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Abstract: This work deals with a statistical approach to the uncertainty propa-
gation analysis when estimating the kinetic mass transfer parameters used to model
a chromatographic column in the Simulated Moving Bed. The chromatographic
column modeling was performed using the new front velocity approach. The uncer-
tainty propagation analysis of operational factors intervening in the chromatograph-
ic process to estimated parameters was made using the response surface methodo-
logy. The application of the factorial experimental design allowed us to establish
those operational factors showing a greater influence on continuous chromatogra-
phy. Besides, the chromatographic regions, where factors cause a greater output
variation as well as their respective patterns, were determined. The analysis was
applied to the separation of glucose and fructose.
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1 Introduction

The characterization of chromatographic columns constitutes an important step to
determine mass transportation properties used in designing industrial units such as
the Simulated Moving Bed (SMB) process. The modeling and simulation of chro-
matographic systems lead to the understanding of the main mass transfer mecha-
nisms and operational conditions that can be used to improve the molecule separa-
tion/purification.

The application of the inverse problem methodology to chromatography has pro-
vided highly accurate outcomes when determining mass transfer parameters, as
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shown by several researches on the study and analysis of absorption chromato-
graphic systems [Vasconcellos, Silva-Neto, and Santana (2003); Câmara and Silva-
Neto (2008); Lee, Kasat, Cox, and Wang (2008); Lugon, Silva-Neto, and Santana
(2009); Nam and Mun (2012)].

Both in computer-aided prediction and estimation, as well as in experimentation-
s, the accuracy quantification of outcomes is important [Moffat (1988); Roache
(1997)]. The error propagation relationship among the physical quantities involved
should be known in order to either obtain the actual value and the confidence in-
terval of a physical magnitude of interest, or optimize the experimental conditions
or the design from numerical simulations or measurements prone to random er-
rors. A measurement or estimation uncertainty is defined as a parameter associated
with the result of a measurement or estimation and it characterizes value disper-
sion[ISO (2008)] . The result of a measurement or estimation is considered as the
best estimation of a real value, and all sources of uncertainty affect its propagation.
Therefore, the result cannot be adequately construed without knowing its uncertain-
ty. The uncertainty quantification will allow us to establish the confidence intervals
for the estimated parameters, which is very important from the engineering point
of view.

The estimation of kinetic mass transfer parameters characterizing the high perfor-
mance liquid chromatography (HPLC) involves four steps: 1) injection, 2) sep-
aration, 3) detection and 4) estimation. This article includes an analysis of the
uncertainty present in estimation due to each of the above-mentioned steps. In the
injection step, uncertainty is mainly due to random variations in the injected volume
or the sample concentration. In the separation step, the main sources of uncertainty
are: retention volume, temperature and flow ratio. Detection adds uncertainty to
the concentration measurement reaching the detector. The estimation step adds the
uncertainty resulting from the intrinsic variability of the estimation algorithms.

Determining the way in which uncertainties of different factors interact with each
other and affect the final estimation is a non-linear non-trivial problem. For math-
ematically simple models, when the number of parameters to be subjected to vari-
ation is small and its relationships can be expressed as an algebraic equation, then
the uncertainty analysis can be made using analytical methods [Rao (2005)]. How-
ever, for more complex processes, such as column chromatography, this approach
should be ruled out.

The main purpose of stochastic solutions is to determine the mean (expected) so-
lution of the physical problem and to obtain the solution confidence intervals, for
a given uncertainty in some input parameters [Mendes, Ray, Pereira, Pereira, and
Trimis (2012)]. There are different stochastic approaches accurately modeling the
uncertainty propagation of input parameters in output variables by means of sim-
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ulations [Tatang (1995)]. A typical strategy is the use of the Monte Carlo method
[Hibbert, Jiang, and Mulholland (2001); Díez, Cabellos, Rochman, Koning, and
Martínez (2013)]. This method randomly selects the values of target factors ac-
cording to their probability distributions. Other methods are based on the spectral
representation of parameters uncertainty using the Polynomial Chaos Decomposi-
tion [Knio and Maître (2006); Najm (2009)]. There are two procedures to estimate
uncertainty of lab findings, namely, the bottom-up and the top-down procedures
[Kučera, Bode, and Stvpánek (2000)].

