead to distortion and oscillation of nu-
merical solutions with increasing Reynolds number because the convective term
becomes dominant and exhibits strong nonlinear characteristics. To overcome this
drawback, various stabilized FEMs, such as streamline upwind/Petrov–Galerkin
(SUPG) formulations [Brooks and Hughes (1982); Tezduyar and Ganjoo (1986)],
Taylor-Galerkin (T-G) method [Selmin, Donea, and Quartapelle (1985)], Galerkin
least square techniques [Franca and Frey (1992)], characteristic Galerkin method
[Zienkiewicz and Codina (1995); Zienkiewicz, Morgan, Satya Sai, Codina, and
Vasquez (1995); Bao, Zhou, and Huang (2010); Ding and Wu (2012)], and finite
increment calculus method [Oñate, Valls, and García (2007)], have been developed.
[Heinrich, Huyakorn, Zienkiewicz, and Mitchell (1977)] first suggested the Petrov-
Galerkin type of weighting function to introduce an upwind effect in finite ele-
ment discretization. [Brooks and Hughes (1982)] proposed the well-known SUPG
scheme, in which the upwind effects occur only in the direction of the velocity re-
sultant. A convective operator can also be stabilized with a high-order temporal ap-
proximation called the T-G method [Selmin, Donea, and Quartapelle (1985)]. The
introduction of the characteristic Galerkin method presents great impetus for the
development of numerical procedures for the solutions of convection-dominated
problems. [Zienkiewica and Codina (1995)] further developed the characteristic
Galerkin method and combined it with a split scheme of the fractional step method
to produce the well-known characteristic-based split (CBS) algorithm, which is
widely used in computational fluid dynamics.

[Atluri and Zhu (1998)] developed the Meshless Local Petrov Galerkin (MLPG)
method. The numerical results in [Lin and Atluri (2000); Lin and Atluri (2001)] in-
dicate that the MLPG method is promising to solve the convection dominated fluid
mechanics problems. [Avila and Atluri (2009)] coupled the MLPG method with a
fully implicit pressure correction approach. [Han, Rajendran and Atluri (2005)] de-
veloped the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method
for the large deformation analysis of static and dynamic problems. Another mixed
approaches, the Meshless Local Petrov-Galerkin (MLPG) Mixed collocation method
developed to solve the Cauchy inverse problems of Steady-State heat transfer in
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[Zhang, He, Dong, Li, Alotaibi, and Atluri (2014)].

The popular numerical solution strategies for unsteady Navier-Stokes (N-S) equa-
tions are based on operator splitting [Langtangen, Mardal, and Winther (2002)]. N-
S equations are split into a series of simple and familiar equations, such as advec-
tion equations, diffusion equations, advection-diffusion equations, Poisson equa-
tions, and explicit/implicit updates. Efficient numerical methods are easier to con-
struct directly for these standard equations than for N-S equations. [Wang, Wang,
Xiong, and Tham (2011); Wang, Tham, and Shui (2013)] solved the unsteady
incompressible N-S equations with the characteristic-based operator-splitting (C-
BOS) FEM, which combines the operator-splitting and CBS algorithms. In this
method, the simple explicit characteristic temporal discretization, which involves
a local Taylor expansion, is referenced from the CBS algorithm and applied to the
discretization of the convective part.

A numerical method that combines LES and CBOS FEM is developed in this study.
The backward-facing step flow and the flow past a single cylinder are adopted to
validate the model. The flow past two cylinders in tandem arrangement is studied
at Re = 1000. The rest of this paper is organized as follows: Section 2 intro-
duces 2D unsteady incompressible LES-governing equations. Section 3 explains
the numerical method and finite element solutions. Section 4 describes the solution
process. Section 5 and Section 6 present the validation of the present model with
the backward-facing step flow and the flow past a single cylinder. Section 7 elu-
cidates the study of the flow past two cylinders in tandem arrangement. Section 8
concludes this paper.

2 LES-governing equations

2D unsteady viscous incompressible flows can be governed by N-S equations.
Their dimensionless forms are expressed as

∂ui

∂xi
= 0, (1)

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+

1
Re

∂

∂x j

(
∂ui

∂x j
+

∂u j

∂xi

)
, (2)

where i, j = 1,2, (u1,u2) = (u,v), u is the horizontal velocity, v is the vertical ve-
locity, p is pressure, t is time, (x1,x2) = (x,y), x is the horizontal coordinate, and y
is the vertical coordinate. Re = Ul

υ
is the Reynolds number, with U as the charac-

teristic velocity, l as the characteristic length, and υ as the kinematic viscosity.

