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Improved Failure Mode Identification and Reliability
Estimates for Electricity Transmission Towers
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Abstract: Studies on the theory of structural system reliability includes identifi-
cation of main the failure modes and calculation of inclusive failure probabilities
for the structural system. The efficient and accurate identification of failure modes
in structural systems is difficult and represents a key focus for research in sys-
tem reliability. The fundamental theory of the branch and bound algorithm for
stage critical strength is reviewed in this paper. Some deficiencies in this method
are highlighted. Corresponding approaches to overcome these deficiencies are pro-
posed. Calculated system reliability solutions to the classical model, a truss with 10
elements, indicate that the improvement measures proposed in this paper increase
the efficiency of recognising the main failure modes of the structural system, and
are readily validated. The outcomes of this type of benchmark analysis suggest
that the proposed methodology may be capable of representing a suitable basis for
the structural system reliability analysis of complex truss-like structures, includ-
ing transmission towers. Using the proposed approach, the principal failure modes
and system reliability of a transmission tower are calculated. Based on practical
engineering considerations, effective methods to improve this structural system re-
liability are proposed.
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1 Introduction

The methodology for the design of transmission towers is based on reliability the-
ory. The adoption of this methodology is driven by the uncertain factors associated
with this type of structure [Li, H.; Bai, H. (2007)]. At the same time transmission
towers are highly redundant structural systems, meaning that the failure of one el-
ement may not necessarily result in the failure of the entire structural system. This
may only occur when a series of structural elements become successively fail, re-
sulting in the resistance capacity of whole structure being lost. It is at this point that
the structural system may be defined to have failed [Thoft-Christensen; P. Murotsu,
Y. (1986)]. It is, therefore, necessary to study the reliability of a structural system
when calculating the safety of transmission towers.

Studies on the theory of structural system reliability include two aspects: identifi-
cation of the principal failure modes and calculation of the global (comprehensive)
failure probability. The development of first order and second moment reliability
analyses and the Ditlevsen narrow boundary algorithms, form the basis of the prac-
tical application of solution methodologies for the assessment of the global fail-
ure probability structural systems had its achieved solution in practical application
[Rackwitz, R.; Flessler, B. (1978); Ditlevsen O. (1979)]. However, the identifica-
tion of the failure modes of structural systems efficiently and accurately remains a
challenge [Cong D.; Qing-Xiong Y. (1993)]. In the structural system that defines
a transmission tower, it is the particular combination of the failed elements within
the structural system that leads to of the complete structure collapse, with a corre-
sponding and specific failure mode [Thoft-Christensen; P. Murotsu, Y. (1986)]. It
is the failure of different elements and the diversity of the failure sequence creating
several different potential failure modes, coupled with the large number of individ-
ual structural elements in a transmission tower structure, which results in a large
number of alternative failure modes. It is this combination of factors and character-
istics that make it difficult to identify all the possible failure modes and to calculate
the corresponding failure probability. The system reliability of transmission tower
depends on several main failure modes. Clearly, increasing the reliability of the
main failure modes can enhance the system reliability of transmission towers. I-
dentification of the main failure modes is, therefore, a key objective in establishing
the system reliability of these types of structures. In recent decades, the theory and
methods to identify failure modes of structural systems have made great progress
with the development of finite element-based methods, and probability network
theory. In particular the study of system reliability for mechanical and electron-
ics systems has been adopted in engineering practice [Lu H.; Zhang Y.; Zhao C.
(2012); Kuo W.; Prasad V.R.; Tillman F.A. (2011)]. In civil engineering, however,
there is often a greater difficulty to efficiently identify the significant structural fail-
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ure modes due to complexity of environmental loads and structural failure modes.

Methods to identify the failure mode of a structural system under certain perfor-
mance criteria may be divided into two categories: the ultimate state identification
method, and the probability estimate identification method. The first category iden-
tifies and selects an element of the main failure mode on the basis of the severity
of force effect [Moses F. (1982); Feng Y.S.; Cong D. (1991); Cong D.; Feng Y.S.
(1991)], including the maximum criterion of the general ratio between bearing ca-
pacity and force, the optimization criterion, the minimum criterion of incremental
load approach, and the branch and bound algorithm of critical strength. The second
category identifies the main failure mode on the basis of the failure probability of an
element [Thoft-Christensen; P. Murotsu, Y. (1986); Murotsu Y.; Okada H.; Taguchi
K. (1984); Melchers R. E.; Tang L.K. (1984); Thoft-Christensen P.; Sørensen J.D.
(1982)]. Representative methods include the branch and bound algorithm, the trun-
cated enumeration method, β -unzipping method.

Whether an algorithm is successful or not in identifying the main failure mode of
structural system, the key lies in building a rational and efficient bound criterion
and its associated solution method. In this paper the fundamental principles of the
stage critical strength branch and bound algorithm, belonging to the set of ultimate
state identification methods, are analysed. Some deficiencies in this method are
identified, and corresponding improvement approaches for these deficiencies are
proposed. The proposed improved algorithm, which also considers the influence of
the variability of the load and the resistance to the bounded parameters, is shown
to provide a theoretical basis for establishing reasonable values for the bounded
parameters. It can also readily remove redundant and secondary failure modes with
larger reliability indices, and improve the efficiency of identifying failure modes
without omitting the main failure mode of structural system. A calculation proce-
dure to identify the primary failure modes and the system reliability for complex
redundant structures is described, and demonstrated through the analysis of a trans-
mission tower structural system. Calculations of the main failure modes and sys-
tem reliability of a realistic, practically engineered, transmission tower subjected
to wind loading acting at 60◦ to its primary geometric axes are presented.

