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Abstract: Computational simulation models with different fidelity have been widely
used in complex systems design. However, running the most accurate simulation
models tends to be very time-consuming and can therefore only be used sporadi-
cally, while incorporating less accurate, inexpensive models into the design process
may result in inaccurate design alternatives. To make a trade-off between high ac-
curacy and low expense, variable fidelity (VF) metamodeling approaches that aim
to integrate information from both low fidelity (LF) and high-fidelity (HF) models
have gained increasing popularity. In this paper, a Difference Mapping Framework
using Ensemble of Metamodels (DMF-EM) for global VF metamodeling is pro-
posed. In DMF-EM, a tuned model is created to bring the low fidelity model as
close as possible to high fidelity model. Then, a VF metamodel is obtained by cal-
ibrating the tuned model using scaling function that is used to map the difference
between the high fidelity model and the tuned model. Since the nature of the scal-
ing function is not a priori, it is fitted using ensemble of metamodels to decrease
the risk of adopting inappropriate metamodels. As a demonstration, the proposed
approach is compared to existing methods using several numerical cases and two
engineering examples. Results illustrate that the proposed DAD-VFM approach is
more accurate and robust, that is needed in metamodel-based engineering design
problems.
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1 Introduction

Computational simulation models have been widely used to explore design alter-
natives during preliminary design phase. In spite of processing power and storage
capability of computer have increased dramatically, the time-consuming, high fi-
delity engineering simulation codes makes it still impractical to rely exclusively
on high fidelity simulation models when exploring the design space for an opti-
mum. Just taking Ford Motor Company as an example, it was reported that it takes
the company about 36-160 hours to run one crash simulation for a full passenger
car [Crombecq, Laermans, and Dhaene (2011)]. A preferable strategy is to adopt
global metamodel (also referred to as “surrogate”) which can mimics the original
model at a considerably reduced computational cost, replacing the computational
cost high fidelity simulations during the optimization. There are a lot of commonly
used metamodels, such as Polynomial Response Surface (PRS) models [Jiang and
Han (2007)], Kriging models [Li, Wu, and Huang (2014); Jiang, Wang, Zhou,
and Zhang (2015)], Neural Networks models [Kerh, Lai, Gunaratnam, and Saun-
ders (2008)], Radial Basis Function(RBF) models [Shokri and Dehghan (2012)],
Support vector regression (SVR) models [Xiang, Matsumoto, Wang, and Jiang
(2011)],etc. A more detailed overview on various metamodeling techniques can
refer to Wang and Shan (2007). These metamodeling techniques play a important
role in supporting of design and optimization: (1) engineers can gain insight into
the system by employing a cheap-to-run metamodel; (2) it renders a better noise
filtering capability than gradient-based method; (3)building metamodel makes it
easier to detect simulation errors and identify interesting regions as the entire de-
sign space is explored and analyzed; (4) building metamodel makes parallel com-
puting and optimization more simplify because it involves running the same sim-
ulation at a lot design alternatives [Shan and Wang (2010); Zadeh, Toropov, and
Wood (2009); Panda and Manohar (2008); Munck, Moens, Desmet, and Vande-
pitte (2009)]. It is important to point out that the quality of the metamodel has a
profound impact on the computational cost and convergence characteristics of the
metamodel-based design optimization. While the quality of the metamodels largely
depends on the sample points at which the computer simulation or physical exper-
iments are conducted. Generally, more sample points offer more information of
the system, however, at a higher cost [Shan and Wang (2010)]. Less sample points
require lower expense, while lead to inaccurate metamodels even distorted meta-
models. Hence, conflict of high accuracy and low expense seems to be inevitable
in building metamodels.

To ease this problem, variable-fidelity(VF) metamodeling approaches that use lower
fidelity (LF) models and a scaling function to approximate the higher fidelity (HF)
models have been widespread concerned [Viana, Simpson, Balabanov, and Toropov
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2014]. A HF model is one that is able to accurately describe the physical features
of the system but with an unaffordable computational expense, e.g., physical exper-
iment, finite element, computational fluid dynamics, etc. A LF model is one that
is able to reflect the most prominent characteristics of the system at a considerably
less computationally demanding, e.g., numerical empirical formula. Commonly,
the scaling function (also called bridge function) can be approximated using lo-
cal metamodels, e.g., linear regression, first/second Taylor series [Chang, Haftka,
Giles,and KAO (1993); Alexandrov and Lewis (2001); Gano, Renaud, and Sanders
(2004)] or global stand-alone metamodel, e.g., Kriging metamodels, SVR meta-
models [Gano, Renaud, and Sanders (2005); Qian, Seepersad, Joseph, Allen, and
Wu (2006); Forrester, Sóbester, and Keane (2007); Han, Görtz, and Zimmermann
(2013); Zheng, Shao, Gao, Jiang, and Li (2013)]. The scaling function approxi-
mated using local metamodels for VF metamodeing is easy to implement and can
achieve a relative high accuracy within an appropriate trust region size, e.g., Chang,
Haftka, Giles,and KAO (1993) used a multiplicative scaling approach to correct
the response values of LF models to match the HF models. An application of this
metamodel was tested on a wing-box model of a high-speed civil transport using
an equivalent-plate analysis model and a refined finite-element model as LF and
HF model, respectively. Alexandrov and Lewis (2001) integrated first-order addi-
tive and multiplicative scaling modeling method with the convergent techniques of
nonlinear programming in engineering analysis and design; and have successfully
applied this method to a 3-D aerodynamic wing optimization problem and a 2-D
airfoil optimization problem, achieving a threefold savings and twofold savings
in computing effort, respectively. Gano, Renaud, and Sanders (2004) stated that
these Taylor series or polynomial based scaling methods were effective in reducing
computational effort, but they were only suitable for local optimization problems.
To circumvent this, Gano, Renaud, and Sanders (2005) put forward an adaptive
hybrid scaling method by combining both the multiplicative and additive scaling
functions using global Kriging metamodel, and have demonstrated the effective-
ness and accuracy of this method in the design of high-lift airfoil. Qian, Seepersad,
Joseph, Allen, and Wu (2006) proposed a Bayesian approach to integrate LF model
and HF simulation values for engineering design. Forrester, Sóbester, and Keane
(2007) demonstrated the application of the co-Kriging (extension to Kriging using
the multi-responses) for multi-fidelity design using a generic transonic civil aircraft
wing optimization problem. Han, Görtz, and Zimmermann (2013) put forward a
gradient-enhanced Kriging to form a generalized corrected based method, which
was tested on the design of airfoil. Zheng, Shao, Gao, Jiang, and Li (2013) pro-
posed a hybrid VF global metamodeling method, which a RBF base model and a
Kriging linear correction were combined to make full use of LF and HF informa-
tion. Compared with the local VF metamodeling approach, the most obvious ad-
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vantage of these global VF metamodeling approaches is that they are able to coping
with multiple optimum situations sophisticatedly on the entire domain. However,
these practices may increase the risk of adopting an inappropriate metamodel that
is used in lieu of the scaling function for VF metamodeling when considering the
following two realities: (a) the nature of the scaling function is not a priori and the
resource to obtain information describing the relationship between input variables
and the response values of scaling function is limited (b) the accuracies of con-
structed metamodel for scaling function depend on the current training data, and a
different metamodel type may become more accurate than the selected one with a
new available data set.

