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Long Endurance and Long Distance Trajectory
Optimization for Engineless UAV by Dynamic Soaring

B. J. Zhu1,2, Z. X. Hou1, X. Z. Wang3 and Q. Y. Chen1

Abstract: The paper presents a comprehensive study on the performance of long
endurance and long distance trajectory optimization of engineless UAV in dynamic
soaring. A dynamic model of engineless UAV in gradient wind field is developed.
Long endurance and long distance trajectory optimization problems are modelled
by non-linear optimal control equations. Two different boundary conditions are
considered and results are compared: (i) open long endurance pattern, (ii) closed
long endurance pattern, (iii) open long distance pattern. In patterns of (i) and (ii),
the UAV return to original position with the maximum flying time in pattern (ii)
, and in patterns of (ii) and (iii), the maximum distance and minimum flying time
occur in pattern (iii). The energy variations trends of three patterns have shown a
fairly similar pattern. In the gradient wind field, long endurance and long distance
are two independent flight patterns for engineless UAV by dynamic soaring.

Keywords: long endurance, long distance, dynamic soaring, non-linear optimal
control.

1 Introduction

Long endurance and long distance are key operational factors of unmanned aerial
vehicle utility. Be limited by the fuel capacity of unmanned aerial vehicle (UAV),
people propose to use engineless flight. In many flight environments of UAV, there
are existed energy available in the atmosphere that can be used to increase en-
durance and distance, such as wind gradients. To extract energy from the wind
gradients is generally referred to as dynamic soaring [Bower (2011)].
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As a matter of fact, there are many large-sized birds in the nature that they make
use of gradient wind to enhance their flight ability, such as albatrosses [Denny
(2009); Traugott et al. (2010)]. By means of dynamic soaring, the wandering al-
batrosses achieve flights of several thousands of miles without flapping their wings
[Richardson (2011)]. Lord Rayleigh (1883) published “The soaring of birds” on
the Nature in 1883, which is regarded as the first research paper about dynamic
soaring. The wandering albatross’ parameters were studied by Sachs (2005), with
its 3.4-m wing span is of similar size to a small UAV. That is to say, the albatross’
flight performance can be taken as a baseline model against which dynamic soaring
performance of a small UAV. And due to friction between the moving air mass and
the surface, wind gradients are commonly found near the surface, especially in the
interactions between the ocean and lower atmosphere. So there are many missions
that the dynamic soaring UAV would be well suited to perform.

For the principle of dynamic soaring, Clarence (1964) established many mathe-
matical models to analyse the dynamic soaring flight of albatross. Lawrance and
Sukkarieh (2011) presented a path planning and dynamic target assignment algo-
rithm to generate energy-gain paths from the current wind estimate. Optimization
technique was applied for determining dynamic soaring trajectories which yield
the maximum energy transfer from the moving air to the aircraft [Sachs and Or-
lando (2003)]. Akhtar et al. (2009) described a trajectory generation technique
suitable for real-time implementation, which would allow on-line computation of
the next loop during the current trajectory loop. In order to estimate wind field
for autonomous dynamic soaring, Lawrance et al. (2011) provided a method for
taking direct observations of the wind during flight and creating a wind to direct
future exploration. With regards to the wind condition for dynamic soaring, Sachs
et al. (1989) gave a analytical solution of minimal wind condition trajectories for
dynamic soaring, Deitter et al. (2009) generated optimal trajectories for minimal
and maximal wind conditions. The sufficient conditions for dynamic soaring were
computed by Bencatel et al. (2014) through a heuristic method that optimized the
flight trajectories. Effects of wind gradient slope and wind profile non-linearity on
dynamic soaring patterns were examined by Zhao (2004).

From these research findings, it can be found that the UAV could extract enough
energy from wind gradients for its flight by means of dynamic soaring. Meanwhile,
these achievements are very useful in studying the relationship between energy
variation and optimal trajectory in dynamic soaring. This paper extends these works
by considering long endurance and long distance in dynamic soaring.