The spatial filtering of the 2D unsteady viscous incompressible N-S equations with
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box filter produces the following equations [Sagaut (2000)]:
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= 0, (3)
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where ui, u j, and p are the variables of the filtering process that correspond to ui,
u j, and p, respectively. τi j is the sub-grid stress. On the basis of the frequently used
sub-grid eddy viscosity model, τi j can be written as [Smagorinsky (1963)]

τi j−
1
3

δi jτκκ =−2υtSi j, (5)

where δi j is the permutation operator; Si j is the strain rate tensor in the resolved
large-scale velocity variable; υt is the sub-grid eddy viscosity coefficient, which is
expressed as

υt = (cs∆)
2

√
∂ui
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(
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∂u j

∂xi

)
, (6)

where cs is the Smagorinsky coefficient cs = 0.1, as suggested by [Deardorff (1970)].
∆ is the characteristic grid filter width given by ∆ =

√
A, where A is the area of the

grid.

Substituting Eq. (5) into Eq. (4), we obtain
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For conciseness, the term
(

p+ 1
3 δi jτκκ

)
can be written as p. By omitting “ ”, we

take ui as ui, u j as u j, and p as p. The governing equations of LES that introduce
the sub-grid eddy viscosity coefficient for incompressible flow are
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3 Numerical method and finite element solutions

3.1 Operator-splitting algorithm

By adopting the operator-splitting algorithm, we split LES-governing equations in
Eqs. (8) and (9) into the diffusive part

∂un+θ

i
∂ t
−
(

1
Re

+υt

)
∂

∂x j

(
∂un+θ

i
∂x j

+
∂un+θ

j
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=−∂ pn+1
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∂un+θ

i
∂xi

= 0

, (10)

and the convective part

∂un+1
i

∂ t
+un+1

j
∂un+1

i
∂x j

= 0, (11)

where un+θ

i is the solution of the diffusive part (10) at n+1th time step and denotes
the initial value of the convective part (11) at n+1th time step; un+1

i is the solution
of the convective part (11) at n + 1th time step and denotes the solution of the
governing equations in Eqs. (8) and (9) at n+1th time step.

3.2 Characteristic method of the convective term

The convective part (11) is a hyperbolic equation with the following characteristic
equation:

dx j

dt
= u j. (12)

The difference expression of Eq. (12) is

∆x j = u′j∆t, (13)

where u′j is the averaged value of u j along the characteristics in a time interval ∆t.
The total differential of Eq. (11) is

dui =
∂ui

∂ t
dt +

∂ui

∂x j
dx j. (14)

By dividing both sides by dt, we obtain
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=
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+

∂ui

∂x j

dx j

dt
. (15)
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By substituting Eq. (12) into Eq. (15), we obtain

dui

dt
=

∂ui

∂ t
+u j

∂ui

∂x j
. (16)

Along the characteristics, Eq. (11) can be written as

dui

dt
= 0. (17)

The difference expression of Eq. (17) in the time domain is
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i (x−∆x)
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= 0, (18)

where xxx = (x1,x2), and ∆xxx = (∆x1,∆x2). Through Taylor expansion, we obtain
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By substituting Eq. (13) into Eq. (19), we obtain
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By substituting Eq. (20) into Eq. (18), we obtain
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where k = 1,2. To obtain a fully explicit scheme, u′j can be approximated as

u′j = un+θ

j . (22)

By substituting Eq. (22) into Eq. (21) and by ignoring all high-order terms, we
have
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The last term in Eq. (23) is the steady diffusive term along the streamline that is
directly derived from the convective part. The present method differs from the pre-
vious method, in which the weight function is modified by an artificial or empirical
factor. Thus, the difficulty in choosing the weight function in the SUPG method or
other FEMs is avoided.
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3.3 Finite element solutions

After the sub-grid eddy viscosity coefficient υt in Eq. (9) is linearized, Eq. (9)
becomes identical to Eq. (2). Hence, the finite element solutions for the diffusive
part (10) and convection display expression (23) can be referred to the method by
[Wang, Wang, Xiong, and Tham (2011)].

4 Solution process

1) Eq. (6) is solved to obtain υt .