To overcome the above mentioned shortcomings and improve the prediction ac-
curacy of VF metamodeling approach, this paper proposed a Difference Mapping
Framework using Ensemble of Metamodel (DMF-EM) that aims to take advantage
of the prediction ability of each stand-alone metamodel for global VF metamod-
eling. In DMF-EM, a general difference mapping framework (DMF) is developed
to integrate the information from both LF model and HF model, where a linear
tuning metamodel is created as a start based on the variable-fidelity data, then, the
obtained tuning metamodel is taken as a base metamodel and is mapped to the
studied HF model using ensemble of metamodels rather than a stand-alone meta-
model. The approximation performance of DMF-EM approach is demonstrated
using some mathematical and engineering cases, and a rough comparison of DMF-
EM approach and other metamodeling techniques for accuracy and robustness per-
formances are made. The main advantages of DMF-EM for VF metamodeling
applications are analyzed and summarized.

The rest of this paper is organized as follows. In Section 2, the background of the
stand-alone metamodeling techniques and VF metamodeling approaches are pre-
sented. Details of the proposed DMF-EM approach are described in Section 3.
Test cases composed of data sampling, performance measures, and the correspond-
ing results and comparisons are provided in Section 4, followed by a conclusion
and future work in Section 5.

2 Background

2.1 Stand-alone metamodeling methods

Generally, the relationship between a vector of input variables x and corresponding
output values Y can be expressed as:

Y = f̂ (xxx,β )+ ε (1)
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where f̂ (·) is the approximation model, β represents the vector of coefficients,
εdenotes a stochastic factor. Metamodeling technologies differ with each other as
to their choices of approximation models and stochastic process expressions. In
this paper, three related metamodeling methods, including Kriging, Radial Basis
Function (RBF) and Support Vector Regression (SVR), are described.

2.1.1 Kriging

Kriging metamodels is an interpolative Bayesian metamodeling technique. It was
originated from geo-statistical and used by Sacks, Welch, Mitchell, and Wynn
(1989) for predicting the unknown response at sample points. Kriging treats the
observed response as a combination of a global model and local deviations:

f̂ (xxx) = p(xxx)+Z(xxx) (2)

where p(xxx) is an known polynomial function, Z(xxx) is the realization of a stochastic
process with mean zero and nonzero covariance. The nonzero covariance of Z(xxx)
is given by:

COV (Z (xi) ,Z (x j)) = σ
2RRR [R(xi,x j)] (3)

where RRR is the correlation matrix. R(xi,x j) is the correlation function between two
sample points xi and x j.When the Gaussian correlation function is employed, it can
be calculated by:

RRR(θ) = exp [−
K

∑
k=1

θk

(
xk

i − xk
j

)2
] (4)

where Kdemotes the dimensions of design space and θk are the unknown correla-
tion parameters to be determined. Because Kriging is an interpolative Bayesian
metamodeling, the model will have no mean square error (MSE) at all sample
points. If the MSE is minimized, the predictor f̂ (x) for unobserved points is ex-
pressed as:

f̂ (x) = β̂ + rrrT (x)RRR−1
(

f − β̂ ppp
)

(5)

where f is the column vector of length m that contains the sample data of the
responses, and ppp is a column vector of length m that is filled with ones when p(xxx)
is taken as a constant. rT (x) is the correlation vector between an unobserved point
x and the sample points.

rrrT (x) =
[
R
(
x,x1) ,R(x,x2) , · · ·,R(x,xN)]T (6)
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The scalar β̂ is estimated using the following equation:

β̂ = (pppT RRR−1 ppp)−1 pppT RRR−1 fff (7)

The estimated variance of the output model can be calculated by:

σ̂
2 =

( fff − β̂ ppp)T RRR−1( fff − β̂ ppp)
N

(8)

The unknown correlation parameters θk are founded using maximum likelihood
estimation can be formulated as [Li, Wu, and Huang (2014)]:

max Φ(Θ) = −
[
N ln(σ̂2)+ ln |RRR|

]
2

s.t. Θ > 0
(9)

where Θ denotes the vector of θk,and both σ̂ and RRR are the function of Θ.

2.1.2 Radial basis function

Radial Basis Function (RBF) is a type of neural network employing a hidden layer
of radial units and an output layer of linear units. Let xxx = {x1,x2 · · ·xm} be a set of
sampling points generated by the design of experiment (DOE). YYY = {y1,y2 · · ·ym}
are the response function values at data locations. The RBF metamodels can be
specified as a line combination of some RBFs with weight coefficients in Eq. (10):

f̂ (x) =
m

∑
i=1

λiϕ(‖xxx− xxxi‖) (10)

where, xxx is a vector of design variables,m is the number of sample points, xi is
the ith sample point. ‖xxx− xxxi‖ denotes the Euclidean distance between the design
variable and the sample points given by:

‖xxx− xxxi‖=
√
(xxx− xxxi)T (xxx− xxxi) (11)

ϕ(·) is a radial basis function. Commonly used radial basis functions include:
(1) bi-harmonic, ϕ (r) = r(2) cubic,ϕ (r) = (r+ c)3;(3) thin-plate spline,ϕ (r) =
r2 log(r);(4) multiquadric, ϕ (r)=

√
r2 + c2;(5)inverse-multiquadric,ϕ (r)= 1√

r2+c2 ;(6)

Gaussian, ϕ (r) = exp
(
−αr2

)
,α > 0.λi are the weight coefficients of the liner

combinations can be obtained by:

λi =
(
Φ

T
Φ+Λ

)−1
Φ

T yi (12)
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where,Λare all zero except for the regularization parameters along its diagonal. Φ

is the design matrix can be expressed as:

Φ =


ϕ(‖x1− x1‖) ϕ(‖x1− x2‖) · · · ϕ(‖x1− xm‖)
ϕ(‖x2− x1‖)

...

