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Are Higher-Order Theories and Layer-wise Zig-Zag
Theories Necessary for N-Layer Composite Laminates?

Qifeng Fan1, Yaping Zhang2, Leiting Dong1,3, Shu Li1, Satya N. Atluri4

Abstract: Although “higher-order” and layer-wise “higher-order” plate and shell
theories for composite laminates are widely popularized in the current literature,
they involve (1) postulating very complex assumptions of plate/shell kinematics in
the thickness direction, (2) defining generalized variables of displacements, strains,
and stresses, and (3) developing very complex governing equilibrium, compatibil-
ity, and constitutive equations in terms of newly-defined generalized kinemaic and
generalized kinetic variables. Their industrial applications are thus hindered by
their inherent complexity, and the fact that it is difficult for end-users (front-line
structural engineers) to completely understand all the newly-defined FEM DOF-
s in higher-order and layer-wise theories. In an entirely different way, the au-
thors developed very simple lowest-order (8-node hexahedral), and higher-order
(32-node hexahedral) 3-D continuum solid-shell elements, based on the theory of
3D solid mechanics, for static and dynamic analyses of composite laminates. The
shear-locking of the lower-order 8-node hexahedral element is alleviated by inde-
pendently assuming locking-free strain fields for each element. Over-integration
is used to evaluate the element stiffness matrices of laminated structures with an
arbitrary number of laminae, while only one element is used in the thickness di-
rection without increasing the number of degrees of freedom. A stress-recovery
approach is used to compute the distribution of transverse stresses by considering
the equations of 3D elasticity. Comprehensive numerical results are presented for
static, free vibration, and transient analyses of different laminated plates and shells,
which agree well with existing solutions in the published literature, or solutions
of very-expensive 3D models (where 3D elements are used to model each layer)
by using commercial FEM codes. Because the proposed methodology merely in-
volves simple displacement DOFs at each node, relies only on the simple theory of
solid mechanics, and is capable of accurately and efficiently predicting the static
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and dynamical behavior of composite laminates in a very simple and cost-effective
manner, it is thus believed by the authors that the development of “higher-order” or
“layer-wise higher-order” theories are not entirely necessary for analyses of lami-
nated plates and shells.

Keywords: plate, shell, composite laminate, higher order theory, finite element

1 Introduction

Laminated composite structures are extensively used in aerospace, automobile, ma-
rine and other industrial fields, primarily due to their high strength-to-mass ratio,
high stiffness-to-mass ratio, and their capability to be tailored according to given
requirements. In-depth understandings of their mechanical behaviors are generally
needed for the design and maintenance of such engineering structures. However,
as full or large scale experimental tests are usually time-expensive and monetarily-
expensive, it is necessary to develop accurate and efficient numerical models which
are capable of predicting their static and dynamical behaviors.

A very large number of laminate theories can be found in the literature, which are
mostly derived from equations of 3D elasticity by making various assumptions of
the kinematics in the thickness direction. These theories involve expanding the dis-
placement field in a power-series in the thickness direction of the entire laminate
(classic, first-order and higher-order theories) or in the thickness direction of each
lamina in the laminate (layer-wise higher-order theories). Using these assumptions,
a new set of generalized displacements, strains, and stresses are defined, and a new
set of governing equilibrium, compatibility, and constitutive equations are derived.
The simplest one is the classical laminate theory (CLT) which is based on the well-
known Love-Kirchoff assumption [Timoshenko and Woinowsky (1959)]. Straight
lines normal to the mid-surface are assumed to remain straight and normal to the
mid-surface after deformation. To take into account the effects of transverse shear
deformation, the first-order shear deformation theory (FSDT) [Reissner (1945) and
Mindlin (1951)] relaxes the Love-Kirchoff assumption, so that transverse straight
lines do not necessarily remain normal to the mid-surface after deformation [see
Fig. 1(a)]. CLT and FSDT are widely popularized in commercial FEM packages
such as Ansys, Abaqus, Nastran, etc. But for very thick composite laminates, CLT
and FSDT usually underestimate the deflections and overestimates natural frequen-
cies.