Since wind gradients can be regarded as an energy resource, we can do some mis-
sion planning base on dynamic soaring. Whether war or peace, an aircraft is often
wished to best advantage for some particular purpose. It may be to fly as long en-
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durance as possible, or to achieve the maximum distance on a given quantity of
fuel. In fact, long endurance and long distance are two goals contradicted each
other. If an aircraft wants to stay in the air for the longest possible time, which is
not the same consideration as flying for maximum range [Kermode (2006)], to get
maximum endurance, it must use the least possible fuel in a given time, that is to
say, it must use minimum power. Power means drag times velocity, the velocity is
the air speed of aircraft. If it wants to move an aircraft with a distance of the max-
imum number of metres, it must pull the aircraft with the minimum thrust. Least
thrust means least drag, flying for maximum distance means minimum drag, which
is the essence of flying for distance. In the same way, in a dynamic soaring system,
long-endurance dynamic soaring and long-distance dynamic soaring are two modes
of energy extraction in this time scale separation, which can be used to treat each
mode almost independently.

There are many optimization methods used for investigating trajectories for dy-
namic soaring in specific conditions [Sachs and Orlando (2003); Zhao (2004); Zhao
and Qi (2004); Sachs (2005); Guo and Zhao (2010); Vincent et al. (2013)]. Inspired
by the optimization methods by Reference [Zhao (2004)], long endurance and long
distance are considered as optimal goals in energy-gaining trajectories of dynamic
soaring, and obtained the optimal trajectories in which the UAV passes through
wind gradients with specific conditions on its relative orientation (heading, climb
rate and bank angle), aerodynamic load factor, and airspeed.

The remainder of the paper is organized as follows. Modeling and analysis are
introduced in Section 2. Simulation results and associated discussion are given in
Section 3. Finally, the concluding remarks are made in Section 4.

2 Modeling and analysis

2.1 The gradient wind model

The aircraft can extract energy from the wind field when it is following a favorable
dynamic soaring trajectory. So in the process of optimization, there is a mathe-
matical model of the gradient wind profile needed. Due to the friction between the
wind and the surface, it is assumed that the aircraft flies over a flat surface. To make
the calculation, only the horizontal wind component is simply considered, the wind
component of other direction is zero. In the wind field, the horizontal wind speed
increases with the increasing of altitude, and air density is assumed to be constant
[(Zhao and Qi (2004)]. The relation between wind speed Wx and height above the
surface zi is given by

Wx = β zi (1)
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where Wx is the wind speed at height z, the value of β is defined by the wind
conditions. In this paper, the wind velocity is nearly zero at the surface.

2.2 Motion equations of dynamic soaring

In dynamic soaring, the rotational dynamics are assumed to be far faster than the
translational dynamics, the rotations is not considered in the flight model. In this
section the dynamic equation for a soaring aircraft in three degrees of freedom
(3DOF) is discussed. There is no propulsion system on the aircraft. For a point
mass model, the forces and angles used in this model are shown in Fig. 1. The
inertial wind speed components in the x, y, and z directions are respectively denoted
as Wx, Wy and Wz. Note that Wy =Wz=0, Wx is the function of wind.

In Fig.1, there are three applied forces accounted for in this model: lift (L), drag
(D) and gravitational force (mg), γ is flight path angle, ψ is heading angle, φ is
bank angle, V represents the air speed.

Figure 1: Air-relative velocity and applied forces for the UAV.

Using the standard formulations for lift and drag force:

L =
1
2

ρSCLV 2 (2)

D =
1
2

ρSCDV 2 (3)

CD =CD0 +KC2
L (4)

where ρ is air density (kg/m3), S is wing area (m2), CL is lift coefficient, CD is drag
coefficient, V is the airspeed of the aircraft, CD0 is the parasitic drag coefficient and
K is the induced drag coefficient. Note that

K =

(
4
(

L
D

)2

max
CD0

)−1

(5)
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where (L/D)max is the maximum lift over drag ratio, which, together with CD0, is
the most important aircraft aerodynamic efficiency parameter and fully defines the
aerodynamic drag polar.

Applying Newton’s Second Law to analyze the forces acted on the aircraft, the
results are shown in Eqs. (6):

mẍi =−Dcosγ cosψ +L(−sinγ cosψ cosφ − sinψ sinφ)
mÿi =−Dcosγ sinψ +L(−sinγ sinψ cosφ + cosψ sinφ)
mz̈i = Dsinγ +L(−cosγ cosφ)+mg

(6)

The kinematic equations is given by Eqs. (7):
ẋi =V cosγ cosψ−Wx

ẏi =V cosγ sinψ

żi =−V sinγ

(7)

The kinematic equations (Eqs. (7)) is differentiated with respect to time, and the
following equations can be obtained.