ϕ(‖x2− x2‖) · · ·
...

. . .

ϕ(‖x2− xm‖)
...

ϕ(‖xm− x1‖) ϕ(‖xm− x2‖) · · · ϕ(‖xm− xm‖)

 (13)

2.1.3 Support vector regression

Support Vector Regression (SVR) comes from the theory of support vector ma-
chines (SVM), but adds the capability to approximate black box functions. Com-
monly used SVR is ε-SVR which aims to find a function that has at most ε devia-
tion from the targets of the training inputs [Clarke, Griebsch, and Simpson (2005)].
For the linear regression case, ε-SVR can be depicted as:

f̂ (xxx) = 〈www · xxx〉+b (14)

where 〈www · xxx〉 is the dot product between w andx. Another aims of SVR is to make
the f̂ (xxx) to be as flat as possible. Flatness in this sense means a small www in Eq. (14).
Hence, we solve the optimization problem described in the following equation:

min
1
2
|www|2

s.t. yi−〈www · xxxi〉−b≤ ε

〈www · xxxi〉+b− yi ≤ ε

(15)

An assumption made in Eq. (15) is that the prediction error at all sample points are
smaller than ε .However, this is not always the case and two slack factors can be in-
corporated into the original optimization problem to yield a modified formulations
[Acar (2010)]:

min
1
2
|www|2 +C

l

∑
i=1

ξi +ξ
∗
i

s.t. yi−〈www · xxxi〉−b≤ ε +ξi

〈www · xxxi〉+b− yi ≤ ε +ξ
∗
i

ξi,ξ
∗
i ≥ 0

(16)

where C is a constant value used to balance the flatness and the degree of the toler-
ated errors. According to Lagrangian theory and the Karush-Kuhn-Tucker (KKT)
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condition, the optimization problem can be written in the following dual form:

max − 1
2

l

∑
i, j=1

(δi−δ
∗
i )(δ j−δ

∗
j )
〈
xi · x j

〉
− ε

l

∑
i=1

(δi +δ
∗
i )+

l

∑
i=1

yi(δi−δ
∗
i )

s.t.
l

∑
i=1

(δi−δ
∗
i ) = 0

(δi−δ
∗
i ) ∈ [0,C]

(17)

The weight vector and corresponding linear regression are then obtained through
the following expressions:

www =
l

∑
i=1

(δi−δ
∗
i )xxxi, f̂ (xxx) =

l

∑
i=1

((δi−δ
∗
i ))
〈
xxxi · xxx j

〉
+b (18)

Another benefit of the above dual form is that nonlinear regression can also be
used by replacing the dot product of input vector with kernel functions [Clarke,
Griebsch, and Simpson (2005)]. Appling the kernel functions in Eq. (18), we
obtain:

max − 1
2

l

∑
i, j=1

(δi−δ
∗
i )(δ j−δ

∗
j )k (xxxi · xxx j)

− ε

l

∑
i=1

(δi +δ
∗
i )+

l

∑
i=1

yi(δi−δ
∗
i )

s.t.
l

∑
i=1

(δi−δ
∗
i ) = 0

(δi−δ
∗
i ) ∈ [0,C]

(19)

where k (xxxi · xxx j) denotes the kernel functions. Commonly used kernel functions
include: polynomial, Gaussian, Sigmoid and Inhomogeneous polynomial. Then
the SVR metamodels for nonlinear regression becomes:

f̂ (x) =
l

∑
i=1

(δi−δ
∗
i )k (xxxi · xxx j)+b (20)

2.2 Variable fidelity metamodeling technology

The VF metamodeling technology is based on the assumption that, apart from a
HF model that is sufficiently accurate but requires expensive computational cost,
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there is another one that is less accurate but is considerably less computationally
demanding [Simpson, Toropov, Balabanov, and Viana (2008)]. Such LF can be ob-
tained by several ways: (1) simplifying the analysis model (e.g. by using a coarse
finite element mesh instead of a refined finite element mesh, etc.); (2) simplify-
ing the modeling concept (e.g. by using a two-dimensional (2D) model instead
of a three-dimensional (3D) model); (3) simplifying the mathematical or physical
description (e.g. by using the Euler non-cohesive equations instead of the Navier-
Stokes viscous Newton equations). A LF model must be able to describe most
prominent physical features of the design product at a considerably reduced com-
putational cost. In the modeling process, a LF model is tuned (corrected) using the
HF model response from a suitable size of design experiments. In this way, the VF
metamodels can make use of the advantages of both LF models and HF models,
i.e., LF models are used to reduce the computational cost, while HF models are
used to guarantee the accuracy.

Generally, the VF metamodel based on the interaction of HF model and LF model
can be expressed as follows:

F̂(xxx,aaa)≡ F̂( fl(xxx),aaa)≈ F(xxx) (21)

where x is the design vector, F̂(xxx,aaa) denotes the VF metamodel that is used to
replace the actual HF model, fl(xxx) represents the response of the LF model and
F(xxx) represents the true response of the HF metamodel , aaa is a vector of tuning
parameters used for minimizing the discrepancy between the LF and HF models.
From the above definition, the VF metamodel F̂(xxx,aaa) tends to approach the high
accuracy of the HF model but at a considerably less computational effort.

Three types of the LF model tuning have been suggested by Toropov and Markine
(1996) (1) linear and multiplicative metamodel with two tuning parameters; (2)
multiplicative and additive correction functions; (3) use of model inputs as tuning
parameters. More details can refer to the literature, e.g., Viana, Simpson, Bala-
banov, and Toropov (2014), Toropov and Markine (1996), Zadeh, Toropov, and
Wood (2009).