Many higher-order shear deformation theories (HSDT) were later proposed, see
[Lo, Christensen and Wu (1977); Reddy (1984); Pandya and Kant (1988); Reddy
and Robbins (1994)]. These high-order theories mostly adapt various third-order
assumptions of in-plane displacements [see Fig. 1(b)], define additional general-
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(a) (b)

(c)

Figure 1: Assumptions of kinematics in the thickness direction composite lami-
nates by (a) first order shear deformation theory (FSDT), (b) higher order shear
deformation theory (HSDT), (c) layer-wise higher-order theories

ized variables that have ambiguous physical meanings, and derive very complex
and tedious governing differential equations of plate and shells. For example, Lo,
Christensen and Wu (1977) postulated the following expansion of displacements in
the thickness direction:

u = u0 + zφx + z2
ϕx + z3

θx

v = v0 + zφy + z2
ϕy + z3

θy (1)

w = w0 + zφz + z2
ϕz

where ϕx,ϕy,ϕz,θx,θy are often referred as “higher-order rotations” which speci-
fy the deformed shapes of straight lines normal to the mid-surface of unreformed
plates and shells. Based on Eq. (1), Reddy (1984) further derived the following
assumption of displacements in the thickness direction, by enforcing the vanishing
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of transverse shear stresses at the top and bottom surfaces of plates and shells.

u = u0 + zφx− z2
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w = w0 + zφz + z2
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However, one can easily see that, if one is to develop finite elements based on Eq.
(1), only C0 continuous interpolations are needed. But C1 continuous interpolations
are needed for Reddy’s third order theory based on Eq. (2), which are not practical
for general-purpose finite element implementations.

In a similar way the layer-wise theories are developed by making assumptions of
displacements in each layer, see [Swift and Heller (1974); Seide (1980); Reddy
(1984); Di Sciuva (1985); Carrera (2003)]. Displacements in each layer or lamina
are assumed to be either linear, quadratic, higher-order, trigonometric, or to be
other continuous functions in layer-wise/zig-zag theories of plates and shells [see
Fig. 1(c)]. However, having additional degrees of freedoms for each lamina makes
layer-wise theories highly expensive for realistic laminate structures that have a
very large number of layers. For example, [Reddy (1984)] expresses displacements
in the kth layer of the laminate as:

uk = ∑
i

uk
i φ

k
i

vk = ∑
i

vk
i φ

k
i (3)

wk = ∑
i

wk
i φ

k
i

In order to derive higher-order or layer-wise theories of plates and shells, kinematic
assumptions are substituted into the principle of potential energy of 3D elasticity.
By exploring the stationarity conditions, very complex governing differential equa-
tions in terms of newly defined generalized displacements, strains and stresses can
be derived, see [Reddy (2004)] for example. However, such complex differential
equations cannot be directly solved. One usually goes back to derive a variational
principle from these governing differential equations, and to develop correspond-
ing finite element models to solve the problem numerically. In this sense, defining
the many generalized displacements, strains, stresses, and deriving the complex
higher-order or layer-wise theories and differential equations seems unnecessary.
One can directly use the variational principle of 3D elasticity to develop finite ele-
ments for the modeling of plates and shells. Moreover, it is difficult for end-users
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to completely understand all the newly-defined FEM DOFs in higher-order theories
which have ambiguous physical meanings, which becomes very problematic when
boundary conditions have to be enforced correctly by end-users.

In an entirely different way, [Dong, El-Gizawy, Juhany, Atluri (2014b, c)] directly
developed quadrilateral 4-node, and hexahedral 8-node finite element models, for
FG and laminated structures based on the theory of 2-D and 3-D solid mechanics,
respectively. Because traditional displacement-based lowest order elements suffer
from shear locking, a technique of locking-alleviation was used by independently
assuming locking-free element strains. Over-integration was also adapted in the
thickness direction to accurately evaluate the stiffness matrix of FG and laminated
elements. Similar work on smart composite structures was also presented in [Ray,
Dong and Atluri (2015)]. However, for very thick laminated structures with only
a few layers, the computational accuracy is slightly compromised if only one lin-
ear finite element is used in the thickness direction. [Fan, Zhang, Dong, Li, Atluri
(2015)] further developed very simple displacement-based 32-node hexahedral ele-
ment for static and dynamic analyses of composite laminates. And a stress-recovery
approach was used to compute the distribution of transverse stresses by considering
the equations of 3D elasticity.