ẍi = V̇ cosγ cosψ− γ̇V sinγ cosψ− ψ̇V cosγ sinψ−Ẇx

ÿi = V̇ sinψ cosγ + ψ̇V cosψ cosγ− γ̇V sinψ sinγ

z̈i =−V̇ sinγ− γ̇V cosγ

(8)

Combining Eqs. (6) and Eqs. (8), then there is:
mV̇ =−D−mgsinγ−mẆx cosγ cosψ

mV cosγψ̇ = Lsinφ −mẆx sinψ

mV γ̇ = Lcosφ −mgcosγ +mẆx sinγ cosψ

(9)

In these sets of kinematic equations (Eqs. (6) and Eqs. (8)), the state variables
are [xi, yi, zi, V , ψ , γ], and the control variables are [CL, φ ]. The lift coefficient
is primarily a function of the angle of attack, the angle of attack can be effected
through the elevator motion, so the lift coefficient is used as a control variable.
Eqs. (9) is the equations of motion in the wind relative reference frame. The wind
relative reference frame is a noninertial frame of reference. There has a fictitious
force (F) applied to it [José and Saletan (1998); Deittert, Richards et al. (2009)],

F =−m
dWx

dt
=−m

dWx

dz
· dz

dt
= mβV sinγ (10)

The fictitious force (F) is created by wind, so the direction of the force is the same
as the wind, also in the X direction. Of course, the fictitious force can be used to do
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work [José and Saletan (1998)]. The power of the inertial force can be expressed
as,

P = Fẋi = mβV 2 sinγ cosγ cosψ (11)

Because of the inertial force, the UAV can extract energy from the wind gradient.
Eq. (11) shows that to extract energy from the wind field depends on the product
of sin(γ) and cos(ψ). In a cycle of dynamic soaring, the energy (E) extracted from
the wind gradient can be illustrated as

E =
∫ T

0
mβV 2 sinγ cosγ cosψdt (12)

where, T is the cycle of dynamic soaring.

Because the ability of UAV to continue flying as the aerodynamic forces generated
on UAV depend on the airspeed, the air relative kinetic energy for UAV is more
reliable. The air relative total energy of UAV can be represented as,

Eair =−mgzi +
1
2

mV 2 (13)

Eq. (13) is differentiated with respect to time resulting in Eq. (14):

Ėair =−mgżi +mVV̇ (14)

Combined with Eqs. (9), (14), gives,

Ėair =−DV +mβV 2 sinγ cosγ cosψ (15)

From comparison between Eq. (11) and Eq. (15), it can be found that the power
of the inertial force created by wind gradient is the only source of energy which
the UAV extracted from the flight environment. That is to say, in order to extract
energy from the wind, the UAV must fly in regions of gradient wind field (β 6=0).
Meanwhile, from Eq. (15), it is obviously energy is always lost due to drag.

2.3 The boundary constraint of trajectory

Dynamic soaring requires the vehicle to be manoeuvered in a coordinated fashion
through the wind gradient. Energy-gaining trajectories are ones in which the vehi-
cle passes through gradients with specific conditions. First of all, setting the initial
conditions of optimization calculation. Subject to Eqs. (16), the following initial
conditions:

x(t0) = 0
y(t0) = 0
z(t0) = 0
γ(t0) = 0

(16)
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where t0 means the initial time.

Of course, the trajectorys of optimization should respect the aircraft’s operational
and performance limitations. The following path constraints:

zi ≥ 0 (17)

CLmin ≤CL ≤CLmax (18)

−φmin ≤ φ ≤ φmax (19)

n≤ nmax (20)

The aircraft are flying above the ground, zi never becomes negative. The lift coeffi-
cient CL keeps in positive due to the attack angle in dynamic soaring never becom-
ing negative. Of course, there are a range of trajectories produced energy gains.
Optimum trajectories with energy gains can sustain total energy, there may be se-
lected as those that maximise the distance of endurance. And the set of terminal
constraints are selected to enforce a basic periodic dynamic soaring flight.

