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Scaled Boundary Finite Element Method for
Thermoelasticity in Voided Materials

Jan Sladek1, Vladimir Sladek1 and Peter Stanak1

Abstract: The scaled boundary finite element method (SBFEM) is presented to
study thermoelastic problems in materials with voids. The SBFEM combines the
main advantages of the finite element method (FEM) and the boundary element
method (BEM). In this method, only the boundary is discretized with elements
leading to a reduction of spatial dimension by one. It reduces computational efforts
in mesh generation and CPU. In contrast to the BEM, no fundamental solution is
required, which permits to analyze general boundary value problems, where the
conventional BEM cannot be applied due to missing fundamental solution. The
computational homogenization technique is applied for thermo-mechanical anal-
yses in voided materials. The evolution of the mechanical and thermal fields at
the macroscopic level is resolved through the incorporation of the microstructural
response. The microstructural analyses are performed on the representative vol-
ume element (RVE), where essential physical geometrical information about the
microstructural components is included.

Keywords: Representative volume element (RVE), circular voids, 2-d problems,
uncoupled thermoelasticity.

1 Introduction

The presence of voids affects material properties and functionality of these ele-
ments in structures. It is needed to have reliable computational models to consider
voids in materials. For voided isotropic or anisotropic materials, the influences of
voids on the effective properties have been studied by many authors [Christensen
(1993); Jasiuk et al. (1994)]. The shape and distribution of voids can be arbi-
trary. In principle it would be possible to refer directly to the microscopic scale,
but such microscopic models are often far too complex to handle for the analysis
of a large structure. Further, the data obtained would be redundant and compli-
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cated procedures would be required to extract information of interest. Therefore,
the multiscale modelling is a convenient technique to consider microstructure prop-
erties and transfer them into the macroscopic models The scope of such multiscale
modelling is to design combined macroscopic-microscopic computational methods
that are more efficient than solving the full microscopic model and at the same time
give the information that we need to the desired accuracy [Engquist et al. (2007)]
The microstructure can be accounted in macro-structural analyses via homogeniza-
tion when the effective (overall) material coefficients are obtained from solutions
of appropriate boundary value problems on micro-scale level in a representative
volume element (RVE) [Hill (1963)].

In literature there are many homogenization techniques and earlier methods have
been based on analytical approaches. Mainly self-consistent and Mori-Tanaka an-
alytical approaches are utilized to get effective material coefficients [Budiansky
(1965); Hill (1965); Mori and Tanaka (1973); Benviste (1987); Kachanov (1992);
Castaneda and Willis (1995); Quin (2004); Goyheneche and Cosculluela (2005)].
A comprehensive validation of analytical homogenization models is given by Ghos-
sein and Levesque (2014). Later, numerical approaches have been developed to
determine effective material properties in composite materials [Bohm and Han
(2001); Bohm et al. (2002); Marur (2004); Pierard et al. (2004)]. Higher-order two-
dimensional as well as low and higher-order three-dimensional new hybrid-mixed
finite elements based on independently assumed displacement, and judiciously cho-
sen strain fields are developed in [Bishay and Atluri (2012); Dong and Atluri (2011,
2012)] for applications in macro- and micro-mechanics. These schemes can be also
applied for problems such as the determination of the effective thermal conductivity
of porous rocks in partially saturated conditions [Gruescu et al. (2007)]. Various
multiscale methods are reviewed by Kanoute et al. (2009) in the context of mod-
elling mechanical and thermomechanical responses of composites. In the present
paper a pure numerical approach has been developed to evaluate thermomechani-
cal effective material properties in a voided material. Numerical analyses are per-
formed on the RVE. The RVE contains sufficient microstructural information to be
representative of any similar volume taken from any location in the voided solid.
In uncoupled thermoelasticity, the temperature field is not influenced by displace-
ments. Therefore, the heat conduction equation is solved first to obtain the temper-
ature distribution. The equation of motion is subsequently solved for mechanical
quantities.

The number of literature sources on the complex thermomechanical problem is lim-
ited. However, there are some literature sources on evaluation of effective thermal
conductivity coefficients [Progelhof et al. (1976); Han and Cosner (1981); Hatta
and Taya (1986); Gordon et al. (1994); Milton (2000); Sevostianov and Kachanov
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(2003); Ahmedi et al. (2010); El Moumen et al. (2015); Wu et al. (2013)]. In ho-
mogenization techniques the RVE under specific boundary conditions is analyzed
for determination of influence of voids on material properties. Therefore, we need
to have a reliable computational tool to solve boundary value problems on the RVE.
The finite element method (FEM), boundary element method (BEM) and meshless
methods have been successfully applied to boundary value problems in thermoe-
lasticity [Druma et al. (2004); Sladek and Sladek (1984); Suh and Tosaka (1989);
Dargush and Banerjee (1991), Shiah and Tan (1999); Kögl and Gaul (2003)]. A
novel approach to identify the thermal conductivities of a thin anisotropic medium
by the BEM is presented by Shiah et al. (2014). Four representative multiscale
methods, namely asymptotic homogenization method (AHM), heterogeneous mul-
tiscale method (HMM), variational multiscale (VMS) method and multiscale finite
element method (MsFEM), for elliptic problems with multiscale coefficients are
surveyed by Wu et al. (2014).