The paper is structured to begin with a description of the stage critical strength
branch and bound algorithm. A set of improvements to this solution method is pro-
posed and demonstrated using a double layer 10-bar truss as an example structure
in Section 2. The developed methodology is subsequently applied to a complex
transmission tower and described in Section 3. The outcomes of this analysis and
conclusions are presented in Sections 4 & 5, respectively.
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2 Fundamental principles of the stage critical strength branch and bound
algorithm and proposed improvements

2.1 The fundamental principles of identifying structural failure modes using
the stage critical strength branch and bound algorithm

There are many failure modes in structural systems, depending on the configuration
of the system shapes and the materials of the member, the loading condition, etc.
In order to perform the reliability assessment of the systems, the failure modes
and their limit state functions need to be identified. The limit state functions are
evaluated at each stage using a deterministic matrix method at the mean values of
the basic variables and the uncertainty of the basic variables, to identify the failure
paths and hence calculate the system reliability [Thoft-Christensen; P. Murotsu, Y.
(1986)].

In the stage critical strength branch and bound algorithm candidate failure elements
in every stage are selected, based on the actual stress state of structural member and
the criteria for minimizing the critical strength of structural system at the current
stage. Because this method considers the failure state and the failure evolutionary
process of entire structural system, the branches of failure tree can be effectively
controlled in each failure stage and the identification efficiency of the main failure
modes can be improved fundamentally [Cong. D. (2001)].

For example, consider a structural system consisting of n elements. In the first stage
of identifying the failure mode, the stress σ j of any element j ( j = 1,2, · · · ,n) under
the external load is:

σ j = a(1)j ∆F(1)
j (1)

where, the coefficient a(1)j is the stress in element j of the structural system sub-

jected to a external load case; ∆F(1)
j is the load increment factor for element j in

the first stage. When element j reaches a critical state of failure, the stress of this
element is equivalent to its strength, i.e.

σ
cr
j = a(1)j ∆F(1)

j = R j (2)

where, R j is the strength of element j, which may be different for tension and
compression members. The critical load increment factor of element j in the first
stage is obtained as:

∆F(1)
j = R j/a(1)j (3)

The stage critical strength corresponding to the failure of element j is R(1)
s( j) =∆F(1)

j ,

and the minimum critical strength of all elements in the first stage is then R(1)
s(min) =
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min[R(1)
s( j)]. When the bounding parameter ck (1≤ ck < ∞) is defined, the elements

that satisfy,

R(1)
s( j) ≤ ckR(1)

s(min) (4)

are transferred into the set of failed elements in this stage.

When a total of k−1 elements r1,r2, · · · ,rk−1 have failed one after another, the cor-
responding load increment factors are respectively recorded as ∆F(1)

r1 ,∆F(2)
r2 , · · · ,

∆F(k−1)
rk−1 . In stage k of the failure progress, the residual resistance of the failed

element i is applied to the nodes of corresponding element in accordance with
the stress condition of the failed element. The structural stress state is then re-
analysed to take into account this redistribution. The stress σrk of non-failed ele-
ments rk [rk ∈ (1,2, · · · ,n) ,rk /∈ (r1,r1, · · · ,rk−1)] can then be obtained as:

σrk = a(k)rk ∆F(k)
rk +

k−1

∑
i=1

a(i)ri ∆F(i)
ri mri (5)

where, the coefficient a(i)ri is the stress of element ri of structural system that is
composed of n+1− i non-failed elements given the element generalized load cor-
responding to the external load acting in stage i. mri is the element material pa-
rameter. It reflects the reduction level in the bearing capacity after the element
has failed. F(i)

ri is load increment factor of element ri in stage i. When element rk
reaches its critical state of failure, the stress of this element is equivalent to its Rrk .
Meanwhile, the sign function Irk = sign[a(k)rk ] is introduced to enable the nature of
internal force (tension or compression) in structure to be changed during the load
process (arising from a change in the structural system as elements fail), such that,

∆F(k)
rk =

Rrk − Irk ×∑
k−1
i=1 a(i)ri ∆F(i)

ri mri

a(k)rk

(6)

In stage k of the failure process, when element rk is failure along the failure path
r1→ r2→ ··· → rk, the stage critical strength R(k)

s(rk)
of the structural system is:

R(k)
s(rk)

= ∆F(k)
rk +

k−1

∑
i=1

∆F(i)
ri mri (7)

In this stage the minimum critical stage of structural system is R(k)
s(min) = min[R(k)

s(rk)
].

Elements that satisfy,

R(k)
s(rk)
≤ ckR(k)

s(min) (8)
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are moved into the set of failure elements in stage k of failure process.