2) The diffusive part (10) is solved to obtain un+θ

i and pn+1.

3) un+θ

i is taken as the initial value of the convective part, and Eq. (11) is solved
to obtain un+1

i .

4) For the next time step, step 1 is repeated.

5 Backward-facing step flow

The backward-facing step flow is widely used to validate turbulence models [Le,
Moin, and Kim (1997); Wang, Fan, and He (2003); Wang, Zhang, Yu, Wang, Guo,
and Lin (2003)]. In this section, we compare the horizontal velocity with existing
data and analyze the flow patterns by simulating the backward-facing step flow.

5.1 Physical model

Fig. 1 presents the problem layout. In the figure, H is the step height, h is the inlet
height, L1 is the step length, and L2 is the length of the flow field behind the step.
A no-slip boundary condition is imposed on the solid walls, and the pressure on the
outlet boundary is taken as zero.

Figure 1: Backward-facing step flow configuration.
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5.2 Comparison of velocity

Fig. 2 shows the horizontal velocity distributions along the vertical sections at
different positions at Re = 1000. In this section, the inflow velocity is 6× y×
(1− y), the average of which is the characteristic velocity; h is the characteristic
length, and h = 1; H = 0.9423h; L1 = 4h; L2 = 36h. In the figure, the dot markers
denote the numerical results of [Guerrero and Cotta (1996)], and the solid lines
denote the present results. The present results agree well with the numerical results
of [Guerrero and Cotta (1996)].
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Figure 2: Velocity profiles at Re = 1000.

Fig. 3 shows the horizontal velocity distributions along the vertical sections at
different positions at Re = 3025. In this section, the inflow velocity is obtained
from the experimental data by [Denham, Briard, and Patrick (1975)]; the maximum
inflow velocity is the characteristic velocity; H is the characteristic length, and
H = 1; h = 2H; L1 = 4H; L2 = 36H. In the figure, the dot markers denote the
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Figure 3: Velocity profiles at Re = 3025.

experimental results of [Denham, Briard, and Patrick (1975)], and the solid lines
denote the present results. The present results agree well with the experimental
data of [Denham, Briard, and Patrick (1975)], although inconsiderable errors exist
possibly because of the 3D effect of the turbulence.

5.3 Flow patterns at Re = 3025

Fig. 4 shows the streamlines of the backward-facing step flow in approximately
one cycle period at Re = 3025. The inlet flow separates at the sharp corner because
of the sudden expansion of the flow channel, and the top vortex is produced at the
top right of the step, as shown in Fig. 4(a). Figs. 4(b) to 4(d) show that the top
vortex expands and gradually squeezes the bottom vortex until the bottom vortex
disappears. The top vortex then impinges onto the lower wall, and the next bottom
vortex is produced, as shown in Figs. 4(e) and 4(f).

6 Flow past a single cylinder

The flow past a single cylinder is also widely investigated both experimentally and
numerically. The flow past a single cylinder is simulated at Re = 200, 1000, 3900
to validate the present model.

6.1 Physical model

The domain consists of a cylinder placed at a distance of 5D from the inlet, whereD
is the diameter of the cylinder. The distance from the cylinder center to the top and
bottom sides is equal to 8D. The exit of the domain is placed at a distance of 16D
from the cylinder center. The Dirichlet boundary conditions, namely, u = 1 and
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(a) t = 1/6T

(b) t = 2/6T

(c) t = 3/6T

(d) t = 4/6T

(e) t = 5/6T

(f) t = T

Figure 4: Streamlines at different times at Re = 3025.

v = 0, are enforced at the inflow boundary. The no-slip condition is applied to the
cylinder surface, whereas the free-slip condition is applied to the two sidewalls.
At the outlet boundary, the convective boundary condition is specified for both
velocity component ∂ui/∂ t + ∂ui/∂x = 0. A rectangular flow field of 21D× 16D
is divided into 3,022, 3,238, and 6,071 nine-node finite elements that correspond
to Re = 200,1000,3900; the total numbers of nodal points are 12,340, 13,788, and
24,638, respectively. Fig. 5 shows the sketch of the computation grid at Re = 3900.

6.2 Flow parameters

Tab. 1 shows the mean drag coefficient (Cd), lift coefficient amplitude (CA
l ), and

Strouhal number (St). They are evaluated as follows:

Cd =−
2π∫
0

pcosθdθ −υ

2π∫
0

(
∂v
∂x
− ∂u

∂y

)
sinθdθ , (24)
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Figure 5: Sketch of computation grid at Re = 3900.