The scaled boundary finite element method (SBFEM) is developed in the present
paper for 2D boundary value problem in a porous elastic solid under stationary
thermoelastic boundary conditions. Up to now the SBFEM have been successfully
applied to elastostatic, elastodynamic problems, thermopiezoelectricity and piezo-
electric crack problem too [Deeks and Wolf (2002a); Song (2004a); Chiong et al.
(2014); Li et al. (2014, 2015)]. The domain is described by scaling the boundary
with the dimensionless radial coordinate pointing from the scaling center. Only
the boundary of the domain is discretized with line elements. A scaling center
is selected at a point from which the whole boundary is directly visible. How-
ever, the analyzed domain is frequently discretized by more polygons than it is
necessary to satisfy the visibility condition to reduce the number of unknowns in
the polygon. Song (2004b) has developed a super element for the dynamic analy-
sis of two-dimensional crack problems. Although a quadratic eigenvalue problem
must be solved in the scaled boundary finite-element method, the cost of which in-
creases rapidly as the number of degrees of freedom increases, the scaled boundary
finite-element method out-performs the finite-element method in situations involv-
ing stress concentrations or unbounded domains, reducing significantly the pro-
gram run-time and using only a fraction of the number of degrees of freedom. The
h-hierarchical adaptive procedure for the scaled boundary finite-element method
has been developed by Deeks and Wolf (2002b).

The SBFEM has been developed here for uncoupled thermoelasticity and it is ap-
plied for evaluation of effective material properties on the micro-level (RVE) of the
elastic solids with voids. Special boundary conditions are considered to evaluate
individual material parameters. The present analyses give information concern-
ing how the homogenized thermoelastic properties of the material vary in terms of
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porosity.

2 Governing equations in thermoelasticity

Consider a linear elastic solid under stationary conditions since we are interesting to
investigate influence of microstructure on macro model behavior. Governing equa-
tions are given by the balance of forces and stationary heat conduction equations
[Nowacki (1986)]

σi j, j(x) = 0, (1)

ki jθ,i j(x) = 0, (2)

where σi j, θ and ui are the stresses, temperature difference and displacements,
respectively. Symbol ki j is used for the thermal conductivity tensor. Constitutive
equations are given by the well known Duhamel-Neumann constitutive law for the
stress tensor

σi j(x) = ci jklεkl(x)− γi jθ(x), (3)

where ci jkl are the materials elastic coefficients and γi j is the stress-temperature
modulus. The stress-temperature modulus can be expressed through the elastic
coefficients and the coefficients of linear thermal expansion αkl as

γi j = ci jklαkl . (4)

For 2-D plane problems, the constitutive equation (3) is frequently written in terms
of the second-order tensor of elastic constants [Lekhnitskii (1963)]. Making use
the standard Voigt notation, the constitutive equation for orthotropic materials and
plane strain problems has the following form σ11

σ22
σ12

=

 c11 c12 0
c12 c22 0
0 0 c44

 ε11
ε22
2ε12

−
 c11 c12 c13

c12 c22 c23
0 0 0

α11
α22
α33

θ = C

 ε11
ε22
2ε12

− γθ ,

(5)

with γ =

 c11 c12 c13
c12 c22 c23
0 0 0

 α11
α22
α33

=

 γ11
γ22
0

.

In the present paper only orthotropic material properties are considered. However,
the SBFEM can be applied also for a general anisotropic material. If material
properties are isotropic, equation (5) is reduced to a simple form

σi j = 2µεi j +λεkkδi j− (3λ +2µ)αθδi j , (6)
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with Lame’s constants λ and µ .

The following essential and natural boundary conditions are assumed for the me-
chanical quantities

ui(x) = ũi(x) on Γu,

ti(x) = σi j(x)n j(x) = t̃i(x) on Γt ,
(7)

and for the thermal quantities

θ(x) = θ̃(x) on Γp,

q(x) =−ki jθ, j(x)ni(x) = q̃(x) on Γq,
(8)

where q(x) is heat flux, Γu is the part of the global boundary with prescribed dis-
placements, while on Γt , Γp and Γq the traction vector ti , the temperature and the
heat flux are prescribed, respectively.

Since mechanical and thermal quantities are uncoupled, in the first step the temper-
ature solution can be computed and in the next problem the mechanical quantities
are analyzed.

3 Scaled boundary finite element method for stationary heat conduction
problem

Recently, the scaled boundary finite element method (SBFEM) has been developed
for stationary heat conduction problem [Li et al. (2015)]. A scaling center O is se-
lected at a point from which the whole boundary is directly visible. The boundary S
is scaled by the dimensionless radial coordinate ξ pointing from the scaling center.
Figure 1 illustrates the basic idea of the scaled boundary finite element method for a
2D problem with domain V . Only the boundary S of the domain is discretized with
line elements Se when applying the scaled boundary finite element method. Then,
the whole analyzed domain V is decomposed into triangular sectors V e associated
with the boundary line elements Se.

The global Cartesian coordinates (x,y) of a point of a line element Se (the super-
script e denotes the element) on the boundary are parametrized as

x1|Se = x(η)|Se := [N (η)]{x}e , x2|Se = y(η)|Se := [N (η)]{y}e , (9)

with η being the local (circumferential) coordinate η ∈ [−1, 1], [N (η)] =
(N1 (η) , N2 (η)) is the 1×2 matrix of shape functions N1 (η) = (1 − η)/2,
N2 (η) = (1+η)/2, and {x}e, {y}e are 2×1 vectors composed of the Cartesian
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Figure 1: The scaled boundary polygon representation.

coordinates of two nodal points on the boundary element Se, i.e.