The aim of this work is to analyze the propagation of the uncertainty present in
the values of some variables intervening in the characterization of a column chro-
matography when estimating the kinetic parameters of the model. This allows us
to know which factors require a greater experimental accuracy.

For this purpose, an alternative method to the ones above-mentioned should be ap-
plied. This alternative method is based on the use of the response surface [Khuri
and Mukhopadhyay (2010)] to obtain the probability distribution function (pdf ) of
estimated parameters. Compared with the Monte Carlo method, the advantage of
this proposal is that computer time is shorter and the interpretation of how uncer-
tainty affects the factors intervening in the estimated parameters variations is more
straightforward.

The work is organized as follows: Section 2 includes the column chromatogra-
phy modeling technique known as front velocity. Section 3 describes the different
uncertainty sources, and the response surface methodology as a way to model un-
certainty propagation and the factorial analysis required to study the influence of
different uncertainty sources. Findings and their analysis are included in Section 4.
And finally, the conclusions.

2 Front Velocity for Chromatographic Modeling

The column chromatography model determines the SMB final separation perfor-
mance depending on the number of interconnected columns. In general, several
research groups use dispersion models [Guiochon (2002)] to represent the colum-
n chromatography. These are robust and efficient models, though they require a
sound numeric treatment of equations in partial derivatives which demand a high
computer level.

This work utilize a new modeling approach known as convection front velocity
[Bihain, Silva-Neto, Llanes-Santiago, Afonso, and Câmara (2012);Câmara (2014)].
According to this approach, the liquid phase convection is considered the main phe-
nomenon in molecular transportation through column chromatography, followed by
a mass transfer between the solid adsorbent and the liquid phase.
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This modeling approach can be used as a powerful tool to determine the chro-
matographic behavior of a sample, since it can be easily implemented in a routine
analysis requiring a reduced number of parameters.

2.1 Front Velocity

Due to the fact that the flow velocity inside the column is determined by an external
pumping system, the time required by the liquid phase to travel along the chromato-
graphic column can be determined if the volumetric flow velocity, the porosity and
the column volume are experimentally known.

In the chromatographic column shown in Fig. 1, the J∗-size control volume travels
along the column at the same speed of the eluent flow. In this case, the column
longitude is discretized with a J∗-size control volume.

Figure 1: L-longitude chromatographic column with a discretized volume of J∗

[Câmara (2014)].

The (∆t) time interval in which the liquid phase travels for each control volume is
obtained with the following expression

∆t =
εV
nF

(1)

where ε , V , n and F correspond to the column bed porosity, the total column vol-
ume, the number of control volumes and the liquid flow ratio, respectively.

When modeling the mass transfer, it is necessary to assume two concentrated mass
transfer models described by equations (2) and (3), where C, q, k1 and k2 account
for the concentration of both liquid and solid phases, as well as the global adsorp-
tion and desorption constants of the mass transfer kinetics.

dC
dt

= −k1C+ k2q (2)

dq
dt

= −dC
dt

(3)

Modeling simulations using the front velocity are compared with experimental data
available in [Azevedo and Rodrigues (2000)]. Fig. 2 shows a comparison between
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experimental results and data obtained by simulation, for which the following pa-
rameters were used: flow-rate = 30ml/min, porosity = 0.4, injection-vol. = 300ml,
and injection-conc. = 15mg/ml.

Figure 2: Comparison between the simulation (lines) results and the experimental
absorption (dots) for glucose and fructose.