Cl =−
2π∫
0

psinθdθ +υ

2π∫
0

(
∂v
∂x
− ∂u

∂y

)
cosθdθ , (25)

St =
D f0

U
, (26)

where θ is the azimuth angle measured from the rear point on the horizontal axis
of the cylinder and in the clockwise direction, and f0 is the dimensional vortex
shedding frequency. The first term in the right of Eqs. (24) and (25) represents the
contribution of the pressure, and the second term corresponds to the part from the
viscous force.

Tab. 1 indicates that the present results are well within the range of the results
reported by other researchers. Fig. 6 shows the time-dependent behavior of the
drag (Cd) and lift (Cl) coefficients with time at Re = 200, 1000, 3900. The period
of the drag coefficient is approximately twice that of the lift coefficient for the three
Reynolds numbers.

Table 1: Comparison of flow parameters for flow field at Re = 200, 1000, 3900.
Re = 200 Re = 1000 Re = 3900

Cd CA
l St Cd St Cd St

Present 1.450 ± 0.65 0.192 Present 1.571 0.226 Present 1.749 0.243
Xu and Wang
(2006)

1.420 ±0.66 0.202 Hu and
Koterayama
(1994)

1.450 0.220 Kravchenko
and Moin
(2000)

1.650 0.230

Liu et al.
(1998)

1.310 ±0.69 0.192 Jester and
Kallinderis
(2003)

1.510 0.250 Chen et al.
(2010)

1.827 0.255

Harichandan
and Roy
(2010)

1.320 ±0.60 0.192 Mittal et al.
(1997)

1.531 0.245 Breuer
(1998b)

1.625 –
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Figure 6: Time variation of drag and lift coefficients at different Reynolds numbers.

6.3 Flow field structure

Fig. 7 shows the pressure and streamline during half a cycle of vortex shedding
at Re = 200, 1000, 3900. The von Kármán vortex streets develop in the wake of
the three Reynolds numbers. As the Reynolds number increases, the centers of
the vortices in the near wake gradually approach the horizontal line through the
geometric center of the cylinder.
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(a) Re = 200

(b) Re = 1000

(c) Re = 3900

Figure 7: Instantaneous pressure and streamline during half a cycle of vortex shed-
ding at different Reynolds numbers.

6.4 Lift coefficient and the corresponding development of flow field in a cycle
at Re = 3900

Fig. 8 shows the lift coefficient and the corresponding development of pressure
and streamline in approximately one cycle of vortex shedding at Re = 3900. The
dot markers in Fig. 8(a) correspond to the time instants of flow field in Figs. 8(b)
to 8(f). The subplots of Figs. 8(b) to 8(f) correspond to the time instants of the
maximum positive lift coefficient, zero lift coefficient, maximum negative lift co-
efficient, zero lift coefficient, and maximum positive lift coefficient, respectively.
Figs. 8(b) and 8(f) illustrate that the lower side of the cylinder experiences a high
pressure in the vortex shedding cycle, whereas the upper side of the cylinder is
subjected to a low pressure and comprises a large well-developed attached vortex.
Hence, the maximum positive lift force on the cylinder is observed [shown at points
b and f in Fig. 8(a)]. Analogously, the maximum negative lift force can be deter-
mined from Fig. 8(d), and the zero lift force can be determined from Figs. 8(c) and
8(e). The development of pressure in Figs. 8(b) to 8(f) indicates that the distribu-
tion of pressure on the upwind surface of the cylinder has insignificant change and
symmetry in one cycle of vortex shedding. Therefore, the pressure on the upwind
surface inconsiderably affects the formation of the lift force. The streamline in Fig.
8 shows the von Kármán vortex street.
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7 Flow past two cylinders in tandem arrangement at Re = 1000

The flow past two cylinders in tandem arrangement exhibits a remarkably complex
behavior that is of interest for many engineering applications, such as offshore plat-
forms, cooling towers, heat exchanger tubes, and marine risers. For the flow past
two cylinders in tandem arrangement at Re = 1000, [Mittal, Kumar, and Raghuvan-
shi (1997)] employed a stabilized element formulation to study the change charac-
teristic of the vorticity, streamfunction fields, and the lift or drag coefficients of the
upstream and downstream cylinders at spacings of 2.5D and 5.5D, but the critical
spacing was not obtained. [Jester and Kallinderis (2003)] researched the vortic-
ity characteristic at spacings of 2D to 2.5D by a second-order SUPG projection
scheme, and they obtained a critical spacing of approximately 2.38D through nu-
merical simulation and experiment. Detailed research of the flow past two cylinders
in tandem arrangement at Re = 1000 is presented in this section.