3 Proposed approach

The goal of the proposed approach is to obtain a good estimate of the output re-
sponse by integrating the information from both LF model and HF model. Based
on the variable-fidelity data, a linear tuning metamodel is created as a start. Then,
the obtained tuning metamodel is taken as a base metamodel and is mapped to the
studied HF model using scaling function. The scaling function is fitted using en-
semble of metamodels rather than a stand-alone metamodel. Finally, The obtained
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mapped base metamodel can be used to mimic the behavior of the computational
expensive HF model if its accuracy achieved.

The formulation of the proposed VF metamodeling approach can be stated as fol-
lows:

ŷv(xxx) = ŷl,tuned(xxx)+ c(xxx) = a0 +a1yl(xxx)+ c(xxx) (22)

where a0 and a1 are two running parameters that defined the tuned LF metamodel
ŷl,tuned(xxx) = a0 + a1yl(xxx), c(xxx) denotes the scaling function which is used to map
the difference between the tuned LF metamodel ŷl,tuned(xxx) and the true HF model
yh(xxx),yl(xxx) can be either the original LF model or its metamolel ŷl(xxx), however, for
simplicity of the notation and presenting a more generalized description, the LF
metamodel ŷl(xxx) is used throughout this paper.

The remainder of this section describes the proposed VF metamodeling approach
in more details as follows: Section 3.1 gives the procedure for tuning the LF meta-
model, Section 3.2 gives the procedure for difference mapping using scaling func-
tion fitted with ensemble of metamodels and Section 3.3 presents a step-by-step
description of the proposed approach.

3.1 Tuning the LF metamodel

Two tuning parameters a0 and a1 are adopted to help bring the LF model as close
as possible to the HF model. Several approaches were proposed to determine these
two tuning parameters in previous work, e.g., cross validation [Hastie and Tib-
shirani, (2001)] and maximum likelihood estimation [Gano, Renaud, and Sanders
(2004)]. In this work, the least square (LS) method according to its convenience
and easily application ability, together with bounds constraints are selected to iden-
tified the tuning parameters a0 and a1. The optimization formulation is as follows:

min : L(a0,a1) =
m

∑
i=1

[yh(xi)− (a0 +a1ŷl(xi))]
2

s.t. l0 ≤ a0 ≤ u0, l1 ≤ a1 ≤ u1

(23)

where L(a0,a1) stands for the loss function in a square sense; xi(i = 1, . . . ,m) are
the sample points of HF model. The bounds ( l0,u0), ( l1,u1) posed on tuning pa-
rameters a0 and a1 represent the prior knowledge of the global constant bias and
multiplicative scaling between LF and HF models. This is helpful to avoid the over-
fitting issue within regular linear when there is no enough data. Different types of
tuning parameters a0 and a1 are available, e.g., constant terms, linear terms, and
quadratic terms. To simplify the modeling procedure, the tuning parameters a0 and
a1 are assumed to be unknown but fixed as constant terms in this paper. Note that
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using a1 will help better preserve the “profile” of a LF model and using a0 will
help satisfy the assumption of “zero-mean” priors posed on the bias function c(xxx),
especially if a global bias exists between LF and HF models.

When the optimum a∗0 and a∗1 are obtained by solving Eq. (3), a tuned based meta-
model yl,tuned can be expressed as follows:

yl,tuned = a∗0 +a∗1ŷl(xxx) (24)

where ŷl(xxx) denotes the LF metamodel, yl,tuned is the tuned LF metamodel which
is used as a base metamodel in the scaling process.

3.2 Difference mapping using ensemble of metamodels

The obtained tuned LF metamodel in Eq. (24) is not enough to approximate the
true HF model when data are far from sufficient to explore the behavior of the HF
model performance [Xiong, Chen, and Tsui (2008)]. A scaling function should
better be adopted to account for the remaining discrepancy between the HF simula-
tions data and the scaled LF metamodel. Suppose that the HF sampling set is XXXH =
{xxx1,xxx2, . . . ,xxxm}, which consists of mevaluated experiments in a K-dimentional de-
sign space, and its corresponding HF response is YYY h = {y1,y2, . . . ,ym}.The remain-
ing discrepancy CCC = {c1,c2, . . . ,cm} between the true HF response and the obtained
base metamodel in the tuning process can be represented as:

c(xi) = fh(xi)− (a∗0 +a∗1ŷl(xi)) , i = 1,2, . . .m (25)

Since the expression or internal structure for the HF sampling set XXXH and remain-
ing discrepancy CCC is unknown, different stand-alone metamodels are used to fit the
scaling functions, e.g., Xiong, Chen, and Tsui (2008) constructed a common Krig-
ing metamodel for the scaling function. Zheng, Shao, Gao, Jiang, and Qiu (2014)
put forward a SVR-based linear scaling function to accomplish the difference map-
ping. Main drawbacks of these practices are that the nature of the scaling function
is not a priori and the accuracies of the constructed stand-alone metamodel largely
depend on the current training sampling set and/or the problem properties at hand,
so it cannot be guaranteed that the selected metamodel will always perform the best
as another training data available or problems are changed. Therefore, as an alter-
native to using a stand-alone metamodel to fit the scaling function, it would be ben-
eficial to in lieu of the scaling function using ensemble of metamodel, which can
take advantage of the prediction ability of each separate stand-alone metamodel.
In this paper, three different stand-alone metamodeling techniques are considered
here, they include: Kriging, RBF and SVR. The ensemble of metamodel can be
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constructed by using a weighted average of different metamodels, hence, the meta-
model for remaining discrepancy is defined as:

ĉ(xxx) =
3

∑
j=1

w jĉ j(xxx) (26)

where, ĉ(xxx) is the predicted remaining discrepancy obtained from the ensemble
metamodel, ĉ j(xxx)( j = 1,2,3) are the predicted remaining discrepancy obtained us-
ing the Kriging, RBF and SVR metamodels, respectively. For the Kriging meta-
models, ĉ1(xxx) is the best linear unbiased predictors which minimize the MSE:

MSE[ĉ1(xxx)] = E
[
λλλ

T (xxx)C1−C1(xxx)
]2

(27)

With the unbiasedness constraints as follows:

E
[
λλλ

T (xxx)C1

]
= E(C1(xxx)) (28)

Once the correlation functions RRR(·) and rrrT (x) =
{

R(x,x1),R(x,x2), . . . ,R(x,xn)
}

have been selected and the vector of parameter Θ obtained by solving Eq. (9),
ĉ1(xxx) can be obtained after several deductions:

ĉ1(xxx) = β̂ +(rrr∗)T (RRR∗)−1(YYY h− (a∗0 +a∗1YYY l)− β̂ ppp)