Careful selection of bounding parameter ck not only ensures that the main failure
mode of structural system cannot be omitted, but also that the computational ef-
fort is reduced. A reasonable range for bounding parameter ck based its physical
significance is suggested to be [1, 2] [Cong. D. (2001)]. From the perspective of
engineering application, the meaning of the bounding parameter ck is somewhat
similar to the safety index or partial factor if the correlation between different fail-
ure modes is ignored. In general, the obvious correlation between the different
failure modes exists. Numerical studies show that the failure modes in which crit-
ical strength of system is more than 1.2 times R(k)

s(min), contribute little to failure
probability of system [Cong. D. (2001)]. As a result, the bounding parameter ck is
generally adopted to be around 1.2 for practical engineering cases.

2.2 Existing problems of and proposed improvements to the stage critical strength
branch and bound algorithm

The following three principal deficiencies exist in the stage critical strength branch
and bound algorithm when applied to fundamental engineering problems:

(1) The value of the bounding parameter is normally selected based on practical
experience, and it is unable to reflect the influence of the statistical distributions of
load and resistance and of the coefficients of variation on the structural reliability.

(2) The redundant failure modes are not removed sufficiently quickly within the
analysis.

(3) The minimum critical strength R(k)
s(min) of system in one stage is determined

on the basis of the critical strength R(k)
s(rk)

in the stage in which the element rk has
failed. The information in the minimum and integrated failure path, which has been
formed by the preceding failure elements, cannot be utilized because of a missing
relevant feedback mechanism.

2.2.1 Improvement 1: Selection of the bounding parameter

The bounding parameter in the stage critical strength branch and bound algorithm
significantly influences the efficiency of identifying the main failure mode. If the
value is too small, the main failure modes will be missed. Conversely, the more sec-
ondary ones will be eliminated from the analysis [Guoming J.; Bifeng S. (2002)].
At the same time, because the identification of each failure element requires a finite
element analysis for the whole structure, the computational efficiency is reduced by
overlarge bounding parameters. The relationship between the bounding parameters
ck and the bound of reliability index β is found in this paper by utilizing the central
safety factor K. It provides a theoretical foundation for the rational selection of the
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bounding parameter.

The failure of an element is identified according to its load bearing capacity in
relation to the applied load. The bounding parameter is a quantitative index of an
element’s load bearing capacity, as shown in,

ck =
µR

µmin
(9)

The mean value of loads acting on a structure is defined for a given condition,
meaning that (9) can be equivalently converted to,

ck =
µR

µmin
=

µR

µS

µS

µmin
=

K
Kmin

(10)

in which the transformational relation between the bounded parameters ck and the
central safety factor K is also specified. µR is the limited value of critical strength
satisfied with the bounded norm in structural system. µmin is the mean value of
minimum critical strength in structural system. µS is the mean value of load effect,
and µS is the fixed value when the load case is determined. K is the central safety
factor for every failure path satisfied with the bounded norm in stage k, and Kmin is
the minimum central safety factor for all failure paths in stage k.

Suppose that the structural performance function is Z =R−S. When the probability
functions and the coefficients of variation of resistance and loads are known, there is
a one-to-one correspondence between the central safety factor K and the reliability
index β [Yanghai L.; Weigang B.; Xiuwu G. (1997)]. If the resistance R and load
effect S are normally distributed, then the following relationship holds;

β =
µR−µS√
σ2

R +σ2
S

(11)

Introducing the central safety factor K, equation (11) can be written as

β =
K−1√

K2δ 2
R +δ 2

S

(12)

or,

K =
1+β

√
δ 2

R +δ 2
S −β 2δ 2

Rδ 2
S

1−β 2δ 2
R

(13)

where, δR,δS are the coefficients of variation of resistance R and load effect S,
respectively. Other probability functions can be transformed to equivalent normal
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distribution at the point of interest using the Rackwitz and Fiessler transformation.
The value of the reliability index is limited to the range [βmin,1.29 + 0.86βmin]
on the basis of the globe β unzipping method [Cong. D. (2001)]. βmin is the
reliability index corresponding to the failure path in which the mean value of the
critical strength is the smallest. The bounded parameter ck can be obtained by
substituting (13) into (10). As a result of considering the probability distribution
and the coefficients of variation for the resistance and load terms when determining
the bounded parameters ck, the value of ck is more reasonable, being linked directly
to the variability of the input parameters and the structure safety index.

2.2.2 Improvement 2: Removing redundant failure modes

Many failing elements are included in a failure mode. If some failed elements
are removed and the remaining failing elements continue to constitute a failure
mode, then these removed failing elements are termed “redundant failing elements”
and the failure mode containing the remaining failed elements is referred to as the
“redundant failure mode”. The contribution of the redundant failure mode to the
structural failure probability may be ignored [Cong. D. (2001); Andrzej S.; Nowak,
T.C. (2007)] and the redundant failure mode should be removed. Ji Guoming et al.
selected the main failure mode using the minimal cut set method and enhanced
the identifying efficiency in the global branch and bound algorithm [Guoming J.;
Bifeng S. (2002)]. This improvement strategy is adopted here and applied to the
critical strength branch and bound algorithm. The set composed of the sequence
of failure elements corresponding to any failure path is called the “cue set”. The
set containing the smallest number of failed elements that can lead to failure of
the whole structure is called the “minimum cue set”. In identifying the main failure
mode only the minimum cue set of the failure path needs to be stored. For example,
if there are three failure modes corresponding to the failure path ¬-­-®, ¬-®-­
and ­-® just the minimum cue set ­-® is stored. Removing the redundant failure
modes may simplify the fault tree and reduce the workload.