2.2 Estimation of Parameters

With the purpose of estimating the unknown model parameters, an implicitly in-
verse problem is formulated as an optimization problem in order to minimize the
residual square function

S(~K) =
[
~Cexp−~Ccal(~K)

]′ [
~Cexp−~Ccal(~K)

]
= ~R′~R (4)

where ~Cexp is the concentration vector of experimental solutes, ~Ccal is the vector
of estimated values, ~K = (k1,k2)

′ is the vector of unknown parameters to be deter-
mined, and the vector of residues ~R corresponds to

~R = ~Cexp−~Ccal(~K). (5)

The ~K∗ inverse problem solution minimizes the norm given by (4), which is

min
~K

S(~K) = S(~K∗). (6)

The optimization method used for the inverse problem solution was the Simulated
Annealing (SA) [Chibante (2010); Silva Neto and . Becceneri (2012)]. However,
other methods can be used as shown in [?; Cuco, Silva Neto, Campos Velho, and
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de Sousa (2009)]. An SA characteristic, which is common for all global optimiza-
tion methods, is its high computer effort, as well as the time the direct problem
solution requires to obtain the system response. In order to prevent delays in the
estimation of parameters, an iterative approach was used, in which the algorithm is
configured for barely some cycles and then it is restarted with the outcome achieved
as an initial condition. This results in a better use of the initial convergence veloc-
ity of this algorithm. The iterative process stops when the difference between two
consecutive solutions is below the established value, or when a specific number of
iterations is achieved.

Tab.1 includes the global mass transfer parameters obtained.

Table 1: Global mass transfer parameters obtained from the inverse problem.

Glucose Fructose
k1 [min−1] 0.01798 0.01302
k2 [min−1] 0.03001 0.01098
Keq =

k1
k2

0.599 1.186
S [g/L] 4.59 4.50

3 Uncertainty Propagation in a Chromatographic Column

3.1 Uncertainty propagation analysis using simulation

The uncertainty propagation analysis using an analytical method could imply a
complex mathematical handling, for which an analytical solution can only be pos-
sible through approximations. A method eluding algebra and calculation is the
one that applies numerical simulation techniques which only require the system
or process model and the distribution knowledge or uncertainty levels. With this
approach, and knowing the values of variables, outputs are repeatedly calculated
with minor input changes. Once enough repetitions are made, output distribution-
s assume the correct form from which the mean and standard deviations can be
determined (or any other appropriate measurement of the distribution).

All potential variation factors should be taken into consideration when designing
simulations. The experimenter should decide how many factors would vary sig-
nificantly and the number of experiments to be conducted. The number of factors
depends on the potential uncertainty sources and the number of experiments should
be selected in accordance with the required properties, namely: orthogonality, rota-
tivity, uniform precision and optimality. In turn, the samples to be analyzed should
be homogeneous and as much representative of future samples as possible [Maroto,
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Riu, Bouqué, and Rius (1999)]. If information (historical data) is available, input
uncertainty intervals can be quantified as in [Wang and Wang (2011)].

Input variables considered in this work are: flow velocity, porosity, injection vol-
ume, and injection concentration, which have been considered in other works too
[Hibbert, Jiang, and Mulholland (2001);Hund, Massart, and Smeyers-Verbeke (2003)].
For each variable, variations up to 10% were defined, as indicated in [Hund, Mas-
sart, and Smeyers-Verbeke (2003)]. The uncertainty obtained for estimating the
parameters will be the outcome from the combination of contributions of every
uncertainty sources.

3.2 Response Surface Methodology

As previously mentioned, a commonly used method for this kind of analysis is the
Monte Carlo Method. However, for the process under study, this approach is not
recommended due to the number of executions that must be made in order to obtain
the corresponding pdf. Fig. 3 shows the Monte Carlo scanning in the uncertainty
region, where the estimation of the model parameters should be made for each
indicated point. The figure assumes a two-variable process defined in a coded scale
from −1 to +1 (the low and high levels of the variable).