β̂ = (pppT RRR−1 ppp)−1 pppT RRR−1(YYY h− (a∗0 +a∗1YYY l))
(29)

For the RBF metamodels, when substituting the optimum tuning parameters a∗0 and
a∗1 in Eq. (12), the optimal weight coefficients λ ∗i can be obtained by:

λ
∗
i =

(
Φ

T
Φ+Λ

)−1
Φ

T ( fh(xi)− (a∗0 +a∗1ŷl(xi)) ) (30)

In this study, popular Gaussian function is selected as the radial basis function.
With the optimal weight coefficients of the liner combinations λ ∗i are obtained by
Eq. (30), ĉ2(xxx) can be obtained by the following expression:

ĉ2(xxx) =
m

∑
i=1

λ
∗
i ϕ(‖xxx− xxxi‖) (31)

To construct SVR metamodels ĉ3(xxx), the Gaussian kernel function is adopted as its
advantages of fewer parameters to be set and an excellent overall performance. The
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following quadratic programming should be solved to obtain the vector δδδ and δδδ
∗:

max − 1
2

l

∑
i, j=1

(δi−δ
∗
i )(δ j−δ

∗
j )exp(

∥∥xi− x j
∥∥

2σ2 )

− ε

l

∑
i=1

(δi +δ
∗
i )+

l

∑
i=1

( fh(xi)− (a∗0 +a∗1ŷl(xi)) )(δi−δ
∗
i )

s.t.
m

∑
i=1

(δi−δ
∗
i ) = 0

(δi−δ
∗
i ) ∈ [0,C]

i, j = 1,2, . . .m

(32)

When the optimal δδδ and δδδ
∗ are obtained, ĉ3(xxx) can be obtained through:

ĉ3(xxx) =
m

∑
i=1

(δi−δ
∗
i )exp(

∥∥xi− x j
∥∥

2σ2 )+b ; i, j = 1,2, . . .m (33)

In Eq. (26),w j( j = 1,2,3) are weight factors that determine the relative contribu-
tion of the three metamodels in ensemble. To obtain unbiased response estimations,
a constraint is posed on weight factors as follows:

3

∑
j=1

w j = 1 (34)

The weight factors can be determined such that the metamodel with high accuracy
have large weight factors and vice versa [Acar 2010; Zhou, Ma, and Li (2011)].
In this paper, the weight factors are determined by minimizing the generalized
mean square Leave–one-out (LOO) errors (GMSELOO) of the ensemble metamod-
els. LOO method is one of the cross validation methods that can be used for assess-
ing the accuracy of a metamodel. The basic processes of obtaining the GMSELOO

can be divided into four steps. Step 1: for a given HF sampling set XXXH={xxx1,xxx2, . . . ,xxxm},
remove one of the sampling points out. Step 2: use the remaining sampling points
XXXH,−i = {xxx1,xxx2, . . . ,xxxi−1,xxxi+1, . . . ,xxxm} to build the ensemble of metamodel, which
is used to predict the response value for the omitted sample. Step 3: calculate the
square difference between the predicted values and the accurate value for the omit-
ted sample. Step 4: repeat Step 1 to Step 3 until all sample points in the given
sampling set are considered. With this method, no additional simulation runs are
needed for error calculations.

The GMSELOO for the ensemble of metamodel can be expressed as:

GMSELOO =
m

∑
i=1

(ŷen,−i(xi)− y(xi))
2/m (35)
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where y(xi) denotes the actual response value at xi, ŷen,−i(xi) denotes the prediction
of the response value for xi using the ensemble of metamodel created based on the
current sampling set with the sample point xi moved out.

Combining the weighted-sum formulations of the ensemble metamodels in Eq. (26)
and error prediction metric in Eq. (35), a constrained minimization problem is
established to select the optimum weight factors. It can be expressed as follows:

f ind w j

min GMSELOO(w j) =
m

∑
i=1

(
3

∑
j=1

w jĉ j(xi)− c(xi))
2 /m

s.t.
3

∑
i=1

w j = 1

(36)

Since the optimization problem in Eq. (36) is not necessary convex, evolutionary
algorithms are preferred to be selected to solve this problem. In this study, genetic
algorithms [Coello (2000)] are used and the constraint is processed using penalty
function.

With the obtained optimal weight factors, the formulation of the proposed VF meta-
modeling approach is becomes:

ŷv(xxx) = ŷl,tuned(xxx)+ c(xxx) = a∗0 +a∗1ŷl(xxx)+
3

∑
j=1

w∗j ĉ j(xxx) (37)

3.3 Steps for the proposed DMF-EM approach

The flowchart of the proposed DMF-EM is demonstrated in Fig. 1. The details
steps are as follows:

Step 1: Generate two sampling sets XXXL and XXXH . One set (XXXL) with a large number
of sample points is used to obtain response values for LF model, the other one (XXXH)
with a significantly smaller set is used to evaluate the HF model.

Step 2: Run LF simulation model at the XXXL to obtain the LF response values.

Step 3: Run HF simulation model at the XXXH to obtain the HF response values.

Step 4: Build metamodel for the LF model based on the sampled LF data.

Step 5: Tune the LF metamodel to pull the LF metamodel to the HF real response
values using Eq. (23).

Step 6: Construct the scaling function model using ensemble of metamodels. This
step can be divided into several steps to demonstrate the approach in more details.
The details of each step are given next and the entire procedures are demonstrated
in the dashed box of Fig. 1.
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Figure 1: Flowchart for the proposed approach.
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Step 6.1: Calculate the discrepancies between the HF model and tuned LF meta-
model for sample points using Eq. (25).

Step 6.2: Build three stand-alone metamodels (Kriging, RBF, SVR) for the differ-
ence model.

Step 6.3: Minimize the generalized mean square LOO errors to find the optimum
weight factors by solving the optimization problem in Eq. (36).

Step 7: Build the VF metamodel using Eq. (37).

Step 8: Check the stopping criterion. Check whether the desired level of accuracy
is achieved or not. If yes, continue to Step 9, otherwise, go back to Step 1. In this
paper, Root mean square error (RMSE) is used as the accuracy metric.

Step 9: Output the final VF metamodel.