{x}e =
(
x1e, x2e)T

= (x(η =−1), x(η = 1))T
∣∣∣
Se
,

{y}e =
(
y1e, y2e)T

= (y(η =−1), y(η = 1))T
∣∣∣
Se
.

(10)

Let xa
1, xa

2 be the Cartesian coordinates of the a-th nodal point on the boundary S
with a = 1, 2, ..., n and

(
x1

1, x1
2
)
∈ S1. Then, we can introduce the n× 1 vectors

{x1}=
(
x1

1, x2
1, ..., xn

1

)T , {x2}=
(
x1

2, x2
2, ..., xn

2

)T and the above mentioned interpo-
lation on the boundary element Se can be written as

x1|Se = [Ne(η)]{x1} , x2|Se = [Ne(η)]{x2} , (11)

where the shape functions matrix [Ne(η)] is 1×n matrix with the a-th element of
this matrix being given as

[Ne (η)]a = δaeN1(η)+δa ēN2(η), ē =
{

e+1 , e < n
1 , e = n

. (12)

The analyzed domain is described by scaling the boundary with the dimensionless
radial coordinate ξ pointing from the scaling center O(ξ = 0) to a point on the
boundary (ξ = 1). The Cartesian coordinates (x1, x2) of a point inside the triangular
sector V e are parametrized as

x1(ξ , η)|V e = ξ x(η)|Se = ξ [Ne (η)]{x1} (13)
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x2(ξ , η)|V e = ξ y(η)|Se = ξ [Ne (η)]{x2} (14)

where ξ and η are called the scaled boundary coordinates, ξ ∈ [0,1], η ∈ [−1,1] .

The scaled boundary coordinates in two dimensions resemble the polar coordinates.
The polar coordinates shown in Figure 1 are expressed as

r (ξ , η)|V e = ξ r{η}|Se = ξ

√
x2 (η)+ y2 (η)

∣∣∣∣
Se

(15)

ϕ (η)|V e = arctan
y(η)

x(η)

∣∣∣∣
Se

(16)

Let θ̄ a(ξ ) for a = 1, 2, ..., n be the temperature field parametrized along the ra-
dial line passing the scaling center and the node (xa

1, xa
2) on the boundary and{

θ̄(ξ )
}
=
(
θ̄ 1(ξ ), θ̄ 2(ξ ), ..., θ̄ n(ξ )

)T . Furthermore, we assume the linear inter-
polation within the boundary element Se, i.e.

θ(x)|Se = [Ne(η)]
{

θ̄(ξ = 1)
}

. (17)

Now, we extend the assumed interpolation on the boundary element, i.e. the ap-
proximation of the dependence on the parameter η when ξ = 1, also to interior
points in the sector V e as

θ(x)|V e = [Ne(η)]
{

θ̄(ξ )
}
, (18)

with new unknowns θ̄ a(ξ ) being dependent on one parameter.

The transformation between the components of the gradient operator in the Carte-
sian coordinate system and scaled boundary coordinate system is shown as{

∂

∂ξ

∂

∂η

}
=
[
Ĵ(ξ ,η)

]{ ∂

∂x1
∂

∂x2

}
,

{
∂

∂x1
∂

∂x2

}
=
[
Ĵ(ξ ,η)

]−1

{
∂

∂ξ

∂

∂η

}
(19)

with the Jacobian matrix defined as[
Ĵ (ξ , η)

]
=

[
x1,ξ x2,ξ
x1,η x2,η

]
where x1,ξ , x2,ξ , x1,η and x2,η are determined from equations (13) and (14). Then,[
Ĵ (ξ , η)

]
is rewritten into the factorized form

[
Ĵ (ξ , η)

]
=

[
1 0
0 ξ

][
x(η) y(η)

x(η),η y(η),η

]
=

[
1 0
0 ξ

]
[J (η)] ,

[
Ĵ (ξ , η)

]−1
= [J (η)]−1

[
1 0
0 1/ξ

] (20)
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with the radial coordinate ξ being separated from the local coordinate η on the
boundary. The matrix [J (η)]is the Jacobian matrix on the boundary (ξ = 1), i.e.

[J (η)] =
[
Ĵ (1, η)

]
=

[
x(η) y(η)

x(η),η y(η),η

]
,

[J (η)]−1 =
1

|J (η) |

[
y(η),η −y(η)

−x(η),η x(η)

] (21)

and its determinant is

|J (η) |= x(η)y(η),η−y(η)x(η),η |Ĵ (ξ , η) |= ξ |J (η) | . (22)

Thus,{
∂

∂x1
∂

∂x2

}∣∣∣∣∣
V e

=
[
b1e (η)

] ∂

∂ξ
+
[
b2e (η)

] 1
ξ

∂

∂η
, (23)

with[
b1e (η)

]
=

1
|J (η) |

[
y(η),η
−x(η),η

]∣∣∣∣
Se

,
[
b2e (η)

]
=

1
|J (η) |

[
−y(η)
x(η)

]∣∣∣∣
Se
. (24)

Then, the heat flux vector defined by

qi(x) =−ki jθ, j(x) or
{

q1(x)
q2(x)

}
=

[
k11 k12
k12 k22

]{
θ,1(x)
θ,2(x)