Figure 3: Scanning of the uncertainty region required by the Monte Carlo Method

The response surface methodology approach is used in this work. It involves a set
of mathematical and statistical techniques used to develop a relationship function
between a y response of interest and a set of x1,x2, . . . ,xk associated variables (in-
puts) [Khuri and Mukhopadhyay (2010)]. In general, this relationship is unknown,
but can be approximated through a polynomial model

y = f ′(x)β + ε (7)

where x = (x1,x2, . . . ,xk), f (x) is a vector function of p elements that consist of
powers and cross-products of powers of x1,x2, . . . ,xk up to a certain degree denot-
ed by d(≥ 1), f ′ means transpose function, β is a vector of p unknown constant
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coefficients, and ε is a random experimental error assumed to have a zero mean.
The quantity f ′(x)β represent the mean response (expected value of y), denoted by
µ(x).
The aim is to consider a model like (7) meeting three objectives:

1. To establish a relationship, though approximated, between y and x1,x2, . . . ,xk,
which might be used to predict the response values for different sets of values
in input variables.

2. To determine, through hypothesis tests, the significance of factors whose lev-
els are represented by x1,x2, . . . ,xk.

3. To determine the optimal x1,x2, . . . ,xk combination resulting in a maximum
(or minimum) response over a certain region of interest.

Usually, two main models are used [Khuri and Mukhopadhyay (2010); Mont-
gomery (2012)]. These are model special cases (7): the first-order model (d = 1)

y = β0 +
k

∑
i=1

βixi +∑∑
i< j

βi jxix j + ε, (8)

and the second-order model (d = 2)

y = β0 +
k

∑
i=1

βixi +∑∑
i< j

βi jxix j +
k

∑
i=1

βix2
i + ε. (9)

In order to achieve the three objectives previously mentioned, a sequence of n ex-
periments should be conducted. In each experiment, the y response is measured
(or observed) for a specific combination of input variables. All these combination-
s constitute the so-called response surface design which can be represented in a
matrix denoted by D , in the n× k order

D =


x11 x12 · · · x1k
x21 x22 · · · x2k
...

...
...

xn1 xn2 · · · xnk


where xui denotes the uth design setting of xi. Each row of D represents a point,
referred to as a design point, in the k-dimensional Euclidean space. Let yu denote
the response value obtained as a result of applying the uth setting of x, that is
xu = (xu1,xu2, . . . ,xuk)

′. From Eq. (7), it is obtained

yu = f ′(xu)β + εu, u = 1,2, . . . ,n (10)
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where εu denotes error term at the uth experimental run. Model Eq. (10) can be
expressed in matrix form as

y = Xβ + ε (11)

where

y =


y1
y2
...

yn

 , X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
...

1 xn1 xn2 · · · xnk

 , β =


β0
β1
...

βk

 y ε =


ε1
ε2
...

εn

 .
In general, y is an (n×1) vector of the observations, X is an (n× p) matrix of the
levels of the independent variables, β is a (p× 1) vector of the regression coeffi-
cients, and ε is an (n×1) vector of random errors.

Assuming that ε has a zero mean and a covariance matrix given by σ2In, the ordi-
nary least-squares estimator of β is

β̂ = (X′X)−1X′y. (12)

In general, at any point, x, in a experimental region, denoted by R, the predicted
response is

ŷ(x) = f ′(x)β̂ , x ∈R. (13)

3.3 Factorial design

Obtaining the response value entails the study of the effect of two or more variables
known as factors in this context. In general, the factorial design used as an approach
to obtain the D response surface design is the most efficient for this purpose [Feng,
Saal, Salsbury, Ness, and Lin (2007); Hinkelmann and Kempthorne (2008); Hajjaji,
Renaudin, Houas, and Pons (2010)]. Besides, it has the advantage of establishing a
relationship between the parameters of the regression model (7) and estimating the
effects of each factor.