It should be point out that apart from either of these circumstances: (a) running
LF simulation is expensive (b) the relationships between the input variables and
corresponding output values cannot be express explicitly in LF model, Step 2 and
Step 4 can be omitted, i.e., the LF model can be directly used for VF modeling
without fitting a metamodel to replace it.

4 Examples and results

To test the performance of the proposed modeling method, overall seven example
problems are considered. In the first five, the responses of the LF models and HF
models are described by analytic functions that are well-known numerical test prob-
lems with two or more design parameters. The last two problems are engineering
cases, where in the first engineering case the output responses of LF model and HF
model are obtained using the empirical formulas, whereas in the other one the true
responses of the LF model and HF model are obtained from finite element analysis
(FEA), which aims to demonstrate that the proposed modeling method is applicable
to complex engineering problems. For comparison, we model all tests with other
three different variable-fidelity metamodeling methods: (1) variable-fidelity meta-
modeling combining different mapping framework with Kriging (DFM-Kriging),
(2) variable-fidelity metamodeling combining different mapping framework with
RBF (DFM-RBF), (3) variable-fidelity metamodeling combining different mapping
framework with SVR (DFM-SVR) [Zheng, Shao, Gao, Jiang, and Qiu (2014)].

4.1 Numerical examples and results discussion

4.1.1 Numerical examples description

The numerical test problems are described by the following analytic functions. In
all tests, yh represents the HF metamodel, which is needed to be approximated and
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yl represents the LF one.

• Six-hump Camel-back function (SC):

f (x1,x2) = 4x2
1−2.1x4

1 + x6
1/3+ x1x2−4x2

2 +4x4
2;

yh = f (x1,x2);

yl = f (0.7x1,0.7x1)+x1x2+sin(x1)+2x2 + sin(x2)+ x1;

x1 ∈ [−2, 2],x2 ∈ [−2, 2]

(38)

• Himmelblau function(HM) :

f (x1,x2) = (x2
1 + x2−11)2 +(x2

2 + x1−7)2;

yh = f (x1,x2);

yl = f (0.5x1,0.8x2)+ x3
2− (x1 +1)2;

x1 ∈ [−3,3],x2 ∈ [−3,3];

(39)

• 2-dimensional Rosenbrock function (2D Rosenbrock) :

f (x1,x2) = 100(x2
1− x2)

2 +(x1−1)2;

yh = f (x1,x2);

yl = 70(x2
1− x2)

2 +0.7(x1−1)2;

x1 ∈ [−2.048,2.048],x2 ∈ [−2.048,2.048];

(40)

• 3-dimensional Rosenbrock function (3D Rosenbrock) :

f (x1,x2,x3) =
2

∑
i=1

[100(x2
i − xi+1)

2 +(xi−1)2];

yh = f (x1,x2,x3);

yl = 90(x2
1− x2)

2 +1.1(x3−1)2 +100(x2
2− x3)

2 +(x2−1)2;

xi ∈ [−2.048,2.048], i = 1,2,3;

(41)

• Dixon & Price function (DP):

f (x1, . . . ,x4) = (x1−1)2 +
n

∑
i=2

i(2x2
i − xi−1)

2;

yh = f (x1, . . . ,x4);

yl = (x1−1)2 +
n

∑
i=2

i(2x2
i −0.75xi−1)

2;

xi ∈ [−10, 10], i = 1, . . . ,4;

n = 4

(42)
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4.1.2 Data sampling

The goal of the data sampling is to minimize the influence of errors in physical
experiments to the response functions, while allowing the designers to build meta-
models more efficiently [Zadeh, Toropov, and Wood (2009).]. In this work, the
optimal Latin Hypercube Sampling (OLHS), proposed by Jin, Chen, and Simpson
(2001), is adopted to generate sample points. Two different sample sizes, small size
(m=10) and large size (m=50), are generated. It should be pointed out that the term
large sample size for HF model is still in the scope of small size compared with
that in LF models.

4.1.3 Accuracy and robustness measures

Three different accuracy metrics are adopted to assess the accuracies of each meta-
model: (1) relative root mean square error (RRMSE) (2) relative maximum abso-
lute error (RMAE) (3) coefficient of multiple determinations (R2). RRMSE and
R2 reveal the global accuracy of the metamodel, while the RMAE reflects the lo-
cal accuracy of the metamodel. The lower the value of RRMSE/RMAE, the more
accurate of the metamodel, while larger value of R2 indicates a more accurate meta-
model. Expressions of these three accuracy metrics are defined as follows:

RRMSE =
1

ST D

√
1
N

N

∑
i=1

(yi− ŷi)2

RMAE =
1

ST D
max |yi− ŷi| , i = 1, ...,N

R2 =

(N
N
∑

i=1
yiŷi−

N
∑

i=1
yi

N
∑

i=1
ŷi)

2

(N
N
∑

i=1
ŷ2

i − (
N
∑

i=1
ŷi)2)(N

N
∑

i=1
y2

i )− (
N
∑

i=1
yi)2)

ST D =

√
1

N−1

N

∑
i=1

(yi− ȳi)2 (43)

where N represents the total number of test points; yi is the actual response value at
test points; ŷi is the predicted response at test points; ȳi and STD are the mean and
standard deviation of all observed response values, respectively.

Apart from the above accuracy measures, robustness performance of each VF meta-
modeling approach is taken into consideration. The robustness of a metamodel
refers to its capability of achieving similar accuracies for different problems and
different sample size [Gao, Xiao, Shao, Jiang, Nie, and Qiu (2012)]. In this work,
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the standard deviation of the above mentioned error metrics calculated according
to Eq. (43), are selected to measure the robustness performance of different VF
metamodeling approaches.

4.1.4 Results and discussion

To calculate the three accuracy metrics, additional 1600 randomly validation points
are used in each numerical case. The accuracy results of different metamodeling
approaches are summarized in Tab. 1. In Tab. 1, the best results for each model
type are printed in bold, while the worst results for each model type are printed in
italic. Two intuitive conclusions can be drawn from Tab. 1, i.e., (1) The metamodels
constructed by DMF-EM nerve be the worst one among the four VF metamodeling
approaches for all the numerical cases at two different sample sizes, while other
three VF metamodel are the worst at least for one case, which indicates that the
proposed DMF-EM metamodeling can decrease the risk of adopting an inappropri-
ate metamodel. (2) For most test cases, metamodels constructed by DMF-EM are
demonstrated to be the best in terms of both local and global accuracy, especially
at small sample size.