In this study, comprehensive numerical results are presented for static, free vi-
bration, and transient analyses of different laminated plates and shells, which a-
gree well with existing solutions in the published literature, or solutions of very-
expensive 3D models by commercial FEM codes. Because the proposed method-
ology merely involves displacement DOFs at each node, relies only on the simple
theory of solid mechanics, and is capable of accurately and efficiently predicting
the static and dynamical behavior of composite laminates in a very simple and cost-
effective manner, it is thus believed by the authors that the development of higher-
order or layer-wise theories are not entirely necessary for analyses of laminated
plates and shell. In the following sections, details of the proposed methodology are
described and numerical examples of various laminated plates/shells with different
loads and boundary conditions are provided.

2 Formulations of the Present Simple Elements

As illustrated in Fig. 2, nodal shape functions of the 8-node, 20-node and 32-node
hexahedral elements can defined in terms of local isoperimetric coordinates, which
can be found in most books of finite elements [Atluri (2005), Zienkiewicz and
Taylor (1997)]. For example, shape functions of the 8-node hexahedral element are
as follows:

N(1) = (1−ξ )(1−η)(1− ς)/8
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Figure 2: Topologies of the 8-node, the 20-node, and the 32-node hexahedral ele-
ments

N(2) = (1+ξ )(1−η)(1− ς)/8

N(3) = (1+ξ )(1+η)(1− ς)/8

N(4) = (1−ξ )(1+η)(1− ς)/8 (4)

N(5) = (1−ξ )(1−η)(1+ ς)/8

N(6) = (1+ξ )(1−η)(1+ ς)/8

N(7) = (1+ξ )(1+η)(1+ ς)/8

N(8) = (1−ξ )(1+η)(1+ ς)/8.

And displacement fields within the element are interpolated by using nodal shape
functions:

ui = ∑
I

N(I)ũ(I)i (5)

or in equivalent matrix-vector notations:

u = Nũe (6)

where ũe represents nodal displacements of the element.

Traditional displacement-based primal finite elements determine the strain fields
within the element by differentiating Eq. (6) with respect to Cartesian coordinates:

εεε = Lu = LNũe= Bũe (7)

where L is a linear differential operator.
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By using the Galerkin Weak-Form or equivalent variational principles [Atluri (2005)],
the element stiffness matrix and mass matrix are computed by:

ke =
∫
Ωe

BTDBdΩ

me =
∫
Ωe

NT
ρNdΩ.

(8)

We thus denote displacement-based primal 8-node, 20-node, and 32-node finite
elements developed following the algorithms described above as DPH8, DPH20,
and DPH32 respectively. However, as discussed in [Atluri (2005); Dong and Atluri
(2011)], lowest-order hexahedral element DPH8 surfer from shear locking, which
will be problematic when being used to model thin structures such as plates and
shell. This is due to that interpolated displacement fields of DPH8 are incomplete,
so that bending strains derived from interpolated displacements are locked to shear
strains. A locking-alleviation technique was thus developed in [Dong, El-Gizawy,
Juhany, Atluri (2014c)], by independently assuming a locking-free 18-parameter
linearly-varying strain field within the element, which can be rewritten in a matrix-
vector notation for convenience:

εεε
∗ = Aγγγ (9)

where γγγ represents undetermined 18 parameters of the assumed linear strain field.
By exactly enforcing 18 pre-defined constraints at 18 pre-selected collocation points,
the 18 parameters are related to nodal displacements as:

γγγ = Cũe. (10)

And thus the strain fields within the element are reconstructed as:

εεε
∗= ACũe = B∗ũe (11)

which are inherently lock-free as is defined from the beginning.