2.2.3 Improvement 3: Defining the bounding criterion

It is a very common phenomenon that redundant failure modes are repeated dur-
ing the identification of the failure modes. This phenomenon is more obviously
observed with an increasing number of failure elements [Andrzej S.; Nowak, T.C.
(2007)]. In the absence of a relevant feedback mechanism and a feedback loop,
information contained in the minimum and integrated failure paths identified by
preceding failure elements cannot been utilized. To overcome this drawback, two
coefficients, the global bounding parameters cs and the minimum boundary val-
ue R∗S of critical strength of system, are introduced. By including these additional
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terms the objective of the global bound and branch may be correctly defined. The
implementation of these feedback mechanisms, however, is slightly complicated
because the parameters cs and R∗S need to be introduced and repeatedly amend-
ed after identifying every complete (integrated) failure path [Cong. D. (2001)].
However, it may be noted that the critical strengths corresponding to the redun-
dancy failure modes belonging to different failure paths, are approximately equal.
In the course of identifying the failure modes of a structure using the stage critical
strength branch and bound algorithm, the information in the minimum and integrat-
ed failure path, based on the preceding failure path, may directly feed back into the
redundant failure mode in which the preceding failure elements are different, and
contribute to the selection of the minimum critical strength. A redundant failure
mode is removed after completing the selection of the minimum critical strength
in a stage. This improvement to the algorithm skips the intermediate steps of the
global boundary approach and simplifies the implementation steps. The efficiency
of identifying main failure modes is thereby increased.

2.2.4 Schematic of structural system failure mode identification algorithm

The improved approaches to the stage critical strength branch and bound algorithm
proposed in this paper have been written into the modelling capabilities of ANSYS
using the APDL parametric design language and a MATLAB script. The main flow
chart to identify the failure modes for structural system is shown in fig.1.

2.3 Calculation and analysis for the main failure modes of 10 elements truss

The main failure mode of a double layer truss with 10 elements is firstly analyzed
as a classical example shown in fig.2. Elements ¬-µ are made of elastic-plastic
material, and the failure forms are tension (or compression). The mean value of the
load F is 2kN. The strength R of these elements and the load S are assumed to be
normally distributed. The mean of the compressive strength and the tension stress
of elements ¬-± are −10kN and 20kN, respectively, and the corresponding value
of elements ±-µ are −2.5kN and 5kN, respectively. The coefficient of variation
for the resistance is δR = 0.1 and that of the load, δs, is 0.2.

Assuming bounding parameters c1 = 1.0, c2 = 2.0, c3 = 2.0, the failure modes of
the double layer 10 element truss is shown in fig.3 (a). These may be compared with
the structural failure modes when the bounding parameters are assumed to be more
constrained with c1 = 1.0, c2 = 1.2, c3 = 1.2, as shown in fig. 3(b). From fig. 3(a)
and (b) it can be observed that a greater number of secondary failure modes will be
displayed if the value of the bounding parameters is high. The failure modes ³-¯-
°, ³-¯-´, ³-¯-® and ³-µ-® with higher stage critical strengths are secondary
failure modes. The potential impacts of the choice of bounding parameters on
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Start

Set up FEM model using ANSYS 

software

Import the loading coefficient into 

MATLAB and calculate the critical 

strength of structural system

Calculate loading coefficient of 

elements

Search for a set of failure elements, 

Form failure paths in present stage

Select failure elements and models 

using the improved method 

Update FEM model adopting the 

failure information of feedback

Search for failure path and 

build failure tree

Judge whether

 the structural system 

has failed

YES

End

NO

Figure 1: Flow chart of identifying failure modes for structural system

computational efficiency have been noted previously.

Element ³ is the first element to fail in stage one of failure process. Based on
the calculations of the central safety factor Kmin = 5/2.64 = 1.894 in the first
stage, βmin can be calculated from equation (12). The mid-value of β in the range
[βmin,1.29+ 0.86βmin] can be expressed and it may be approximately regarded as
mean of β value in this range. We obtain the central safety factor from equation
(13) and the bounded parameters ck from equation (10). Using the revised estimate
for the bounding parameter c1 outlined in §2.2.1, the influence of the uncertain-
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Figure 2: Example double layer truss with 10 elements

ty in the resistance of load effect, δR and δS, can be quantified as shown in fig.4.
Based on this approach, reasoned values of the bounding parameter are significant-
ly dependent on the variable coefficients δR and δS. When δR and δS are small, the
bounding parameter c1 is close to 1.2, which is value that conforms to the those
based on experience of using the algorithm [Cong. D. (2001)]. When δR and δS are
large, the bounded parameter c1 may approach a value of 1.95. Calculated values
for the bounding parameter ck are suggested to be in the range [1, 2] [Feng Y.S.;
Cong D. (1991)], supporting the present work. The results of the example show
that the parameter ck is close to 1.2 when the coefficients δR and δS are both small;
otherwise, the parameter ck is greater than 1.2 to ensure the main failure modes are
not missed.