Figure 2: Overall performance for different VF metamodeling approaches (a) ac-
curacy (b) robustness.

Fig. 2 demonstrates the mean and standard deviation of the three accuracy metrics
for all the metamodels under small and large sample sizes. As seen in Fig. 2 (a), it
can be observed that the accuracy of DMF-EM is the best in all the three accuracy
metrics. DMF-Kriging performs slightly better than DMF-RBF and DMF-SVR
in RRMSE and R2, while its RMAE value is the largest. The average value of
RRMSE and 1−R2 is the largest for DMF-RBF, which indicates the poorest global
performance among four VF metamodeling approaches. As illustrated in Fig. 2 (b),
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the robustness of the DMF-EM is also the best in all the three accuracy metrics. The
robust of DMF-SVR and DMF-Kriging are close. DMF-Kriging is slightly better
than DMF-SVR in RMSE and R2, while DMF-SVR is a little better than DMF-
Kriging in RRMSE. DMF-RBF presents the poorest robustness in RMAE, but the
robustness of its global performance is somewhat in between the DMF-SVR and
DMF-Kriging. In summary, the performance of DMF-EM is the best in terms of
both average accuracy and robustness for all the test numerical cases at small and
large sample sizes.

A deeper demonstration on the accuracy and robustness of each metamodeling per-
formance under different sample sizes (small and large) are presented in Fig. 3. It
is observed in Fig. 3 that for both small and large sample sets, the average accuracy
and robustness of DMF-EM are much better than other three VF metamodeling
methods in three accuracy metrics expect its slightly lower accuracy than DMF-
RBF and DMF-SVR in RMAE under large sample set. With the small sample set,
DMF-Kriging shows a better performance than DMF-RBF and DMF-SVR. How-
ever, this conclusion is as opposed to the observation under large sample set that
the DMF-Kriging is the worst in terms of both average accuracy and robustness.
The performance of DMF-RBF and DMF-SVR is similar under different sample
sizes.

Through the comparison of numerical cases results under small and large sample
sizes, it can be easily found that when the sample set is increased from small size
to large size, the average accuracy and robustness of all the VF metamodeling are
increased significantly, especially for DMF-RBF and DMF-SVR. A more important
observation is that the average accuracy and robustness of DMF-EM are high in
spite of the utilization of small sample set.

Besides the 3D surface of the actual LF and HF models, the contour of difference
between them is plotted in Fig. 4. The metamodel for SC obtained using different
VF modeling methods under small sample size are also presented in Fig. 4. It is
illustrated that DMF-EM reflects the behavior of the actual SC function most ac-
curacy in the whole design space. Though, other three VF metamodeling methods
can capture the general trend, there exist large errors in some local regions.

4.2 Engineering case 1: design of a curved stepped beam

The first engineering example originally from Balabanov and Venter (2004) is
a design of a curved stepped beam, which is the lower left portion of a 10-ton
crane hood, shown in the Fig.5 (a). In this work, the curved beam, with a force
P = 20,000lb (88.97kN) acting at the tip of the beam is divided into five sections
depicted in Fig.5 (b). Section numbering started from the fixed end of each sec-
tion. The design variables are the height of each segment (hi, i = 1,2, . . . ,5) and
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Figure 3: Performances under different sample sizes. (a) Accuracy in RMAE (b)
Robustness in RMAE (c) Accuracy in RRMSE (d) Robustness in RRMSE (e) Ac-
curacy in R2 (f) Robustness in R2.
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Figure 4: The actual model and difference metamodels for SC function under small
sample set.
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Figure 5: Schematic plot of the curved stepped beam.

the width of each segment (bi, i = 1,2, . . . ,5). The ranges for the variables are
0.5≤ hi ≤ 8;0.5≤ bi ≤ 2.25 , i = 1,2, . . . ,5. The radius of the middle layer of the
curved beam, R, is 4.5in(11.43cm).

Two different fidelity models are used to calculate the maximum stress in each
section. In HF model (shown in Fig.5 (b).), the maximum stress of each section is
calculated using the formula for bending stress in curved beams, shown as follows:

σi =
Pi

bihi
+

Mi

bihiR

(
1+

1
Z

hi/2
R−hi/2

)
, where Z =−1+

R
hi

ln
(

R+hi/2
R−hi/2

)
(44)

where Pi and Mi are normal forces and bending couples for each section, which are
formed by resolving the force P.

A straight beam with its length is equal to be R is adopted as the LF model, shown
in Fig.5 (c). The straight beam is divided into the same number of sections as the
HF model and the maximum stress of each section is calculated using the formula
for bending stress in straight beams. It is expressed as:

σi =
6Mihi

bih3
i

(45)

Notice that, although the two fidelity models (Fig.5 (b) and Fig.5 (c)) are quite
different, we felt that the LF model can correctly capture the general trends for
changes in maximum stress of each beam section as variations of design variables.
In this engineering case, 50 sample points are generated to obtain HF response
values, while the LF model is directly used for VF modeling without fitting a
metamodel to replace it. Additional 100 validation points are randomly selected
to calculate the three accuracy metrics. The comparison results are summarized
in Tab.3, where the best results for each model type are printed in bold, while



Differing Mapping using Ensemble of Metamodels 347

the worst results for each model type are printed in italic. It is clear from Tab.3
that the proposed DMF-EM approach provides the most accurate VF metamodel
compared to other three approaches. The accuracy of DMF-Kriging is somewhere
in between DMF-RBF and DMF-SVR. Because the analogous types of maximum
stress formulas in each beam section, the accuracy comparison results tend to be
fairly uniform form σ1 to σ5.

Table 2: Accuracy comparison of the design of curved stepped beam.