And the element stiffness matrix is determined from the strain energy stored in the
element:

ke=
∫
Ωe

B∗T DB∗dΩ (12)

Following the denotation of [Dong, El-Gizawy, Juhany, Atluri (2014c)], we call
this locking-free 8-node hexahedral element as CEH8. As discussed in [Dong,



162 Copyright © 2015 Tech Science Press CMES, vol.107, no.2, pp.155-186, 2015

EI-Gizawy, Juhany and Atluri (2014b, c)], the technique of “over integration” is
needed to accurately evaluate the element stiffness and mass matrices of CEH8,
DPH20, and DPH32 when they are used to model laminated structures. In order
to take care of the different material properties of each lamina, a layer-wise Gauss
quadrature in the thickness direction is adapted. In this way, we consider another
variable ςk as the natural coordinate in the thickness direction of any (kth) individual
layer, which can be related to the natural coordinate ς of the whole element in the
thickness direction as follows:

ς =
1
h
(hk +hk+1)+

ςk

h
(hk+1−hk) (13)

where h, hk, hk+1 represent the thickness of the plate/shell, and coordinates in the
thickness direction at the bottom and the top surfaces of any layer of lamina.

Thus the elemental stiffness and mass matrix are to be evaluated as:

ke =

1∫
−1

1∫
−1

N

∑
k=1

1∫
−1

B∗T DkB∗ |J| (hk+1−hk)

h
dςkdξ dη (for CEH8)
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1∫
−1

1∫
−1

N

∑
k=1

1∫
−1

BT DkB |J| (hk+1−hk)

h
dςkdξ dη (for DPH20 and DPH32) (14)

me =

1∫
−1

1∫
−1

N

∑
k=1

1∫
−1

NT
ρkN |J| (hk+1−hk)

h
dςkdξ dη

where Dk and ρk are elastic stiffness and density of the kth layer respectively.

The transverse normal and shear stresses are computed by using a stress-recovery
approach considering the equilibrium equations of 3D linear elasticity. For the lam-
inated plates, the distribution of transverse stresses can be obtained by numerically
evaluating:

σzx =−
∫ z

z0

(σxx,x +σxy,y)dz

σzy =−
∫ z

z0

(σyy,y +σxy,x)dz (15)

σzz =−
∫ z

z0

(σzx,x +σzy,y)dz

where z = z0 denote the lower surface of the plate.
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For cylindrical shells, the distribution of transverse stresses can also be evaluated,
by numerically solving the following 3 differential equations:

∂σrθ

∂ r
+2

σrθ

r
=−1

r
∂σθθ

∂θ
− ∂σθz

∂ z
∂σrz

∂ r
+
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∂ z
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r
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(16)

∂σrr

∂ r
+

σrr

r
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σθθ

r
− 1

r
∂σrθ

∂θ
− ∂σrz

∂ z

In Eq. (16), the left hand-side involves stress components to be recovered, and the
right-hand side is directly evaluated from the solutions of finite elements. Each
equation is a first-order single-variable ODE, which can be solved with a variety
of computational methods, see [Dong, Alotaibi, Mohiuddine and Atluri (2014a)].
In this study, simple collocation of Eq. (16) is implemented at a variety of points
along the thickness direction. Combined with the traction free condition at the inner
surface of the cylindrical shell, stress components σrθ ,σrz,σrr can be efficiently
recovered from the computed in-plane normal and shear stresses.

It should be noted that, through a large number numerical results, the authors find
out that DPH20 gives very similar results to CEH8, while DPH32 gives slightly
better results as compared to CEH8, with a price of higher computational costs.
Thus, in the follow section, only numerical results for CEH8 and DPH32 are given,
while results for DPH20 are omitted.

3 Numerical Examples

In this section, several typical problems of laminated composite plates and shells
have been analyzed. The geometry and reference system for the laminated plate
and shell can be seen in Fig. 3 and Fig. 4 respectively. The following boundary
conditions have been used.

Simply supported boundary condition (S):

σx = v = ω = 0 at x = 0,a
σy = u = ω = 0 at y = 0,b

Clamped boundary condition (C)

u = v = ω = 0 at x = 0,a and y = 0,b

Free boundary condition (F)

u,v and ω free at x = 0,a and y = 0,b
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Figure 3: Geometry and reference system for the laminated plate.

Figure 4: Geometry and reference system for the laminated shell.

3.1 Static analysis

3.1.1 A simply-supported 4-ply ([0/90]s) laminated plate subjected to a sinu-
soidal distributed lateral load

The first example considers a simply-supported thick-section symmetrical 4-ply
([0/90]s) laminated plate subjected to a sinusoidal distributed lateral load:

q = sin(π
x
a
)sin(π

x
b
).