Assuming bounding parameter values c1 = 1.0, c2 = 2.0 and c3 = 1.5, the predict-
ed main failure modes for the truss with 10 elements are shown in Fig.5. Fig.5
(a) illustrates the failure tree generated by the unimproved branch and stage criti-
cal strength bound algorithm. Those in Fig.5 (b), (c) and (d) are the failure trees
generated by using improvement 2, improvement 3 separately and the combination
of improvements 2 and 3. Meanwhile, the mean of the critical strength and the
reliability index for these failure modes are listed in table 1, and validated by Cong
D. (2001). The main failure modes of this truss are ³-², ³-µ-¯ and ³-µ-´. It
can be observed from Fig.5 and table 1 that using the proposed improvements the
revised branch and bound algorithm demonstrates better performance, can readily
remove redundant failure and secondary failure modes in the presence of a large
reliability index, and improve the recognition efficiency without omitting the main
failure modes of structural system.
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Figure 3: Qualitative influence of the bounding parameter on failure mode
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Figure 5: The failure tree generated by using different algorithm

Table 1: The failure modes of a truss with 10 elements and the relevant reliability
index

Failure
mode

The order of
failure elements

Mean critical
trength (kN)

Reliability
of index

m i− j− k E(Rs) β

1 8–7 4.1602 4.2683
2 8–10–7 4.1602 4.2683
3 8–10–4 4.0267 3.8583
4 8–10–9 4.1602 4.2683
5 8–4–1 6.6667 7.3175
6 8–4–3 8.0534 7.6652
7 8–4–9 8.0534 7.6652

3 Structural system reliability assessment of a transmission tower

3.1 Failure criterion and statistical characteristics of the basic variables

3.1.1 Structural element failure models

The appropriate choice of failure model for the structural elements is the basis on
which to establish a comparatively rational failure criterion for the structural sys-
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tem. The primary elements in the structural system of a transmission tower include
tie rods and struts that have well known failure modes related to material failure
(yielding and rupture) and instability (buckling either locally or globally within a
structural element), respectively. In general, the stress-strain curve of an element
after failure may be represented as a plateau or a sudden drop to zero depending
on the stress state of element and associated failure mode. These two representa-
tions of the stress-strain approximations, when applied to strut (representing local
or global buckling failure respectively), may underestimate or overestimate the ca-
pacity of the structural element upon onset of failure and lead to a deviation from
the true failure path. The connections of steel structure clearly influence the re-
liability of the structural system. Howerver, the stresses in the gusset plates at
the connections are very complex, meaning that the connection details are nor-
mally strengthened. In order to simplify the reliability calculation, connection is
assumed to be unlikely. In endeavouring to simulate the ultimate bearing capacity
of a structural system, the relatively rational failure model of an element is to adop-
t an elastic-plastic stress-strain relationship for all struts and ties. In the case of
tension members it is presumed that the stress is maintained at yield strength after
the onset of first yield. For compression members, once the yield point has been
reached a so-called “half elastic-plastic failure model”, where it is supposed that
the element remains at a certain reduced capacity after the loss of stability (denoted
by the “yield point”) and the axial force exceeding the capacity of this element is
redistributed to remaining valid (connected and not failed) elements. The relation-
ships between strength or bearing capacity and displacement of these two types of
failure modes, which are frequently used in tension and compression elements, are
respectively given in Fig.6 (Sp is the bearing capacity of element and η is the reduc-
tion factor applied to the bearing capacity when the compression element suffers
instability in Fig.6).

The value of the reduction factor of bearing capacity η is mainly related to the
slenderness ratio λ of compression element. Given that the slenderness ratio λ

of compression element of transmission towers is normally within the range of
75–150, and following the onset of buckling instability, a value for the reduction
factor η is generally assumed to be in the range 0.50–0.35 [Deng H.Z.; Wang Z.M.
(2000)]. In creating the numerical model of the structural system, the value of η

for individual elements of differing slenderness ratios may be determined in range
of 0.50–0.35 using linear interpolation based on the slenderness ratio λ . Therefore,
η = 1.0 for an idealised elastic-plastic failure model in tension. For half elastic-
plastic failure model in compression, η = 0.5 when the slenderness ratio λ ≤ 75,
η = 0.35 when λ = 150. When λ is between two values, η can be calculated by
linear interpolation, and when λ > 150, it is assumed that the element losses all
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capacity at the onset of instability and that η = 0.

S

Sp

O
Δ

(a) Elastic-plastic failure model in tension

Sp

O
Δ

S

ηSp

(b) Half elastic-plastic failure model in com-
pression

Figure 6: Failure models of transmission tower elements

3.1.2 Structural system failure criteria

The structural system of a transmission tower is statically indeterminate. The com-
plete structure (the structural system) may not be described to have failed until the
failure of a sufficient number of elements has occurred to induce a complete sys-
tem failure mode. These modes may be in the form of a mechanism resulting in
collapse (zero stiffness; an ultimate limit state) or excessive deformation (a type of
serviceability limit state). The failure criteria for structural system of transmission
tower may be summarised as [Cong. D. (2001)]:

(1) The formation of a structural mechanism;

(2) The bearing capacity of the structural systems reaches a maximum, or its load
bearing capacity reduces for the first time;

In this paper the preceding criteria have been applied in identifying failure of a
transmission tower as a structural system.