For the simple case of two variables (factors): A and B, the observations in a facto-
rial experiment can be described by an effects model [Montgomery (2012)] given
by Eq. (14)

yi jk = µ + τi +β j +(τβ )i j + εi jk (14)

where µ is the overall mean effect, τi (i = 1,2, . . . ,a) is the effect of the ith level
of the factor A, β j ( j = 1,2, . . . ,b) is the effect of the jth level of the factor B,
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(τβ )i j is the effect of the interaction between τi and β j, and εi jk is a random error
component. The subindex (k = 1,2, . . . ,n) represents the replicate count carried
out in each experiment. The effects ar defined as deviations from the overall mean,
so ∑

a
i=1 τi = 0, ∑

b
j=1 β j = 0 and ∑

a
i=1(τβ )i j = ∑

b
j=1(τβ )i j = 0.

In principle, all factors have the same influence, therefore it is of interest to test the
hypothesis about the equality of the effects. In the case of two factors would be:

H0 : τ1 = τ2 = · · ·= τa = 0 (15a)

H1 : at least one τi 6= 0

to test the hypotheses about the equality of A’s levels effects,

H0 : β1 = β2 = · · ·= βb = 0 (15b)

H1 : at least one β j 6= 0

to test the hypotheses about the equality of B’s levels effects, and also it is of interest
determining whether A and B effects interact. Thus, it is also wishes to test

H0 : (τβ )i j = 0, ∀i, j (15c)

H1 : at least one (τβ )i j 6= 0

These hypotheses are tested using a analysis of variance (ANOVA), in which the
sum of squares (SS) of the deviation from the overall mean effect due to each one of
the factors intervene, their interactions, and the error (difference between replicates
for n≥ 2). To test the hypotheses about the effects and their interactions, the value
of ratio MSE f f ect

MSE
must be analyzed. Large values of this ratio imply that the data do

not support the null hypotheses. For the case of two factors, MSE f f ect is defined as

E(MSA) = E
(

SSA

a−1

)
= σ

2 +
bn∑

a
i=1 τ2

i

a−1
(16)

E(MSB) = E
(

SSB

b−1

)
= σ

2 +
an∑

b
j=1 β 2

i

b−1
(17)

E(MSAB) = E
(

SSAB

(a−1)(b−1)

)
= σ

2 + · · ·

n∑
a
i=1 ∑

b
j=1(τβ )2

i j

(a−1)(b−1)
(18)

and MSE is defined as

E(MSE) = E
(

SSE

ab(n−1)

)
= σ

2 (19)
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If it is assumed that the model Eq. (14) is adequate and that the error terms εi jk
are normally and independently distributed with constant covariance σ2, then each
of the ratios of means squares MSA

MSE
, MSB

MSE
, and MSAB

MSE
ar distributed as F with a− 1,

b−1, and (a−1)(b−1) numerator degree of freedom, respectively, and ab(n−1)
denominator degree of freedom. The effect is significant if the calculated ratio is
grader than the threshold defined for the test.

In this work two levels are defined for each one of the factors, that is called 2k

factorial design. This design is widely used in industrial studies and is considered
to provide results with adequate accuracy [(Montgomery, 2012)].

The factorial design has several advantages, it: 1) allows the effect analysis of each
factor individually and interactions among them; 2) allows the estimation of a fac-
tor effects at different levels of other factors, thus leading to conclusions which are
valid over a range of experimental conditions; and 3) requires a shorter number
of experiments. Concerning the latter advantage, if the number of experiments re-
quired by the Monte Carlo Method, Fig. 3, is compared with those required by the
2k factorial approach, Fig. 4, the factorial approach requires a highly reduced num-
ber of experiments. This is due to the fact that results from factorial experiments
–also known as factorial points– are used to obtain the response surface generating
polynomial by which the output estimation for random values within the uncertain-
ty region is made.

(a) Generating first-order polynomial d = 1 (b) Generating second-order polynomial d = 2

Figure 4: Scanning of the uncertainty region required by the 2k con k = 2 Factorial
Analysis

We must find out if there are significant differences between the mean value of
experiments conducted and the experimental findings for the surface center in order
to determine the need of incorporating the quadratic terms in the surface response
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generating polynomial.