V (t f ) =V (t0) (21)

zi(t f ) = zi(t0) (22)

γ(t f ) = γ(t0) (23)

ψ(t f ) = ψ(t0) (24)

where t f is the terminal time. Eq. (21) and Eq. (22) lead to energy-neutral dynamic
soaring. Dynamic soaring path constrains are generally needed due to bound on the
load factor and seeability. The load factor (n) is defined as:

n =
L

mg
≤ nmax (25)

The constraint on the load factor (n) affects the maximum airspeed. On the other
hand, the maximum value of the load factor (nmax) cann’t exceed a certain value.
In this paper, according to the characteristics of the aircraft, the following values of
flight constraints are used [Zhao and Qi (2004)]:

CLmin = 0, CLmax = 1.5, φmax = 80◦, nmax = 5 (26)



364 Copyright © 2015 Tech Science Press CMES, vol.106, no.5, pp.357-377, 2015

2.4 The energy calculation formulaes for distance and endurance in dynamic
soaring

We can determine the aerodynamic configuration which provides the minimum
energy expenditure:

D = n ·mg · D
L
= n ·mg ·CD

CL
(27)

In this paper, the energy required for the flight is absorbed from the flight environ-
ment, it is difficult to find out the relationships between energy absorb and flight
types. But it is plain and simple to calculate the energy loss in dynamic soaring.
The energy loss equations for distance and endurance in dynamic soaring are dif-
ferent with each other. Through the following calculation, it could be found that
the control variables are play different roles in these two processes. According to
the constraints and optimization goals, there are three patterns.

Pattern (i): in this pattern, in order to maximize the endurance, it need to maximize
the amount of time that the aircraft stays in the air. For endurance, the consumed
energy (W) is:

W = Dv · t (28)

The above equation (Eq. (28)) can be changed into:

W =
1
2

ρSCDv3t =

√
2(mg)3/2
√

ρS
CD

(CL/n)3/2 t (29)

If the consumed energy (W) equals to the extracted energy (E), combined with Eqs.
(12) and (29),

t =
∫ T

0 βV 2 sinγ cosγ cosψdt
√

2mg3/2
√

ρS
CD

(CL/n)3/2

(30)

The endurance is also a multi parameters optimization problem. In this problem
formulation, the maximum cycle time of a dynamic soaring cycle is meaningful to
determine the endurance of UAV flight. Mathematically,

maxJ = t f (31)

subject to Eqs. (9). t f is the maximum flight time. The constraint conditions are
listed in Part 2.3. The vehicle returns to its original kinematic velocity state and
height, but not the original position.
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Pattern (ii): in order to make the results of long endurance more convincing, there
are two possibilities need to be considered. One is the UAV returns to its original
kinematic velocity state and height, but not the original position, such as pattern (i),
the other is the UAV returns to its original kinematic velocity state and the original
position. So in the process of long endurance trajectory optimization when the
UAV returns to original position, it needs some other constraint conditions to get
the satisfactory results.

x(t f ) = x(t0) (32)

y(t f ) = y(t0) (33)

Pattern (iii): in order to maximize the distance, it should reduce the drag as much
as possible in the process of flight. For distance, the consumed energy (W) is:

W = D ·d = mg ·
(

CD

(CL/n)

)
·d (34)

Similarly, if the consumed energy (W) equals to the extracted energy (E), combined
with Eqs. (12), (34),

d =

∫ T
0 βV 2 sinγ cosγ cosψdt

g ·
(

CD
(CL/n)

) (35)

From Eq. (35), it can be found that the flight distance is a multi parameters opti-
mization problem. The paper seeks to maximum the distance of a dynamic soaring
cycle. The problem is studied through,

maxJ = d f (36)

subject to Eqs. (9). d f is the maximum distance. The constraint conditions are
listed in Part 2.3. The aircraft returns to its original kinematic velocity state and
height, but not the original position.

2.5 Nonlinear optimal control problems of dynamic soaring

Dynamic soaring represents a difficult control problem due to the aerobatic nature
of the manoeuver and nonlinearity of the aerodynamics. In this paper, the opti-
mal control is converted into a parameter optimization problem and solve it using
an existing nonlinear programming code. Firstly, the time interval of the optimal
problem is divided into a number of prescribed subintervals, the times at the ends
of the subintervals are called nodes. Secondly, the control parameters and state
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parameters at the nodes are chosen to form the control and state histories by in-
terpolation. Thirdly, the state equations of the optimal problem are integrated, and
the nonlinear programming code iterates on the unknown programming code iter-
ates on the unknown parameters until the parameter optimization problem is solved
[Hull (1997)].