The plate is square with a= b= 100 mm, and the total plate thickness is h= 10 mm.
Each layer is made of Graphite-Epoxy T300/934 with the same thickness. The
orthotropic material has the following mechanical properties:

E1 = 131 GPa,E2 = E3 = 10.34 GPa,

G12 = G13 = 6.895 GPa,G23 = 6.205 GPa,

v12 = v13 = 0.22,v23 = 0.49,ρ = 1627 kg/m3.
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(a) (b)

Figure 5: Finite element model for the 4-ply laminated plate (a/h = 10) by (a)
Nastran and (b) present CEH8 and DPH32 elements.

We solve this problem using a uniform 10×10 mesh with CEH8 and DPH32 ele-
ments, as well as using Nastran by meshing each layer of the laminate. We can see
the difference of meshes between the Nastran model and the CEH8/DPH32 model
in Fig 4. It takes about half an hour to obtain the numerical results by using the
200,000 nodes Nastran model on a regular PC with i7 CPU. On the contrary, the
DPH32 model has only 1364 nodes and takes about 20 seconds of computational
time, and the CEH8 model has only 242 nodes and takes about 5 seconds of com-
putational time, although an un-optimized MatLab code is used in this study. Com-
puted in-plane and out-of-plane stresses are shown in Figs. 6–8, from which we
can see that the three methods give similar results, although the computation time
of Nastran are larger by two orders of magnitudes. The computational accuracy of
DPH32 is slightly better than that of CEH8, with a price of larger computational
time.

3.1.2 A simply-supported 50-ply ([0/90]25) laminated plate subjected to a unifor-
m lateral load

In this subsection, we consider a thick-section unsymmetrical 50-ply ([0/90]25)
laminated plate. The plate is square with a = b = 10 inches, and the thickness
of the plate is h = 1 inch. The material parameters are as follows:

EL = 25×106 psi,ET = 1×106 psi,

GLL = 0.5×106 psi,GLT = 0.2×106 psi,

vLT = 0.25,vT T = 0.25,

where L denotes the fiber’s direction and T denotes the transverse direction.

The laminated plate is simply-supported at each edge. And it is subjected to a
uniform lateral load q = 1 psi.
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Figure 6: Computed σxx,σyy at x = y = 45 mm, and computed σxz,σyz at x = y =
10 mm, for the symmetrical 4-ply thick-section laminated plate (a/h = 10), with
CEH8.
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Figure 7: Computed σxx,σyy at x = y = 45 mm, and computed σxz,σyz at x = y =
10 mm, for the symmetrical 4-ply thick-section laminated plate (a/h = 10), with
DPH32.
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Figure 8: Computed σxx,σyy at x = y = 45 mm, and computed σxz,σyz at x = y =
10 mm, for the symmetrical 4-ply thick-section laminated plate (a/h = 10), with
Nastran.

We solve this problem using a uniform 10× 10 mesh with CEH8 and DPH32 el-
ements. Computed in-plane and out-of-plane stresses by present DPH32 elements
and Nastran are shown in Figs. 9–10. It is observed that the present CEH8 and
DPH32 solutions agree well with the Nastran solutions. Because of the necessity
of meshing each of the 50 layers of laminae for Nastran, it takes about 2.5 hours of
computational time and about 1.5 million DOFs in Nastran. However, the present
DPH32 only requires 1364 nodes and about 20 seconds of computational time, and
the present CEH8 only requires 242 nodes and about 5 seconds of computational
time. One can further observe that, in contrast to the last example of 4-layer thick
laminate, CEH8 and DPH32 give almost the same computational results for this
50-layer thick laminate. Since thick laminates applied in aerospace, automobile,
marine and other industrial fields usually have a large number of layers, CEH8
should suffice in static analyses such laminated plates and shells.