Let’s assume that ȳF is the mean value of experiments conducted, and ȳC the mean
value of runs in the center. If the difference ȳF − ȳC is small, then the central point
is close to the hyperplane crossing the factorial points, hence there is no quadratic
curvature. The square sum for a quadratic curvature is

SSPQ =
nFnC(ȳF − ȳC)

2

ȳF + ȳC
(20)

where nF is the number of factorial points and nC is the number of runs in the
center. This amount can be compared with the error square sum to prove the pure
quadrature.

4 Outcomes and discussion

In order to illustrate the uncertainty propagation analysis, we must use the prob-
lem to estimate the kinetic mass transport parameters in a chromatographic column
modeled by the front velocity. Tab. 2 shows the variables selected for the analysis
and deviations of the 10% of the corresponding experimental nominal values.

Table 2: Variables of interest for the uncertainty analysis when estimating the front
velocity model parameters.

Variable Range Eng Unit
Flow-rate 27-33 ml/min
Porosity 0.36-0.44
Injection vol. 270-330 ml
Injection conc. 13.5-16.5 mg/ml

Fig. 5 shows how the flow-rate variation affects the output process. Graphs in Fig.
5(a) are obtained by solving the direct problem for the flow-rate values used in the
factorial design, showing the different concentration profiles at the time in which
they were obtained. The difference module between the profiles obtained for the
maximum and minimum values, denoted by δ , represent the uncertainty region for
the output concentration generated by the flow-rate variations. These uncertainty
regions are shown in Fig. 5(b).

Fig. 6 shows the output uncertainty regions generated for variations in the remain-
ing factors of interest. As can be seen, the uncertainty concentration can vary in
time and the dispersion resulting from each factor produces a different uncertainty
pattern. This uncertainty characterization can provide experimenters with a support
to know regions displaying a higher variation due to changes in factors intervening
in the chromatography.
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(a) Output variation (b) Output uncertainty region

Figure 5: Influence of variations in the flow-rate

(a) Uncertainty due to the porocity (b) [Uncertainty due to the volume

(c) [Uncertainty due to the concentration

Figure 6: Uncertainty regions in the output concentration generated by variations
in the factors of interest.
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4.1 Estimation of the confidence interval

This work proposes the 2k[ Kandananond (2013)] factorial analysis to design the
response surface. According to this design, β̂ elements are not correlated and their
variances have a minimum value. This implies that the design provides the greatest
accuracy when estimating the model parameters (8). Two replicas were made for
every experiment indicated by the analysis.

The analysis of variance (ANOVA) was performed in order to determine how fac-
tors analyzed affect the estimation of kinetic mass transfer parameters. Tab. 3
shows the ANOVA corresponding to the factorial analysis of the k1 parameter esti-
mation in glucose. The threshold for the F statistical test to consider a significant
effect is th = 4.49.

Table 3: Analysis of variance to estimate k1 with glucose.
Source Value(10−3) SS(10−5) DoF FStat Sig %Contrib Coef(10−3)

flow-rate (A) -2.54 5.16 1 2992.56 + 8.30 -1.27
porosity (B) -0.97 0.75 1 434.28 + 1.20
injection vol. (C) 4.16 13.83 1 8029.09 + 22.27 2.08
injection conc. (D) 7.18 42.21 1 23921.49 + 66.35 3.59
AB -0.26 0.06 1 35.30 + 0.10
AC -0.03 0.003 1 0.55 - 0.00
AD 0.57 0.26 1 152.15 + 0.42
BC 0.30 0.07 1 42.18 + 0.12
BD -0.24 0.05 1 27.79 + 0.08
CD 0.06 0.004 1 1.72 - 0.00
ABC -0.61 0.29 1 169.98 + 0.47
ABD -0.08 0.01 1 3.01 - 0.01
ACD -0.60 0.29 1 166.54 + 0.46
BCD -0.28 0.06 1 36.14 + 0.10
ABCD -0.24 0.04 1 25.68 + 0.07
Total 62.12 31 18.16

The F statistics indicates that most factors of interest and their combinations have a
significant effect on the k1 estimation. However, this test is sensitive to the number
of replicas made in each experiment, since the freedom degrees of the statistical
test depend on the number of replicas made. This means that outcomes considered
to be significant outcomes for a number of replicas might not be significant for a d-
ifferent number of them. Therefore, the criterion applied when selecting the effects
to be included in the response surface generating polynomial is the percentage con-
tributing with the behavior of the studied variable not having significant changes
when the number of replicas of the experiments made does not vary.