7.1 Physical model

Fig. 9 shows the computational domain of the flow past two cylinders in tandem
arrangement. The domain consists of an upstream cylinder placed at a distance of
5D from the inlet. The exit of the domain is placed at a distance of 16D from the
center of the downstream cylinder. The distance from the center of the cylinders to
the top and bottom sides is equal to 8D. L denotes the distance between the two
cylinder centers. The boundary conditions are consistent with those of the flow past
a single cylinder. L = 2D, 2.25D, 2.5D, 4D, 5.5D are computed. Fig. 10 shows the
sketch of the computation grid at L = 2D.

7.2 Critical spacing

7.2.1 Flow patterns at different spacings

Fig. 11 shows the streamlines at different spacings. In the figure, differences exist
in the flow patterns at different spacings, especially when L≤ 2.25D and L≥ 2.5D.
A recirculation region can be found in the gap between the two cylinders when
L≤ 2.25D, whereas vortex shedding occurs in the gap when L≥ 2.5D. Therefore,
the critical spacing exists in the flow past two cylinders in tandem arrangement at
Re = 1000.

7.2.2 Hydrodynamic forces at different spacings

Fig. 12 shows the variations in the drag and lift coefficients as spacing. In the figure,
◦ and • denote the results of [Jester and Kallinderis (2003)], where ◦ denotes the
results of the upstream cylinder, and • denotes the results of the downstream one;
M and N denote the results of [Mittal, Kumar, and Raghuvanshi (1997)], where
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(a) Time dependence of lift coefficients in a cy-
cle at Re = 3900

(b) t = 17.50

(c) t = 17.62 (d) t = 17.71

(e) t = 17.82 (f) t = 17.92

Figure 8: Lift coefficient and the corresponding development of pressure and
streamline in a cycle at Re = 3900.

M denotes the results of the upstream cylinder, and N denotes the results of the
downstream one; the lines denote the results of the present model, where the solid
lines denote the results of the upstream cylinder, the dashed lines denote the results
of the downstream one, and the dash dot lines denote the results of a single cylinder.

Fig. 12(a) shows that the mean drag of the upstream cylinder increases when L/D=
2.25 to 2.5 and is close to the results of a singer cylinder; the mean drag of the
downstream cylinder is negative when L/D ≤ 2.25, but it suddenly increases to a
positive value when L/D = 2.5. Fig. 12(b) shows that the lift amplitudes of the two
cylinders experience a sharp increment when L/D = 2.25 to 2.5. Subsequently,
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Figure 9: Computational domain of flow past two cylinders in tandem arrangement.

Figure 10: Fluid domain mesh model when L = 2D.

the lift coefficient amplitudes of the upstream cylinder approach the results of the
singer cylinder, whereas the lift coefficient amplitudes of the downstream one are
stable and greater than the results of a singer cylinder.

Thus, the critical spacing of the flow past two cylinders in tandem arrangement at
Re = 1000 is in the range of 2.25D to 2.5D, which agrees with the result of [Jester
and Kallinderis (2003)].

7.3 Comparative analysis of hydrodynamic forces at the critical spacing range

7.3.1 Analysis of hydrodynamic force at L = 2.25D

Fig. 13 shows the pressure at four different moments during a cycle when L =
2.25D. A relatively stable low-pressure region forms in the gap between the t-
wo cylinders, which results in a negative drag force on the downstream cylinder.
The reduction in the upstream cylinder drag force is due to the presence of the
downstream cylinder that leads to pressure increase behind the upstream cylinder
in comparison with the flow past a single cylinder, as shown in Fig. 7(b). The
upstream cylinder undergoes a rather small lift amplitude because of the lack of
vortex shedding. As the vorticity contours in Fig. 14, vortex formation occurs a
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(a) L = 2D

(b) L = 2.25D

(c) L = 2.5D

(d) L = 4D

(e) L = 5.5D

Figure 11: Streamline chart at different spacings.

few diameters away from the downstream cylinder, which results in less severe os-
cillation in lift. Hence, the lift amplitude on the downstream cylinder is smaller,
but it is still larger than the upstream one because of the dominance of the wake
interference effect for this small spacing.