A different plate with a very-high aspect ratio is also considered in this subsection.
The same material properties, the same 50-ply ([0/90]25) laminate, and the same
boundary conditions and loads are adopted. However, the laminated plate has an
aspect ratio of 1000 with a = b = 1000 inches and h = 1 inch. We also solve this
problem with 10×10 CEH8 and 10×10 DPH32 elements. The computed stresses
by DPH32 and by CEH8 elements [Dong, El-Gizawy, Juhany and Atluri (2014b)]
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Figure 9: Computed σxx,σyy at x = y = 4.5 inches, and computed σxz,σyz at x =
y = 1 inch, for the unsymmetrical 50-ply thick-section laminated plate (a/h = 10),
with CEH8.
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Figure 10: Computed σxx,σyy at x = y = 4.5 inches, and computed σxz,σyz at x =
y = 1 inch, for the unsymmetrical 50-ply thick-section laminated plate (a/h = 10),
with DPH32.
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Figure 11: Computed σxx,σyy at x = y = 4.5 inches, and computed σxz,σyz at x =
y = 1 inch, for the unsymmetrical 50-ply thick-section laminated plate (a/h = 10),
with Nastran

are shown in Figs. 12–13. Very good agreement is observed. This demonstrates
that the present method can deal with the problems of both thick and thin plates,
without having to resorting to theories of plates and shells.

3.2 Free vibration analysis

3.2.1 Modal analysis of a thick-section 10-ply [0/90]5laminated square plate

The free vibration of a thick-section 10-ply ([0◦/90◦]5) laminated plate is analyzed
in this subsection. The plate is square with a = b = 100 mm, and the thickness
is h = 10 mm. The material properties are the same as those in the first example.
Four different boundary conditions (BCs) are enforced. They are SSSS (simply
supported at each edge), CFFF (clamped at x = 0 and free at x = a,y = 0,b), CSCS
(clamped at x = 0,a and simply supported at y = 0,b) and CSFS (clamped at x = 0,
free at x = a, and simply supported at y = 0,b).

We solve these problems using a uniform 10× 10 mesh with CEH8 and DPH32
elements, as well as using Nastran. Comparison between the meshes of the DPH32
model and the Nastran model is given in Fig 14. The non-dimensional frequen-
cies ωn = ωna2/h

√
ρ/E2 are used for comparison of numerical results. The first

six mode shapes, for each case, are depicted in Figs. 15–17 in which the corre-
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Figure 12: Computed σxx,σyy at x = y = 450 inches, and computed σxz,σyz at
x = y= 100 inches, for the thin-section laminated plate (a/h= 1000), with DPH32.

Figure 13: Computed σxx,σyy at x = y = 450 inches, and computed σxz,σyz at
x = y = 100 inches, for the thin-section laminated plate (a/h = 1000), with CEH8.
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spondent non-dimensional frequency is reported below each mode shape within
the reference Nastran solution. Since the mode shapes computed by CEH8 and
DPH32 are so similar, only mode shaped computed by DPH32 are demonstrated.
As can be seen from the results, the difference of the frequency parameters between
DPH32 and Nastran does not exceed 0.57% for the worst case, and the difference
of the frequency parameters between CEH8 and Nastran does not exceed 4.02% for
the worst case,. In the meantime, the present DPH32 elements require about 200
times less computational time as compared to Nastran.

(a) (b)

Figure 14: Finite element model for the 10-ply laminated plate (a/h = 10) by (a)
Nastran with 400,000 elements and (b) present CEH8/DPH32 with 100 elements.

3.2.2 Modal analysis a thick-section 10-ply [0/90]5laminated shell

In this subsection, we consider a thick-section 10-ply ([0◦/90◦]5) laminated shell.
Each layer of the laminate is composed of the same Graphite–Epoxy T300/934
material whose material parameters are given in the first example. The depth and
thickness of the cylindrical shell are a = 100 mm and h = 10 mm respectively. The
arc length of the shell is 100 mm and its corresponding angular span is π/3. We
investigate four different boundary conditions which are SSSS (simply supported
at each edge), CFFF (clamped at x = 0 and free at x = a,y = 0,b), CSCS (clamped
at x = 0,a and simply supported at y = 0,b) and CSFS (clamped at x = 0, free at
x = a, and simply supported at y = 0,b).