The criterion used when selecting factors to be used in the response surface gener-
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ating polynomial is the incorporation of those determining the output behavior in
more than one 2%. As can be seen in Tab. 3, the variation when estimating the
k1 parameter is mainly determined by the effects of (A), (C) y (D) factors, which
determine the 96.92% of the parameter variation.

Once the greatest-effect factors are selected, a multiple regression model is made
to relate these factors with outcomes derived from the k1 estimation. The regres-
sion coefficients of the model are obtained by applying the Least Square Method
associating each k1 estimated value with the corresponding values used in the direct
problem solution. The generating polynomial obtained was

k̂1 = (18.16−1.27A+2.08C+3.59D) ·10−3 min−1 (21)

Tab. 4 shows the ANOVA corresponding to the factorial analysis of the k1 parame-
ter estimation for fructose

Table 4: Analysis of variance to estimate k1 with fructose.
Source Value(10−3) SS(10−5) DoF FStat Sig %Contrib Coef(10−3)

flow-rate (A) -2.89 6.69 1 1380.28 + 29.84 -1.45
porosity (B) -1.41 1.60 1 329.82 + 7.13 -0.71
injection vol. (C) 3.18 8.07 1 1663.81 + 35.97 1.59
injection conc. (D) 2.46 4.85 1 999.18 + 21.60 1.23
AB 0.83 0.54 1 112.31 + 2.43 0.41
AC 0.03 0.001 1 0.16 - 0.00
AD -0.07 0.002 1 0.92 - 0.02
BC -0.36 0.10 1 20.86 + 0.45
BD -0.33 0.09 1 18.38 + 0.40
CD -0.07 0.002 1 0.71 - 0.02
ABC 0.17 0.02 1 4.76 + 0.10
ABD 0.25 0.05 1 9.93 + 0.21
ACD -0.42 0.14 1 29.44 + 0.64
BCD -0.48 0.19 1 38.76 + 0.84
ABCD 0.06 0.001 1 0.64 - 0.01
Total 22.44 31 13.23

As can be seen, the influence of factors of interest on variations in k1 estimation is
more homogeneous in the case of fructose. This homogeneity implies the incorpo-
ration of a greater number of factors to the response surface generating polynomial.
In this case, it is necessary to include the effect of the four main factors and the
combined effect (AB) to explain the 96.97% of the k1 variation. The generating
polynomial obtained is:

k̂1 = (13.23−1.45A−0.71B+1.59C+1.23D+0.41AB) ·10−3 min−1 (22)
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Following the same procedure for k2, the generating polynomials obtained for both
glucose and fructose are, respectively:

k̂2 = (30.13−2.03A+2.41C+6.19D) ·10−3 min−1 (23)

k̂2 = (11.17−1.20A−0.51B+1.22C+1.15D+0.31AB) ·10−3 min−1 (24)

with which 97.35% and 97.13% of the k2 variation can be explained.

For all cases, a statistical test was conducted to determine the existence of a quadrat-
ic curvature in the response surface confirming that there is no evidence of quadratic
effects. Therefore, we can conclude that a first-order surface is appropriate.

Once the generating polynomials describing the behavior of estimated parameters
against the variations of factors of interest are obtained, random values within the
range defined for every factor are assigned, and the pdf for each kinetic mass trans-
fer parameter is estimated. In this work, the pdf estimation was made using the
Maximum Likelihood Estimation (MLE) [Myung (2003)] method .

Tab. 5 shows the pdf characterizing the variability when estimating the kinetic
model parameters. Intervals specified for parameters correspond with the limits for
a confidence 95%.

Table 5: Estimated distributions for kinetic parameters.