Maximum
Stresses

Accuracy
criteria

DMF-
Kriging

DMF-
RBF

DMF-
SVR

DMF-
EM

σ1

RMAE 1.1686 1.1751 1.4497 1.102
RRMSE 0.2696 0.2736 0.3335 0.2693

R2 0.9388 0.9386 0.943 0.9523

σ2

RMAE 1.8667 1.209 2.538 1.0611
RRMSE 0.3173 0.3393 0.4542 0.2553

R2 0.9421 0.9308 0.9605 0.9568

σ3

RMAE 2.1939 2.1858 3.0598 1.1132
RRMSE 0.338 0.3439 0.5089 0.2711

R2 0.9354 0.9316 0.9488 0.9496

σ4

RMAE 2.1557 2.1474 3.0088 1.173
RRMSE 0.3354 0.3412 0.5046 0.2692

R2 0.9364 0.9327 0.9497 0.9532

σ5

RMAE 1.5169 1.5059 2.0858 1.0896
RRMSE 0.2984 0.3034 0.4173 0.2622

R2 0.9459 0.9431 0.9598 0.9532

4.3 Engineering case 2: design of a long cylinder pressure vessel for com-
pressed natural gas

In this section, the implementation of the DMF-EM is demonstrated on a long cylin-
der pressure vessel design optimization problem. The geometry, model parameters
and loading force of the long cylinder pressure vessel are illustrated in Fig. 6. The
objective is to minimize the total consumption of the manufacturing material. Five
continuous design variables are included: the height of the end part h1, the inside
diameter of the end part r1, the thickness of the end part t1, the inside diameter of the
body part r2 and the thickness of the body part t2. The range of the design variables
are listed in Tab. 3. Other geometric parameters are predefined and fixed during the
optimization. The optimization is constrained by two design constraints, maximum
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allowable stress and minimum volume. The cylinder pressure vessel subjected a
uniformly distributed load P = 23MPa.The Young’s modulus and Poisson’s ratio
are E = 207GPa and u = 0.3, respectively. The maximum all allowable stress and
the minimum volume are σaw = 250MPa and Vlow = 0.63m2, respectively.

Figure 6: Schematic plot of the cylinder pressure vessel.

Table 3: Ranges of the design variables.

Design variables Range (mm)
the height of the end part h1 280-320

the inside diameter of the end part r1 40-50
the thickness of the end part t1 19-27

the inside diameter of the body part r2 165-205
the thickness of the body part t2 13-23
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The mathematical formulation of the problem is as follows:

min : f

s.t. : σs ≤ σal

V ≥Vlow

(46)

where V is the volume of the cylinder pressure vessel f is the total consumption
of the manufacturing material. The quantities V and f are calculated using the
following equations:

V = πr2
2(6000−h1−

√
r2

2− t2
1)+2πh1r2

1 +π(r2
1 + r2

2)
√

r2
2− r2

1 +
1
3

π(
√

r2
2− r2

1)
3

(47)

f =π[(t2 + r2)
2− r2

2](6000−h1−
√

r2
2− r2

1)+2πh1[(t1 + r1)
2− r2

1]

+
1
3

π{3[(t1 + r1)
2 +(t2 + r2)
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√
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2 + r2

1)
√

r2
2− r2

1− (
√

r2
2− r2

1)
3}

(48)

From the above formula, it is found that the maximum von Mises stress of the
pressure vessel cannot be obtained directly from an explicit function. Therefore,
the proposed DMF-EM is adopted to fit the relationship between the stress response
and the design variables. In this paper, ANSYS14.5 is used as a simulation tool for
the stress response. Fig. 7 demonstrates the 1-D finite element model, which is
used for LF model. Correspondingly, the axial symmetry 3-D finite element model
with Hexahedral meshes is selected as the HF model, which is depicted in Fig. 8.

In this engineering example, 60 sample points are simulated for LF metamodel and
the total number of sample points for developing the HF model is limited to 15.
Additional 30 validation points are selected randomly to compare the accuracy per-
formance of four different VF metamodeling methods. The accuracy comparison
results are listed in Tab. 4 and the actual simulation values and the corresponding
predicted values obtained using different VF metamodel are demonstrated in Fig. 9.
It is observed that the proposed DMF-EM provides the most accurate metamodel.
Based on the DFM-EM, the optimal design is as follows: the height of the end part
h1 = 284.1mm, the inside diameter of the end part r1 = 40.0mm, the thickness of
the end part t1 = 20.0mm, the inside diameter of the body part r2 = 185.8mm, the
thickness of the body part t2 = 18.2mm.

5 Conclusion

A DFM-EM variable fidelity modeling is proposed to approach the HF model when
available HF sampling resource is limited. In DFM-EM, a linear tuning model is
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Figure 7: 1-D LF model of the cylinder pressure vessel (a) grid model (b) simula-
tion analysis.

Figure 8: 3-D HF model of the cylinder pressure vessel (a) grid model (b) simula-
tion analysis.

Table 4: Accuracy comparison of the CNG pressure vessel.

DMF-Kriging DMF-RBF DMF-SVR DMF-EM
RMAE 0.5486 0.4001 0.3899 0.3544

RRMSE 0.2119 0.2454 0.1882 0.1879
R2 0.9535 0.9520 0.9633 0.9635
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Figure 9: True response and predicted value of the validation points for different
VF modeling methods, where the straight represents that the true response equal to
predicted value.

created to pull the LF model to the true response of the HF model, then, the dif-
ference between the HF models and tuned model is fitted using the ensemble of
metamodels, which is a hybrid of Kriging, RBF and LSSVR. Using the ensemble
of metamodels in lieu of the scaling function can eliminate the need to determine
a priori that which metamodel types should be used. Several numerical cases and
two engineering design problems are employed to compare the accuracy and ro-
bustness performance of the proposed DFM-EM with those other three VF meta-
modeling methods. The comparison results illustrate that (1) for the same number
of simulation evaluations and in terms of local/overall accuracy and robustness,
the proposed VF metamodeling approach significantly outperforms the other three
VF metamodeling methods, especially under the small sample size. (2) arbitrarily
selecting metamodels to approximate scaling function increases the risk of adopt-
ing an unsatisfactory model (3) the proposed metamodeling approach accords with
“insurance policy” mode that it will never be the worst, though it is not always be
the best, which can decrease the risk of adopting an inappropriate modeling ap-
proach. It is also observed that the DFM-Kriging, DFM-RBF and DFM-SVR have
comparable ability of applying problems of varying difficulty.

It should be pointed out that the proposed DFM-EM method may require addi-
tional computational cost to obtain the optimum tuning parameters and weight co-
efficients. However, this additional computational cost is more than likely offset
by the savings in calls required for high fidelity models. Practically speaking, most
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engineering simulations usually yield multiple responses for each execution of the
simulation model. Extending the DFM-EM to solve engineering design with mul-
tiple input and output parameters will be investigated in our future work. Overall,
as a novel variable-fidelity modeling technique, DFM-EM exhibits great capability
for metamodel-based engineering design and optimization problems.
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