}
(25)

can be approximated on the sector V e as

{q(x)}|V e=− [K]

{
θ,1(x)
θ,2(x)

}∣∣∣∣
V e
=− [K]

(
[B1e (η)]

{
θ̄(ξ )

}
,ξ
+

1
ξ

[
B2e (η)

]{
θ̄(ξ )

})
,

(26)

where {q(x)}= (q1(x), q2(x))T , and

[B1e (η)] = [b1e (η)] [Ne(η)] ,
[
B2e (η)

]
=
[
b2e (η)

][
Ne
,η(η)

]
. (27)

The governing equation (2) and the prescribed boundary conditions result from the
variational formulation∫
V

δθ,i(x)qi(x)dV −
∫
Sq

δθ(x)q̃(x)dS = 0 , (28)



Scaled Boundary Finite Element Method 237

or equivalently

−
∫
V

δθ(x)qi,i(x)dV +
∫
Sq

δθ(x) [q(x)− q̃(x)]dS+
∫
Sθ

δθ(x)q(x)dS = 0. (29)

Bearing in mind the approximations over the sectors V e and/or the boundary ele-
ments Se

qi(x)δθ,i(x)|V e = (q1(x), q2(x))δ

{
ε1(x)
ε2(x)

}∣∣∣∣
V e

=

=−
(

∂

∂ξ

{
θ̄(ξ )

}T
[B1e (η)]T +

1
ξ

{
θ̄(ξ )

}T [B2e (η)
]T)

[K](
[B1e (η)]

∂

∂ξ
+

1
ξ

[
B2e (η)

])
δ
{

θ̄(ξ )
}

q̃(x)δθ(x)|Se = q̃([Ne(η)]{x1} , [Ne(η)]{x2}) [Ne(η)]δ
{

θ̄(1)
}
, (30)

with using the transformation of the integration variables, one can rewrite Eq. (28)
as

n

∑
e=1

1∫
0

1∫
−1

〈
−
({

θ̄(ξ )
}T
,ξ
[B1e (η)]T +

1
ξ

{
θ̄(ξ )

}T [B2e (η)
]T)

[K]⊗

⊗
(
[B1e (η)]

∂

∂ξ
+

1
ξ

[
B2e (η)

])〉
δ
{

θ̄(ξ )
}
|Ĵ(ξ ,η)|dηdξ−

−
1∫
−1

q̃([Ne(η)]{x1} , [Ne(η)]{x2}) [Ne(η)]δ
{

θ̄(1)
}
|J(η)|dη = 0. (31)

Introducing the notations

[E0e] :=
1∫
−1

[B1e]T [K][B1e]|J(η)|dη = [E0e]T , [E1e] :=
1∫
−1

[B2e]T [K][B1e]|J(η)|dη ,

[E2e] :=
1∫
−1

[B2e]T [K][B2e]|J(η)|dη = [E2e]T ,

{
Q̃e}T :=

1∫
−1

q̃([Ne(η)]{x1} , [Ne(η)]{x2}) [Ne(η)] |J(η)|dη (32)
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and taking into account |Ĵ (ξ , η) |= ξ |J (η) |, we rearrange Eq. (31) as

n

∑
e=1


1∫

0

〈
−
({

θ̄(ξ )
}T
,ξ

ξ [E0e]+
{

θ̄(ξ )
}T [E1e]) ∂

∂ξ
δ
{

θ̄(ξ )
}
+

(
−
{

θ̄(ξ )
}T
,ξ

[
E1e]T−{θ̄(ξ ,τ)

}T 1
ξ

[
E2e])

δ
{

θ̄(ξ )
}〉

dξ−
{

Q̃e}T
δ
{

θ̄(1)
}}

= 0.

Hence, integrating the first term by-parts, we receive

n

∑
e=1

{ 1∫
0

〈
{

θ̄ (ξ )
}T
,ξ ξ

ξ
[
E0e]+{θ̄(ξ )

}T
,ξ

([
E0e]+ [E1e]− [E1e]T)

−
{

θ̄(ξ )
}T 1

ξ

[
E2e]〉δ {θ̄(ξ )

}
dξ

+{q̄e(ξ )}T
δ
{

θ̄(ξ )
}∣∣ξ=1

ξ=0−
{

Q̃e}T
δ
{

θ̄(1)
}}

= 0,

(33)

where we have used the notation

{q̄e(ξ )} :=−ξ
[
E0e]{

θ̄(ξ )
}
,ξ
−
[
E1e]T {

θ̄(ξ )
}
. (34)

Furthermore, making use the notations

[Eα ] :=
n

∑
e=1

[Eαe], {q̄(ξ )} :=
n

∑
e=1
{q̄e(ξ )} (35)

the variational formulation yields the following governing equation

ξ
2 [E0]{

θ̄(ξ )
}
,ξ ξ

+ξ

([
E0]+ [E1]T − [E1]){

θ̄(ξ )
}
,ξ
−
[
E2]{

θ̄(ξ )
}
= 0,

(36)

and the restriction conditions on the boundary

{q̄(ξ )}T
δ
{

θ̄(ξ )
}∣∣ξ=1

ξ=0−
{

Q̃
}T

δ
{

θ̄(1)
}
= 0 (37)

which can be rearranged as(
{q̄(1)}T −

{
Q̃
}T
)

δ
{

θ̄(1)
}
= 0, (38)

since the temperature
{

θ̄(0)
}

must be uniquely defined, hence δ
{

θ̄(0)
}
= 0.