7.3.2 Analysis of hydrodynamic force at L = 2.5D

Fig. 15 shows the pressure at six different moments during a cycle when L = 2.5D.
Unlike the pressure in the gap when L = 2.25D in Fig. 13, a negative pressure
region is formed alternately on the top and bottom sides of the upstream cylinder
wake region, while the gap spacing increases to L = 2.5D. Consequently, vortex
shedding occurs in the wake region of the upstream cylinder, and the variations in
the hydrodynamic forces of the two cylinders follow an oscillating trend with large
amplitudes with respect to the case of L = 2.25D. The drag force and lift amplitude
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Figure 12: Variations in lift and drag coefficients as spacing.
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Figure 13: Instantaneous pressure during a cycle when L = 2.25D.

on the upstream cylinder are close to the results of the single cylinder. Compared
with that in the wake region, the pressure on the upwind surface of the downstream
cylinder becomes significantly higher, but it is still lower than the pressure on the
upwind surface of the upstream one. As a result, the drag force on the downstream
cylinder increases to a positive value, but it is still smaller than the results of the
single cylinder. In Figs. 15(a) to 15(c), the positive pressure on the upper side of
the downstream cylinder upwind surface increases, whereas the negative pressure
on the lower side of the downstream cylinder upwind surface decreases. Thus, a
sharp increment in the lift amplitude on the downstream cylinder occurs.
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Figure 14: Instantaneous vorticity contours during a cycle when L = 2.25D.

(a) t1 = 9 (b) t2 = 9.12

(c) t3 = 9.18 (d) t4 = 9.3

(e) t5 = 9.42 (f) t6 = 9.48

Figure 15: Instantaneous pressure during a cycle when L = 2.5D.

8 Conclusions

We propose a numerical method that combines LES with CBOS FEM. The backward-
facing step flow and the flow past a single cylinder are adopted to verify the present
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model. Results are well within the range of existing numerical results and experi-
mental data, and the present model is reliable. With the Reynolds number increas-
ing, the centers of the vortices in the near wake gradually approach the horizontal
line through the geometric center of the cylinder. The flow past two cylinders in
tandem arrangement at Re= 1000 is also studied. The critical spacing is obtained in
the range of 2.25D to 2.5D through the change characteristic of the streamlines and
hydrodynamic forces as spacing. The reasons for the hydrodynamic force change
at the critical spacing range are analyzed.

i. At L = 2.25D, a relatively stable low-pressure region forms in the gap be-
tween the two cylinders, which results in a negative drag force on the down-
stream cylinder. The reduction in the upstream cylinder drag force is due to
the presence of the downstream cylinder that leads to pressure increase be-
hind the upstream cylinder. The upstream cylinder undergoes a rather small
lift amplitude because of the lack of vortex shedding. Vortex formation oc-
curs a few diameters away from the downstream cylinder, which results in
less severe oscillation in lift. Hence, the lift amplitude on the downstream
cylinder is smaller, but it is still larger than the upstream one because of the
dominance of the wake interference effect for this small spacing.

ii. At L = 2.5D, a negative pressure region is formed alternately on the top and
bottom sides of the upstream cylinder wake region. Consequently, vortex
shedding occurs in the wake region of the upstream cylinder, and the varia-
tions in the hydrodynamic forces of the two cylinders follow an oscillating
trend with large amplitudes with respect to the case of L = 2.25D. The drag
force and lift amplitude of the upstream cylinder are close to the results of the
single cylinder. Compared with that in the wake region, the pressure on the
upwind surface of the downstream cylinder becomes significantly higher, but
it is still lower than the pressure on the upwind surface of the upstream one.
As a result, the drag force on the downstream cylinder increases to a positive
value, but it is still smaller than the results of the single cylinder. The pos-
itive pressure on the upper side of the downstream cylinder upwind surface
increases, whereas the negative pressure on the lower side of the downstream
cylinder windward surface decreases. A sharp increment in the lift amplitude
on the downstream cylinder thus occurs.

The present model is feasible and efficient for backward-facing step flow, flow past
a single cylinder, and flow past two cylinders in tandem arrangement. The model
also provides a prospective research method for solving 3D LES at a high Reynolds
number.
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