Substance Param PDF Interval

Glucose
k1 N (0.0183,0.588 ·10−5) [18.298,18.321] ·10−3

k2 N (0.0304,1.494 ·10−5) [30.345,30.403] ·10−3

Fructose
k1 N (0.0133,0.249 ·10−5) [13.250,13.259] ·10−3

k2 N (0.0112,1696 ·10−5) [11.187,11.194] ·10−3

Fig. 7 shows the joint probability distributions obtained for k1 and k2 parameters of
the model.

4.2 Influence of the adsorption

A very important characteristic of the column chromatography process is the Keq =
k1
k2

value, which expresses the tendency of the solute to remain in the liquid or solid
phase. For Keq < 1 values, the solute tend to remain in the liquid phase. While for
Keq > 1 values, the solute has a greater tendency to reach the solid phase. Fig. 8
shows the variability contribution percentages in k1 estimation for each effect, for
different Keq values. The broken line indicates a 2% contribution.

As can be seen, the estimation variability is mainly determined by the effects of the
main factors. Meanwhile, the combined effects have almost no influence. Besides,



Factorial Experiment Design 457

(a) Glucose (b) Fructose

Figure 7: Joint probability distributions to estimated kinetic parameters.

graphs evidenced how the contribution homogeneity of the main effects increases
while the Keq value increases.

In the graph Fig. 8(a) corresponding to glucose, we can see the poor contribution of
porosity –less than 1.5%–. This is due to the poor influence of factors affecting the
solid phase over substances prone to remain in the fluid phase. Likewise, we can see
that the variability in the injected concentration contributes, to a great extent, with
the estimation variability. This indicates the need to guarantee a greater accuracy
for this parameter in experimentation, since the estimation shows a great sensitivity
to changes. In the graph Fig. 8(d) corresponding to fructose, we can see a more
uniform contribution of factors and a greater porosity influence.

Something similar happens in the behavior of k2 estimation

Likewise, the Keq effect is reflected in the estimation of kinetic mass transfer pa-
rameters. Fig. 9 shows the mean values of the theoretical quadratic error obtained
for each experiment made representing different operational conditions. As can be
seen, while de Keq value increases, it is possible to make estimations closer to the
real parameter value and, consequently, to obtain a response which is more adjusted
to the real one.

5 Conclusions

This work presents an analysis on how uncertainty affects values of operational
factors in the continuous chromatography when estimating the kinetic mass transfer
parameters used in the characterization of a chromatographic column modeled in
the Simulated Moving Bed.

As demonstrated, the use of factorial analysis to develop a response surface allowed
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(a) Keq = 0.6 (b) Keq = 0.75

(c) Keq = 0.9 (d) Keq = 1.18

(e) Keq = 1.84 (f) Keq = 2.5

Figure 8: Effects contribution to the estimation variability of k1.



Factorial Experiment Design 459

(a) Keq < 1 (b) Keq > 1

Figure 9: Theoretical mean quadratic error in the estimation of parameters for each
experiment.

us to establish, in a direct way, the operational factors having the greatest influence
on estimated parameters. Besides, the chromatogram regions where these factors
show a greater variation were determined. As was confirmed, every factor creates
a region with a different output dispersion pattern, thus supporting experimenters
on those regions showing a greater variation. Likewise, as was demonstrated, vari-
ations are determined, to a great extent, by the main factors and their combined
effects have a very small contribution. This characterization of the contribution of
factors allows the identification of uncertainty sources having a greater incidence
and, therefore, those requiring a higher accuracy in experimentation.

By using the response surface, we were able to obtain the probability densities de-
scribing the intervals in which estimated parameters can be found, by defining the
range of values that uncertainty sources can assume. There is no need of imple-
menting a high number of experiments to do all this.

The study evidenced that, when substances involved have a higher absorption rate,
higher Keq, the influence of uncertainty sources on the estimated parameter varia-
tions is more homogeneous, and it is possible to make more accurate estimations
of parameters, and to obtain model outputs closer to the real ones.
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