We solve these problems using a uniform 10× 10 mesh with CEH8 and DPH32
elements, as well as using Nastran. Comparison between the meshes by present
elements and by Nastran is given in Fig 19. Computed non-dimensional frequen-
cies and corresponding mode shapes by CEH8/DPH32 and Nastran are given in
Figs. 20–24 respectively. Very good agreement is observed for all the results. The
difference of the non-dimensional frequencies does not exceed 0.60% for the worst
case, and the difference of the frequency parameters between CEH8 and Nastran
does not exceed 3.20% for the worst case.
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Figure 15: First six non-dimensional frequency parameters and their corresponding
mode shapes of a SSSS square laminated plate by (a) Nastran and (b) present CEH8
and DPH32 elements.
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Figure 16: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CFFF Square laminated plate by (a) Nastran and (b) present
CEH8 and DPH32 elements.
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Figure 17: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CSCS Square laminated plate by (a) Nastran and (b) present
CEH8 and DPH32 elements.
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Figure 18: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CSFS Square laminated plate by (a) Nastran and (b) present
CEH8 and DPH32 elements.
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(a) (b)

Figure 19: Finite element model for the 10-ply laminated plate (a/h = 10) by
(a) Nastran with 400,000 elements and (b) present CEH8 and DPH32 with 100
elements.

3.3 Transient dynamic response of laminated plates

In this section, we study the transient dynamic responses of a simply-supported
symmetrical 4-ply ([0/90]s) laminated square plate subjected to a uniform pressure
(step load) of magnitude 1kPa at time t= 0. The geometry and material properties
are same as the first example. The same CEH8/DPH32 FEM model with a uniform
10× 10 mesh is also used to compute the global nodal force vector, mass matrix
and stiffness matrix. Newmark beta method is used to evaluate the time-domain
numerical integration. Direct transient response by Nastran is also used to obtain
the results of displacements, velocities and stresses in each element. The vertical
displacements and normal stresses by CEH8/DPH32 elements and by Nastran are
presented in Fig. 24–25. It is clearly shown that the results obtained by the present
method are in good agreement with numerical results using Nastran. In the mean-
time, small global matrices derived from the present method significantly improve
the computational efficiency. We can further see that the computational accura-
cy of DPH32 is slightly better than that of CEH8, with a price of slightly higher
computational time.

We also consider the same laminated plate subjected to a time-dependent sinusoidal
pressure shown in Fig. 26. The problem is solved by present CEH8/DPH32 ele-
ments and by Nastran separately. The vertical displacements and normal stresses
computed by the present method and by Nastran are presented in Fig. 27–28. Very
good agreement is also observed.

4 Conclusion

Through a large number numerical results of static, free vibration, and transient
analyses of various laminated plates and shells, it is demonstrated that the proposed
CEH8 and DPH32 is capable of accurately and efficiently predicting the static and
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Figure 20: First six non-dimensional frequency parameters and their corresponding
mode shapes of a SSSS laminated shell by (a) Nastran and (b) present CEH8 and
DPH32 elements.
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Figure 21: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CFFF laminated shell by (a) Nastran and (b) present CEH8 and
DPH32 elements.
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Figure 22: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CSCS laminated shell by (a) Nastran and (b) present CEH8 and
DPH32 elements.
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Figure 23: First six non-dimensional frequency parameters and their corresponding
mode shapes of a CSFS laminated shell by (a) Nastran and (b) present CEH8 and
DPH32 elements.
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Figure 24: Vertical displacement response of the laminated plate (a/h = 10) by (a)
Nastran, (b) DPH32 elements, (c) CEH8 elements

dynamical behaviors of composite laminates in a very simple and cost-effective
manner. Because higher-order and layer-wise plate and shell theories involve (1)
postulating very complex assumptions of plate/shell kinematics in the thickness di-
rection, (2) defining generalized variables of displacements, strains, and stresses,
and (3) developing very complex governing equilibrium, compatibility, and consti-
tutive equations in terms of newly-defined generalized variables, while the current-
ly proposed CEH8 and DPH32 merely involve displacement DOFs at each node,
and rely only on the simple theory of solid mechanics, it is thus concluded by the
authors that the development of higher-order or layer-wise theories are not entirely
necessary for analyses of laminated plates and shells.
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Figure 25: Normal stress response of the laminated plate (a/h= 10) by (a) Nastran,
(b) DPH32 elements, (c) CEH8 elements
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Figure 26: The applied time-dependent sinusoidal pressure
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Figure 27: Vertical displacement response of the laminated plate (a/h = 10) by (a)
Nastran (b) DPH32 elements, (c) CEH8 elements
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Figure 28: Normal stress response of the laminated plate (a/h= 10) by (a) Nastran,
(b) DPH32 elements, (c) CEH8 elements
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