Now, the restriction condition (38) yields two kinds of boundary conditions:
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(i) prescribed temperature: θ̄(1), hence δ
{

θ̄(1)
}
= 0

(ii) prescribed heat flux: {q̄(1)}=
{

Q̃
}

.

A matrix function solution technique is adopted to solve the scaled boundary finite
element equation (36). Differentiating {q̄(ξ )} given by Eq. (34), one can eliminate
the 2nd order derivative

{
θ̄(ξ ,τ)

}
,ξ ξ

and get the set of the 1st order differential
equations for 2n variables

{
θ̄(ξ )

}
, {q̄(ξ )}

ξ

{ {
θ̄(ξ )

}
{q̄(ξ )}

}
,ξ

=− [Z]
{ {

θ̄(ξ )
}

{q̄(ξ )}

}
(39)

with the Hamiltonian coefficient matrix

[Z] =

[ [
E0
]−1 [E1

]T
,

[
E0
]−1[

E2
]
−
[
E1
][

E0
]−1 [E1

]T
, −

[
E1
][

E0
]−1

]
. (40)

The eigenvalue method [Song and Wolf (1999)] has been applied to solve the sys-
tem of ordinary differential equations (ODE). The general solution of equation (39)
is given by

θ̄(ξ ) = [Ψ11]
[
ξ
−λi
]
{c1}+[Ψ12]

[
ξ

λi
]
{c2} (41)

q̄(ξ ) = [Ψ21]
[
ξ
−λi
]
{c1}+[Ψ22]

[
ξ

λi
]
{c2} . (42)

The condition of finiteness of the thermal energy leads to {c2}= 0 in eqs. (41) and
(42) as the functions

[
ξ λi
]

tend to infinity at ξ = 0 for λi with negative real parts.
The solution is written as

θ̄(ξ ) = [Ψ11]
[
ξ
−λi
]
{c1} (43)

q̄(ξ ) = [Ψ21]
[
ξ
−λi
]
{c1} . (44)

The temperature on the boundary
{

θ̄
}
=
{

θ̄(ξ = 1)
}

determine the integration
constants {c1}

{c1}= [Ψ11]
−1×

{
θ̄(ξ = 1)

}
.

The nodal fluxes on the boundary are obtained from equation (44)

Q̄ = {q̄(ξ = 1)}= [Ψ21] [Ψ11]
−1{

θ̄
}
. (45)

If the stiffness matrix [K] is defined as

Q̄ = {q̄(ξ = 1)}= [K]
{

θ̄(ξ = 1)
}
. (46)



240 Copyright © 2015 Tech Science Press CMES, vol.106, no.4, pp.229-262, 2015

4 Scaled boundary finite element method for stationary elasticity

The strain {ε̄} is given as

{ε̄}= [L]{ū}= [L] [u1, u2]
T (47)

with the linear differential operator

[L] =


∂

∂x1
0

0 ∂

∂x2
∂

∂x2

∂

∂x1

 . (48)

The operator [L] can be utilized to rewrite equilibrium equations (1) as

[L]T {σ̄}= 0. (49)

Again the whole analyzed domain V is decomposed into triangular sectors V e as-
sociated with the boundary line elements Se and the Cartesian coordinates (x,y) on
the boundary Se are interpolated by nodal coordinates and shape functions. The
scaled coordinates ξ and η are introduced.

The linear differential operator [L] in equation (48) is transformed to the coordinates
ξ , η as

[L]|V e = [L1e (η)]
∂

∂ξ
+

1
ξ

[
L2e (η)

] ∂

∂η
(50)

where

[
L1e (η)

]
=

1
|J (η) |

 y(η),η 0
0 −x(η),η

−x(η),η y(η),η

∣∣∣∣∣∣
Se

, (51)

[
L2e (η)

]
=

1
|J (η) |

 −y(η) 0
0 x(η)

x(η) −y(η)

∣∣∣∣∣∣
Se

. (52)

The displacements {ū(ξ , η)}|V e = (u1(ξ , η), u2(ξ , η))T
∣∣∣
V e

at any point (ξ , η)

inside the sector V e is obtained by interpolating {ū(ξ )} with the shape functions as

{ū(ξ , η)}|V e = [Me (η)]{ū(ξ )}, (53)

where [Me (η)] = δaeN1(η) [I]+δa ēN2(η) [I], ē=
{

e+1 , e < n
1 , e = n

and [I] is a 2×2

identity matrix.
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Substituting equations (50) and (53) into equation (37) leads to

{ε̄(ξ , η)}|V e =
[
G1e (η)

]
{ū(ξ )},ξ +

1
ξ

[
G2e (η)

]
{ū(ξ )} , (54)

where
[
G1e (η)

]
= [L1e(η)] [Me (η)],

[
G2e (η)

]
= [L2e(η)]

[
Me

,η (η)
]
.

The stresses {σ̄ (ξ , η)} can be obtained at any point (ξ , η) inside the sector V e

from equations (5) and (54) as

{σ̄ (ξ , η)}|V e =[C]
[
G1e (η)

]
{ū(ξ )},ξ +

1
ξ
[C]
[
G2e (η)

]
{ū(ξ )}

−{γ} [Ne(η)]
{

θ̄ (ξ )
}
.