The conversion of an optimal control problem into parameter optimization using
the collocation approach begins with the definition of a series of N time points
within the solution time interval [0, tf].

Values of state and control variables at each time point become solution parameters:

u =



x0
y0
z0
V0
ψ0
γ0

CL0
φ0

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

xi

yi

zi

Vi

ψi

γi

CLi

φi

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

xN

yN

zN

VN

ψN

γN

CLN

φN


(37)

u has 8(N+1) variables. Putting all of the unknown parameters together, there is,

X =



x0
y0
z0
V0
ψ0
γ0

CL0
φ0
t0

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

xi

yi

zi

Vi

ψi

γi

CLi

φi

ti

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

xN

yN

zN

VN

ψN

γN

CLN

φN

tN


(38)

which has 9(N+1) variables. The normalized equations of motion (Eqs. (9)) can be
expressed as

U = f (u) (39)

Implicit integration of Eq. (39) is performed by calculating the residuals and driv-
ing them to zero as a part of the optimization process. For the second-order mid-
point rule, which has one of function evaluation at tm, the integration formula is
applied in the form

Km = Xk+1−Xk− fm(tk+1− tk) (40)
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where

fm = f (um) (41)

and

tm =
tk + tk+1

2
, um = uk+uk+1

2 (42)

The residual is given by

Km = Xk+1−Xk−
1
2
( fk + fk+1)(tk+1− tk) (43)

According to the fourth-order Simpson one-third rule, the residual is

Km = Xk+1−Xk−
1
6
( fk + fm + fk+1)(tk+1− tk) (44)

fm is evaluated at
tm = tk+tk+1

2
Xm = Xk+Xk+1

2 − 1
8 ( fk+1− fk)(tk+1− tk)

um = uk+uk+1
2

(45)

The path constraints in Equations (9) are enforced at the series of discrete time
points as bounds on the solution parameters. In the development of a numerical
integrator, it is assumed that u(t) is known so that the way in which um is computed
does not affect the order of the integrator. For the midpoint rule, the um would be
the parameters instead of the uk. The converted parameter optimization problem
may then be stated in the Eqs. (31) and (36).

3 Characteristics of optimal control problem

Because dynamic soaring flight is directly inspired by albatross, wandering alba-
tross’ parameters used by Sachs [Sachs (2005)] are assumed Based on the architec-
ture of a wandering albatross, a soaring aircraft model is used. The soaring aircraft
model has similarities in dimension as well as the performances with albatross This
will ensure that the performances of the model are achievable by an engineering-
designed aircraft. The parameter values of soaring aircraft model are repeated in
Table 1.

This is a small UAV, which is designed by referring to the shape of a Wandering
Albatross. According to the parameters of UAV, the dynamic soaring model is
emulated by means of MATLAB. The toolbox used for the simulation is GPOPS
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Table 1: The soaring aircraft model parameter values used.

Parameter Value
Mass [kg] 8.5

Wing Area S [m2] 0.65
Aspect Ratio 16.81

Span [m] 3.306
ρ [kg/m3] 1.22

CD0 0.033
Emax 20

(General Pseudospectral Optimal control Software) [Patterson and Rao (2013)].
The GPOPS library uses SNOPT to perform the optimization.

The basic characteristics of engineless dynamic soaring flights of UAVs through
wind gradients mainly include: trajectory, airspeed, the change of attitude angles
and so on.

First of all, under the restrictions of the model and boundary conditions, three three-
dimensional trajectories are acquired, as shown in Figs 24. The direction of X is the
the direction of wind. Fig. 2 is the trajectory of long endurance, which can be
called as open long endurance trajectory.

Figure 2: The trajectory for pattern (i).
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After a cycle of flight, the aircraft doesn’t return to the initial position. The flight
distance in Fig. 2 is about 210 m.

The trajectory in Fig. 3 can be called as closed long endurance trajectory.

Figure 3: The trajectory for pattern (ii).