3.1.3 Statistical characteristics of variables

In the calculation of the system reliability of a transmission tower, the material
strength, basic wind pressure, and dead load have been assumed to be random
variables. The statistical characteristics of these random variables are given in table
2.
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Table 2: Statistical characteristics of random variables

Variable name
mean value

standard value
µ

coefficient of
variation δ

Probabilistic
distribution type

Dead load 1.06 0.070
Normal

distribution

Wind load 0.908 0.193
Extremum type

I distribution
Steel strengths compression 1.121/1.060/1.104 0.108/0.109/0.117 Lognormal

distributionQ420/Q345/Q235 tension 1.142/1.080/1.126 0.108/0.109/0.117

3.2 Failure mode analysis of a suspension straight towers of ± 800kV double
circuit

The computational model described in this paper has been applied to the structural
system reliability analysis of a ±800kV double circuit suspension straight tower
(tangent tower). This is a type of self-supporting tower that stands along straight
sections of a transmission route, and its only function is to suspend the wires and
not create or regulate tension. The tower’s height is 66m (see Fig.7). The mid-
span length lh of this tower, the distance between two mid-points on either side of
the tower span, required for calculating the horizontal forces acting on the tower,
is 510m. The maximum sag span length lv, is defined as the horizontal distance
between the two sag points of on either side of the tower, used to calculate the
vertical forces acting on the tower, is 650m (see Fig.8). Steel Grades Q420, Q345
and Q235, have been assumed for the structural elements of the transmission tower,
and material specifications of the tower are listed in the table 3. The basic design
climate conditions (assumed for north-western China) are: the recurrence intervals
of the basic wind speeds and ice thicknesses for a suspension straight tower are
100 years; the maximum mean wind speed is 27m/s and the benchmark height for
measuring the wind speed is 10 metres above ground level; the mean thickness
of covering ice is 10mm. Icing of transmission lines is not the controlling case for
transmission tower structures located in arid and semi-arid regions of north-western
China, where the climate is predominantly dry with extremely low precipitation.
In this paper, the case of combined wind and gravity (ice) loads is considered to
identify the main failure mode for the more general scenarios. The typical wind
direction is assumed to be at 60◦ degree to the primary axes of the transmission
tower. (a) The elevation of the transmission tower (four sides)

For a transmission tower comprising a high number of elements, the number of
possible failure paths is huge resulting in an equivalent and infeasible number of
non-linear simulations. The primary failure modes high correlativity and lower
ultimate bearing capacities have been selected in this paper. The main failure modes
of this suspension straight tower under 60◦ wind load are illustrated in Table 4.
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Figure 7: The simplification model of the transmission tower

The computer simulations demonstrate that the process of the first 30 dominant
failure modes just takes CPU (DELL OptiPlex 320 computer environment) 46s.

3.3 Computation of the structural system reliability

3.3.1 Methodology

Following the principles of identifying failure modes using the modified stage crit-
ical strength branch and bound algorithm presented in this paper, the structural
calculation of the model is gradually changed in line with the development of the
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Figure 8: Mid span lh and maximum sag span lv of transmission tower

failure path of structural system and the internal force is re-analysed. The failure
probability or conditional failure probability of every element is then calculated.
The equivalent linear limit state equations and corresponding reliability index of a
failure mode (parallel system) can be obtained by using the step-by-step equivalent
linear Johnson method [Liu N.; Li T.C. (1994)]. The basic idea of this method is
that the number of failed elements in a failure mode is supposed to be n. the e-
quivalent failure boundary for element 1 and 2 can be calculated initially. Aa new
equivalent failure boundary for this new state is defined for element 3 can then be
calculated, and so on. Finally the equivalent linear failure boundary for the whole
failure mode can be obtained. Therefore, the step-by-step equivalent linear Johnson
method calculates the equivalent failure boundary of two failure boundaries. For
example, suppose two linearized performance function in a parallel system are

ḠGG1 (Y) = αT
1 Y+β1 = 0

ḠGG2 (Y) = αT
2 Y+β2 = 0

}
(14)

and the equivalent linearized performance function is

GGGE (Y) = ααα
T
EY+βE (15)

where, βEi is the reliability index of equivalent limit state function, αααE is a unit
normal vector at the point βE of equivalent performance function.