(55)

Now, we can formulate the principle of virtual work for considered problem as

δU−δW =
n

∑
e=1

(δUe−δW e) = 0, (56)

where

δUe =

1∫
0

 1∫
−1

(
{σ̄(ξ ,η)}T

δ{ε̄(ξ ,η)}
)∣∣

V e |Ĵ(ξ ,η)|dη

dξ

δW e =

1∫
−1

(
{t̃(x1,x2)}T

δ{ū(1,η)}
)∣∣

Se |J(η)|dη , (57)

with {t̃e(η)} := {t̃(x1,x2)}|Se = (t̃1(x1|Se , x2|Se), t̃2(x1|Se , x2|Se))
T being the vec-

tor of tractions prescribed on Γt , and xα |Se = [Ne(η)]{xα} are Cartesian coordi-
nates on the boundary element Se ⊂ Γt .

In view of (55) and (53), one obtains

δUe =
{

f̄ e(ξ )
}T

δ {ū(ξ )}
∣∣∣ξ=1

ξ=0

+

1∫
0

(
−ξ {ū(ξ )}T

,ξ ξ
[F0e]+{ū(ξ )}T

,ξ

(
[F1e]T − [F0e]− [F1e]

)
+

+
1
ξ
{ū(ξ )} [F2e]+ξ

{
θ̄(ξ )

}T
,ξ
[H1e]+

{
θ̄(ξ )

}T (
[H1e]− [H2e]

))
δ {ū(ξ )}dξ ,

δW e =
{

T̃ e}T
δ {ū(ξ = 1)} , (58)
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in which
{

f̄ e(ξ )
}T

= ξ {ū(ξ )}T
,ξ [F

0e] + {ū(ξ )}T [F1e]− ξ
{

θ̄(ξ )
}T

[H1e] is the
force associated with the displacements {ū(ξ )}, and we have introduced he fol-
lowing notations

[F0e] =

1∫
−1

[G1e(η)]T [C][G1e(η)]|J(η)|dη = [F0e]T ,

[F1e] =

1∫
−1

[G2e(η)]T [C][G1e(η)]|J(η)|dη ,

[F2e] =

1∫
−1

[G2e(η)]T [C][G2e(η)]|J(η)|dη = [F2e]T ,

[Hαe] =

1∫
−1

[Ne(η)]T {γ}T [Gαe(η)]|J(η)|dη ,

{
T̃ e}= 1∫

−1

{t̃e(η)}T [Me(η)]|J(η)|dη . (59)

According to (56)-(59), the principle of virtual work results into the governing
equation

ξ
2[F0]{ū(ξ )},ξ ξ +ξ

(
[F0]+ [F1]T − [F1]

)
{ū(ξ )},ξ − [F2]{ū(ξ )}=

= ξ
2[H1]T{θ̄(ξ )},ξ +ξ

(
[H1]T − [H2]T

)
{θ̄(ξ )} (60)

and the restriction condition({
f̄ (1)

}T −
{

T̃
}T
)

δ {ū(1)}−
{

f̄ (0)
}T

δ {ū(0)}= 0, (61)

which can be rearranged as({
f̄ (1)

}T −
{

T̃
}T
)

δ {ū(1)}= 0, (62)

since the generalized displacements {ū(ξ = 0)} must be uniquely defined, hence
δ {ū(0)}|= 0.

Recall that [Fα ] =
n
∑

e=1
[Fαe], {T̃}=

n
∑

e=1
{T̃ e}, { f̄ (ξ )}=

n
∑

e=1
{ f̄ e(ξ )}.
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A matrix function solution technique is adopted to solve the scaled boundary finite
element equation (60). Differentiating { f̄ (ξ )}, one can eliminate the 2nd order
derivative {ū(ξ )},ξ ξ and get the set of the 1st order differential equations for 2n
variables {ū(ξ )}, { f̄ (ξ )}

ξ

{
{ū(ξ )}{

f̄ (ξ )
} }

,ξ

+[Z]
{
{ū(ξ )}{

f̄ (ξ )
} }= ξ

{
{Ru(ξ )}{
R f (ξ )

} } , (63)

where the right-hand side vector and the Hamiltonian coefficient matrix are given
by{
{Ru(ξ )}{
R f (ξ )

} }=

{
[F0]−1[H1]T

{
θ̄(ξ )

}(
[F1][F0]−1[H1]T − [H2]T

){
θ̄(ξ )

} } , (64)

[Z] =

[ [
F0
]−1 [F1

]T −
[
F0
]−1

−
[
F2
]
+
[
F1
][

F0
]−1 [F1

]T −
[
F1
][

F0
]−1

]
. (65)

The eigenvalue method [Song (2004a)] has been applied to solve the homogeneous
equation corresponding to the scaled boundary finite element method equation (63),
firstly. Substituting the formal solution{
{ū(ξ )}{

f̄ (ξ )
} }(h)

= ξ
−λi {Ψi} , (66)

into homogeneous system leads to the eigenvalue problem of matrix [Z]

[Z]{Ψi}= λi {Ψi} or [Z] [Ψ] = [Ψ] [λ ] (67)

where [λ ] is diagonal matrix composed of 4n eigenvalues and the columns of the
matrix [Ψ] are given by the corresponding eigenvectors.