The optimization goal in Fig. 3 is the same as Fig. 2. Due to the diffierent terminal
constraints, the UAV returns to original position after a cycle of flight. This pattern
of dynamic soaring is suitable for long time cruising in somewhere.

Under restriction of Eq. (36), the trajectory for maximum distance is acquired, as
shown in the Fig. 4, which can be called as long distance trajectory.

Compared with Fig. 3, the aircraft did not come back to the initial position after a
cycle of flight. The flight distance of Fig. 4 is over 260 m, which is farther than
Fig. 2. This pattern of dynamic soaring is suitable for long distance flight.

In the simulation, the initial airspeed of the aircraft is 46.9 m/s, the aircraft’s air-
speed variations in three dynamic soaring cycles are shown in Fig. 5.

In Fig. 5, V1 and V2 are the airspeed for long endurance pattern of dynamic soaring
in a log cycle, V1 corresponds to pattern (i), V2 corresponds to pattern (ii). Naturally,
V3 is the airspeed for pattern (iii). After one cycle of flight, the aircraft’s airspeed
of three patterns are the same as the initial speed. That to say, even there is no
motivation offered, the aircraft can achieve the goals of long distance and long

endurance by means of dynamic soaring, although there have drag to consume
energy. In addition, from Fig. 5, it can be found that the cycle length of pattern (iii)
is shorter than other patterns. That is to say, long endurance and long distance are
two independent flight patterns.
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Figure 4: The trajectory for pattern (iii).

Figure 5: Airspeeds for the aircraft flying through three log cycles.
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In three dynamic soaring cycles, the aircraft’s flight path angle (γ), bank angle (φ )
and heading angle (ψ) are shown in Figs. 6-8. In Figs. 6-10, (i) represents pattern
(i), (ii) represents pattern (ii), and (iii) represents pattern (iii).

Figure 6: The flight path angle of dynamic soaring.

In Fig. 6, the variations of the flight path angles for three trajectories are almost the
same. For comparison the trend of open trajectory is steeper than closed trajectory.
Associated with Figs. 2-4, the closed long endurance trajectory is more smoothly.

The bank angle, which is also called as roll angle. When turning, an additional
sideways motion is imparted on the aircraft. To complete the turning, the aircraft
must be banked to an angle at which the total lift supports both the weight of the
aircraft and the pull of the turn. From Fig. 7, it can be found that the closed long
endurance trajectory is roughly circular in stimulation. In contrast, there exist fast
turns in the process of open long endurance trajectory and long distance trajectory.

Fig. 8 is the historical time of heading angle of dynamic

soaring, providing more attitude angle information of the motion. The heading
angle variation of long endurance dynamic soaring is not a periodic process, which
is a wide range process compared with long distance dynamic soaring.

The variations of lift coefficient in the process of dynamic soaring is shown in Fig.
9.

The optimal behaviour of the controls is illustrated in Fig. 4 and Fig. 9. Especially
in Fig. 9, in the upper curve of the dynamic soaring, the maximum lift coefficient is
reached, including long endurance and long distance. During the upper curve, the
aircraft’s airspeed reaches the minimum value, in order to make sure the aircraft
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Figure 7: The bank angle of dynamic soaring.

Figure 8: The heading angle of dynamic soaring.

Figure 9: The lift coefficients for the aircraft flying through three log cycles.
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still has enough lift for flight, it need to increase the lift coefficient. Of course, the
maximum value of the lift coefficient cannot be more than boundary value (1.5). In
Fig. 9, the maximum value of lift coefficient for closed long endurance trajectory
is less than other two, because the minimum value of airspeed for closed long
endurance trajectory is bigger than long diatance. That means the course of closed
long endurance trajectory is smoother than open long endurance trajectory and long
diatance trajectory.

The historical time of the load factor during three optimal dynamic soaring cycles
is shown in Fig. 10.

Figure 10: Load factor for the aircraft flying through three log cycles.

The variations of load factor for the long endurance is basically the same as the
long distance. Load factor is not only a structural design parameter of the aircraft,
but also implied by the bank angle. Compared with Fig. 7, it can be found that
when the bank angle appears rapid changes, in Fig. 10, the load factor also has
rapid changes. Such as at the time of 11s and 12s. The maximum value of load
factor cannot be exceed 5. The values of load factor remain at 0.9 in the most of
the cycle time.