The equivalent condition is: (1) the reliability βE of the equivalent limit state func-
tion equals to the broad reliability βp = −Φ−1[P

(
ḠGG1 < 0

)
∩P
(
ḠGG2 < 0

)
]; (2) the

sensitivity of reliability with respect to every random variable is same as before and
subsequently

The whole structural system may be seen as a series system composed of several
failure modes, with calculated correlation coefficients between the different failure
modes. Finally the failure probability of whole structural system is calculated using
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Table 3: Elements Corresponding Material Specifications and Steel Grade

Element No. Material Steel
specification strengths

1–4, 13–16, 25–28, 205–208, 209–212 L140x10B Q420
5–6, 9–10, 55–56, 59–60, 77–84, L125x8H Q345
235–238, 275–282
7–8, 11–12, 213–216, 239–246, 291–294 L90x7H Q345
17–24, 31–32, 35–36, 43–44, 47–48, L125x10H Q345
67–68, 71–72, 125–132, 197–204
29–30, 33–34, 41–42, 45–46, 53–54, L110x8H Q345
57–58, 253–260, 283–290
37–40, 49–52 L140x12B Q420
61–64, 73–76, 85–88 L160x14B Q420
65–66, 69–70 L100x7H Q345
89–90, 93–94 L180x14H Q345
91–92, 95–96, 149–156 L160x10H Q345
97–100, 109–112 L200x18B Q420
101–108, 113–120, 137–144 L140x10H Q345
121–124, 133–136 L200x20B Q420
145–148 L200x24B Q420
157–160 2xL180x14B Q420
161–168, 185–192, 231–234 L160x12H Q345
169–172, 181–184, 193–196 2xL180x16B Q420
173–180 L180x12H Q345
217–224, 269–272 L63x5H Q345
225–228 L50x4S Q235
229–230 L45x4S Q235
247–250 L70x5H Q345
251–252, 273–274 L80x6H Q345
261–268, 295–296 L75x5H Q345

the Ditlevsen narrow bound method [Ditlevsen O. (1979)]. The specific calculation
steps are as follows:

(1) Identify failure mode of structural system using the modified stage critical
strength branch and bound algorithm, and suppose that the number of a failure
mode is m;

(2) Assume the input random variable is X = (x1,x2, · · · ,xk)
T . The number of fail-

ure elements in a failure mode is n. Update the structural ANSYS model, making
use of the results of the failure path. Calculate the internal forces, and establish
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Table 4: Main failure modes of a ±800kV suspension straight tower under 60◦

wind load
Failure Failure Path

Modes No.
1 49→ 218→ 221→ 268→ 240→ 229→ 54→ 109→ 197→ 87
2 73→ 240→ 262→ 267→ 78→ 102→ 87→ 220→ 221→ 216
3 85→ 90→ 262→ 95→ 267→ 222→ 219→ 240→ 87
4 109→ 286→ 264→ 222→ 219→ 149→ 257→ 267→ 120
5 133→ 268→ 286→ 161→ 222→ 262→ 219→ 246→ 289→ 168
6 197→ 202→ 178

limit state equation of every element in a failure mode.

g j (X) = 0 ( j = 1,2, · · · ,n) (16)

(3) Compute the failure probability or conditional failure probability of every ele-
ment using the first-order second-moment method; transform the independent ran-
dom variables X into the standard normal random variables Y and the limit state e-
quation of the corresponding elements into standard normal space with GGG j (Y) = 0.
Expand GGG j (Y) into a Taylor series at the design point Y∗. Choose the linear term
of the Taylor series and obtain the equation of performance function as:

ḠGG j (Y) = α
T
j Y+β j = 0 ( j = 1,2, · · · ,n) (17)

where, β j is the reliability index of failure element j. α j is a unit normal vector at
the point β j of performance function.

(4) Using the step-by-step equivalent linear Johnson method, obtain the equivalent
linear performance function of failure elements in a failure mode:

GGGEi (Y) = ααα
T
EiY+βpi (i = 1,2, · · · ,m) (18)

where, βpi is the reliability index of failure mode i, αααEi is a unit normal vector at
the point βpi of equivalent linear performance function in failure mode i.

(5) Calculate the correlation coefficient between failure modes

ρi j = ααα
T
EiαααE j (i, j = 1,2, · · · ,m) (19)

(6) View the failure modes of the whole structure as a series system. Using the
Ditlevsen narrow bound method compute the failure probability Pf of structural
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system from;

Pf 1 +
m

∑
i=2

max

(
Pf i−

i−1

∑
j=1

Pf i, j,0

)
≤ Pf ≤

m

∑
i=1

Pf i−
m

∑
i=2

max
j≤i

(Pf i, j) (20)

where, Pf i is the failure probability for failure mode i, Pf i = Φ(−βEi). Pf i, j is the
joint failure probability for failure mode i and j, Pf i, j =Φ2 (−βEi,−βE j,ρi j). Φ2 (·)
is a function of a two dimensional standard normal distribution.

3.3.2 Structural system reliability predictions

Under a 60◦ wind load condition, the equivalent linear performance function and
the relevant reliability index corresponding to the six main failure modes illustrated
in Table 4 are;

GE1 = 0.4182YR−0.0199YG−0.9081YW +4.6994
GE2 = 0.3822YR−0.0006YG−0.9241YW +3.8529
GE3 = 0.3759YR−0.0052YG−0.9266YW +3.7951
GE4 = 0.3970YR−0.0103YG−0.9178YW +3.9936
GE5 = 0.4014YR−0.0110YG−0.9158YW +4.4520
GE6 = 0.4162YR−0.0229YG−0.9090YW +3.9555


(21)

where, YR, YG, YW are the random variables of the structural resistance, dead load
and wind load in standard normal space, respectively.