Separating the positive and negative eigenvalues, one can split the general solution
of the homogeneous system as{
{ū(ξ )}{

f̄ (ξ )
}}(h)

=

[
[Ψu−] [Ψu+]
[Ψ f−] [Ψ f+]

][
diag[ξ−λ (−)

] [0]
[0] diag[ξ−λ (+)

]

]{{
c(−)

}{
c(+)

}}=[X(ξ )]

{{
c(−)

}{
c(+)

}} ,

(68)

where λ (−) and λ (+) represent negative and positive eigenvalues of the matrix [Z],
respectively, diag[ξ±λ (·)

] are diagonal matrices with shown elements, and
{

c(−)
}

and
{

c(+)
}

are integration constants associated correspondingly with these eigen-
values. The technique of variation of integration constants is applied to the non-
homogeneous system (63). Recall that

ξ [X(ξ )],ξ +[Z] [X(ξ )] = 0 . (69)
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Then, the integration constants are replaced by
{

c(−)(ξ )
}

,
{

c(+)(ξ )
}

and one can
write{
{ū(ξ )}{

f̄ (ξ )
} }= [X(ξ )]

{ {
c(−)(ξ )

}{
c(+)(ξ )

} } . (70)

Substituting (70) into (63) yields

ξ [X(ξ )],ξ

{ {
c(−)(ξ )

}{
c(+)(ξ )

} }+ξ [X(ξ )]

{ {
c(−)(ξ )

}{
c(+)(ξ )

} }
,ξ

+[Z] [X(ξ )]

{ {
c(−)(ξ )

}{
c(+)(ξ )

} }= ξ

{
{Ru(ξ )}{
R f (ξ )

} } .

(71)

Hence, in view of (69)

ξ [X(ξ )]

{ {
c(−)(ξ )

}{
c(+)(ξ )

} }
,ξ

= ξ

{
{Ru(ξ )}{
R f (ξ )

} }
or according to (68)

[
[Ψu−] [Ψu+]
[Ψ f−] [Ψ f+]

][
diag[ξ−λ (−)

] [0]
[0] diag[ξ−λ (+)

]

]{{
c(−)(ξ )

}{
c(+)(ξ )

}}
,ξ

=

{
{Ru(ξ )}{
R f (ξ )

}} .

(72)

Thus,

[Ψu−]diag[ξ−λ (−)
]
{

c(−)(ξ )
}
,ξ
+[Ψu+]diag[ξ−λ (+)

]
{

c(+)(ξ )
}
,ξ
= {Ru(ξ )} ,

[Ψ f−]diag[ξ−λ (−)
]
{

c(−)(ξ )
}
,ξ
+[Ψ f+]diag[ξ−λ (+)

]
{

c(+)(ξ )
}
,ξ
=
{

R f (ξ )
}
.

(73)

Hence, we obtain

diag[ξ−λ (−)
]
{

c(−)(ξ )
}
,ξ
=
[
A(−)

](
[Ψu+]

−1 {Ru(ξ )}− [Ψ f+]
−1{R f (ξ )

})
,

diag[ξ−λ (+)
]
{

c(+)(ξ )
}
,ξ
=
[
A(+)

](
[Ψu−]

−1 {Ru(ξ )}− [Ψ f−]
−1{R f (ξ )

})
,

(74)



Scaled Boundary Finite Element Method 245

where[
A(−)

]
=
(
[Ψu+]

−1 [Ψu−]− [Ψ f+]
−1 [Ψ f−]

)−1
,[

A(+)
]
=
(
[Ψu−]

−1 [Ψu+]− [Ψ f−]
−1 [Ψ f+]

)−1
.

(75)

Now, considering particular eigenvalues λ
(−)
i , λ

(+)
i for (i = 1,2, ..., 2n) Eq. (74)

can be rewritten as(
c(−)i (ξ )

)
,ξ
= ξ

λ
(−)
i

[
A(−)

]
i j

(
[Ψu+]

−1
jk {Ru(ξ )}k− [Ψ f+]

−1
jk

{
R f (ξ )

}
k

)
(

c(+)
i (ξ )

)
,ξ
= ξ

λ
(+)
i

[
A(+)

]
i j

(
[Ψu−]

−1
jk {Ru(ξ )}k− [Ψ f−]

−1
jk

{
R f (ξ )

}
k

)
. (76)

Integrating equations in (76), we obtain

c(−)i (ξ ) = c(−)i +

ξ∫
1

τ
λ
(−)
i

[
A(−)

]
i j

(
[Ψu+]

−1
jk {Ru(τ)}k− [Ψ f+]

−1
jk

{
R f (τ)

}
k

)
dτ

c(+)
i (ξ ) = c(+)

i +

ξ∫
0

τ
λ
(+)
i

[
A(+)

]
i j

(
[Ψu−]

−1
jk {Ru(τ)}k− [Ψ f−]

−1
jk

{
R f (τ)

}
k

)
dτ,

(77)

in which c(−)i , c(+)
i are integration constants. Since the solution should be finite

also at the scaling center, according to Eq. (70), we require [X(ξ = 0)]< ∞, hence
we need to exclude the contribution of the solutions with positive eigenvalues at
ξ = 0, i.e., we require c(+)

i (0) = 0. Thus, according to (772), we have c(+)
i = 0,

(i = 1,2, ... , 2n) and

c(+)
i (ξ ) =

ξ∫
0

τ
λ
(+)
i

[
A(+)

]
i j

(
[Ψu−]