Over three dynamic soaring cycles, the energy dissipated by the drag is illustrated
in Fig. 11. Energy rate 1 corresponds to pattern (i), energy rate 2 corresponds to
pattern (ii), energy rate 3 corresponds to pattern (iii).

From Fig. 11, it can be found that the energy variations for three patterns of dy-
namic soaring are similar. In the top of the flight trajectory, the energy loss due to
drag in open trajectory is greater than closed trajectory. At the time of 11s and16s,
in the two patterns of long endurance of dynamic soaring, the energy loss rate due
to drag close to zero, that is to say, there is no drag in this moment. The long
endurance of dynamic soaring is an effective energy saving flight.
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Figure 11: Energy variations due to drag in three dynamic soaring cycles.

Table 2: The comparisons of three patterns.

Parameters Pattern (i) Pattern (ii) Pattern (iii)
Initial airspeed 46.9 (m/s) 46.9 (m/s) 46.9 (m/s)
Destination airspeed 46.9 (m/s) 46.9 (m/s) 46.9 (m/s)
Initial height 0 (m) 0 (m) 0 (m)
Destination height 0 (m) 0 (m) 0 (m)
The minimum airspeed 11.6 (m/s) 7.2 (m/s) 6.7 (m/s)
The maximum lift cofficient 1.5 0.8 1.5
The maximum attitude 63 (m) 59 (m) 65 (m)
The cycle length 23.5 (s) 26.5 (s) 21 (s)
The flight distance 210 (m) 0 (m) 261 (m)
The energy loss 0 (J) 0 (J) 0 (J)

Table 2 summarizes the characteristic parameters comparisons between three pat-
terns.

From Table 2, it can be found that there is no energy loss in three patterns of dy-
namic soaring, which are suitable for unpowered flight. In comparison, although
the cycle of long distance is shorter than long endurance, the aircraft can keep going
for a long distance in a short cycle time.

4 Conclusions

Dynamic soaring gives the engineless UAV an ability to extract energy from the
environment, thus prolonging its endurance and distance. In the dynamic model of
engineless UAV in gradient wind field, a fictitious force produced by wind gradient
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is positive work force. The energy extracted from the wind field depends on the
product of heading angle and flight path angle. Long endurance and long distance
trajectory optimization in dynamic soaring are formulated as non-linear optimal
control problems, which include two optimization formulas and two kinds of ter-
minal constraints. The method of collocation approach is used to convert these
problems into parameters optimization for numerical solutions.

Three optimal patterns of dynamic soaring are presented. Three energy-gaining
trajectories are ones in which the UAV passes through gradients with specific con-
ditions on its relative orientation (heading angle, flight path angle and bank angle),
aerodynamic load factor, and airspeed and so on. In patterns (i) and (ii), the en-
durance equations for aircraft are optimized as nonlinear problems. When the air-
craft doesn’t return to the original position, patterns (i) occurs. Pattern (ii) results
when the aircraft returns to original position. Patterns (iii) occurs when the dis-
tance equations are optimized. In three patterns, the aircraft gains the maximum
flight time in pattern (ii), in pattern (iii), the aircraft gains the maximum flight dis-
tance. According to the energy variations for three patterns, the closed trajectory
for long endurance is an effective energy saving flight.

Three optimal patterns of dynamic soaring are presented. Three energy-gaining
trajectories are ones in which the UAV passes through gradients with specific con-
ditions on its relative orientation (heading angle, flight path angle and bank angle),
aerodynamic load factor, and airspeed and so on. In patterns (i) and (ii), the en-
durance equations for aircraft are optimized as nonlinear problems. When the air-
craft doesn’t return to the original position, patterns (i) occurs. Pattern (ii) results
when the aircraft returns to original position. Patterns (iii) occurs when the dis-
tance equations are optimized. In three patterns, the aircraft gains the maximum
flight time in pattern (ii), in pattern (iii), the aircraft gains the maximum flight dis-
tance. According to the energy variations for three patterns, the closed trajectory
for long endurance is an effective energy saving flight.

Finally, in order to make dynamic soaring profit from further research work as soon
as possible, some future work should be done, such as the accurate model of wind
field, more dynamic soaring experiments and so on.
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