Using these equivalent linear performance functions, (19) and (20) predict the sys-
tem reliability under the combination of dead load and a 60◦ wind load to be in the
range 3.795≤ β ≤ 3.800.

4 Discussion

(1) The main failure modes of a suspension straight transmission tower of±800kV
double circuit under dead load and 60◦ wind load begins with failure of the main
element of the tower body, in which, the failure modes No.1, 2, and 3 (see Table
4) are caused by the failure of main element of the tower body near the lower cross
arm. This leads to failure of the elements in the horizontal diaphragm ®, ¯ and
° (see Fig.7(b)), the near crossed diagonal member, and other major elements of
the tower body. In contrast, failure modes No.4 and 5 are mainly generated by
failure of the major elements of tower waist, near the crossed diagonal members,
and elements of the horizontal diaphragm ° and ± (see Fig.7(b)). Failure mode
No.6 is caused by the failure of tower legs and a crossed diagonal member. The
main failure modes are mostly distributed in 4 regions: the tower body near the
lower cross arm, the tower waist, the tower leg, and the horizontal diaphragm.
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There is a large local deformation at the location of the hanging line on the cross
arm.

(2) Failure of the tower under wind load chiefly begins with failure of the main ele-
ments of the tower body, the elements composing of horizontal diaphragm account
for a large proportion of failure elements (see Table 4). The horizontal diaphragm,
therefore, is more important to a high transmission tower, and the reasonable design
of that can improve the wind resistance of the tower.

(3) The reliability index of a series system mainly depends on the failure mode
which has a smaller reliability index. The system reliability index of the studied
transmission tower is very close to that of failure mode 3 under a 60◦ wind load
condition (see equation (19)).

(4) The current “Unified standard for reliability design of building structure (GB
50068-2008)” [GB 50135-2006 (2006)] in China divides the safety level of struc-
tural members into level 1, 2 and 3 according to the importance of structure. The
target reliability index of a structural member subject to a ductile failure is speci-
fied for each level as 3.7, 3.2 and 2.7, respectively. The structural safety level of
a ± 800kV transmission tower is set as level 1. The target reliability index of it-
s members should, therefore, be 3.7. The current code, however, does not make
any demands on the target reliability index for the structural system. If the speci-
fication of the target reliability index for a structure member in current code is to
be taken as a guide, the system reliability of this transmission tower under 60 de-
gree wind load can meet the requirements. Eurocode 0 “Basis of structural design
(EN 1990:2002)” [Eurocode 0 (2002)] also divides the Reliability Consequence
(RC) into RC1, RC2 and RC3 associated with the three consequences classes. The
recommended minimum reliability index for ultimate limit states associated with
different RC is 3.3, 3.8 and 4.3, respectively, for a 50 year reference period. The
system reliability of this transmission tower under 60-degree wind load is slightly
below the target reliability of RC2.

5 Conclusions

A modified stage critical strength branch and bound algorithm has been proposed
and implemented to study the failure modes of a complex skeletal structure in the
form of a transmission tower. Furthermore, the structural system reliability of a
transmission tower has been computed. The main conclusions of the research pre-
sented in this paper are summarized as follows:

(1) A set of three improvements to the critical strength branch and bound algo-
rithm has been proposed. The solution to a test-case example of a 10-bar truss
verified these modifications. The improved branch and bound algorithm considers
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the influence of the variability of the load and the resistance to the bounding pa-
rameters. It has been shown to effectively remove redundant and secondary failure
modes with higher reliability indices, and improve the efficiency without omitting
the main failure mode of structural system. The test-case formed the basis of ex-
tending the application of the method to the analysis of a more complex skeletal
structural system in the form of a transmission tower.

(2) A program to efficiently identify main failure modes for structural system of
transmission tower has been successfully written with the comprehensive use of
MATLAB and ANSYS. The results have been qualitatively validated against simi-
lar published work. The speed and accuracy of the program is consistent with the
requirements of both scientific research and engineering practice, and can act as a
reference.

(3) The numerical simulations of the failure mode of a suspension straight transmis-
sion tower of ±800kV double circuit indicate that the most typical failure modes
of this type of transmission tower are failures in the tower body near the lower
cross arm, the waist of tower, and the tower leg. However, it may be noted that at
the location of the suspended transmission line at cross arm, the local deformation
is largest under the action of a 60◦ wind load. In terms of structural design, it is
clearly demonstrated and intuitively expected, that if the load capacities of those
elements in which the ratio of strength to internal force is relatively low in failure
region of the transmission tower are enhanced, the load capacity or the reliability
of the whole structural system will be effectively improved, along with the overall
structural performance.

(4) In the structural system analysis of a transmission tower, an elastic-plastic fail-
ure model may be adopted to represent the behaviour the tension members, and
the so-called “half elastic-plastic failure model” may be adopted in the case of
compression member. Computational analyses suggest that the proposed failure
models may realistically represent the actual stress condition with the elements of
a transmission tower.

(5) It is valuable to study the optimization the design of a transmission tower whilst
satisfying the system reliability indices, to maximise the performance of the com-
plete structure.
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