−1
jk {Ru(τ)}k− [Ψ f−]

−1
jk

{
R f (τ)

}
k

)
dτ. (78)

Finally, c(−)i are determined by the prescribed boundary conditions at nodal points,
when ξ = 1 and according to (771), we have c(−)i (1) = c(−)i . Then, in view of (70),
we have{
{ū(1)}{

f̄ (1)
} }= [X(1)]

{ {
c(−)

}{
c(+)(1)

} } , with [X(1)] =
[

[Ψu−] [Ψu+]
[Ψ f−] [Ψ f+]

]
, (79)
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c(+)
i (1) =

1∫
0

τ
λ
(+)
i

[
A(+)

]
i j

(
[Ψu−]

−1
jk {Ru(τ)}k− [Ψ f−]

−1
jk

{
R f (τ)

}
k

)
dτ. (80)

Eq. (79) represents two sets of 2n relationships

[Ψu−]
{

c(−)
}
=−{ū(1)}+[Ψu+]

{
c(+)(1)

}
(81)

[Ψ f−]
{

c(−)
}
=−

{
f̄ (1)

}
+[Ψ f+]

{
c(+)(1)

}
(82)

hence, we can extract 2n algebraic equations according to prescribed boundary
values of displacements and/or tractions at nodal points. Recall that according
to (62), we have

{
f̄ (1)

}
=
{

T̃
}

at nodal points, where tractions are prescribed.
Having known

{
c(−)

}
, the solution of the boundary value problem (displacements

and forces) is given by Eq. (70) with [X(1)], c(−)i (ξ ), c(+)
i (ξ ) being given by Eqs.

(68), (771) and (78), respectively.

5 Computation of effective thermal and elastic material properties

Let us consider a rectangular RVE sample Ω = {∀x = (x1,x2); x1 ∈ [0, a], x2 ∈
[0, b]}. Inside the rectangular RVE domain there are generally some microstruc-
tural elements with arbitrary geometry. Then, the average values of the conjugated
fields within the analysed sample are given as

〈σ11〉=
1
ab

a
b∫

0

t1|x1=a dx2 +

a∫
0

[
t1|x2=0 + t1|x2=b

]
x1dx1



〈σ22〉=
1
ab

b
a∫

0

t2|x2=b dx1 +

b∫
0

[
t2|x1=0 + t2|x1=a

]
x2dx2


〈σ12〉=

1
2ab

( a∫
0

[
bt1|x2=b +

(
t2|x2=b + t2|x2=0

)
x1
]

dx1

+

b∫
0

[
at2|x1=a +

(
t1|x1=a + t1|x1=0

)
x2
]

dx2

) (83)

〈ε11〉=
1
ab

 b∫
0

[
u1|x1=a− u1|x1=0

]
dx2

 , (84)
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〈q1〉=
1
ab

a
b∫

0

q1|x1=a dx2 +

a∫
0

[
q2|x2=b− q2|x2=0

]
x1dx1



〈q2〉=
1
ab

b
a∫

0

q2|x2=b dx1 +

b∫
0

[
q1|x1=a− q1|x1=0

]
x2dx2

 , (85)

where

qi =−ki jθ, j,
〈
σi j
〉
=

1
V

∫
V

σi jdV =
1

2V

∫
Γ

(tix j + t jxi)dΓ,

〈qi〉=
1
V

∫
V

qidV =
1
V

∫
Γ

qknkxidΓ, (86)

and the integrands are obtained from the solution of considered boundary value
problems.

If the boundary conditions are selected as shown in Fig. 2, the average values of
the secondary fields are given as

〈θ,1〉= ϑ1 = const, 〈θ,2〉= 0. (87)

Figure 2: Boundary conditions appropriate for evaluation of ke f f
11 , ke f f

21 .
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Then, we can get the following effective material coefficients

ke f f
11 =−〈q1〉

ϑ1
, ke f f

21 =−〈q2〉
ϑ1

. (88)

If the boundary conditions are selected as shown in Fig. 3, the average values of
the secondary fields are given as

〈θ,2〉= ϑ2 = const, 〈θ,1〉= 0 . (89)

Figure 3: Boundary conditions appropriate for evaluation of ke f f
22 ,ke f f

12 .

Now, we can calculate the following effective material coefficients

ke f f
12 =−〈q1〉

ϑ2
, ke f f

22 =−〈q2〉
ϑ2

, (90)

where the average values of the conjugated fields 〈q1〉, 〈q2〉 are given by formu-
lae (85), with the integrands being obtained from the solution of the considered
boundary value problem.

Now, the effective mechanical material parameters can be computed. If boundary
conditions are selected as shown in Fig. 4, the average values of the secondary
fields are given as

〈ε11〉= ε̄11 = const, 〈ε22〉= 0, 〈ε12〉= 0. (91)
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Figure 4: Boundary conditions appropriate for evaluation of ce f f
11 , ce f f

12 .

Then, we can get the following effective material coefficients

ce f f
11 =

〈σ11〉
ε̄11

, ce f f
12 =

〈σ22〉
ε̄11

. (92)

If the boundary conditions are selected as shown in Fig. 5, the average values of
the secondary fields are given as

〈ε11〉= 0, 〈ε22〉= ε̄22 = const, 〈ε12〉= 0. (93)

Now, we can calculate the following effective material coefficients

ce f f
22 =

〈σ22〉
ε̄22

, ce f f
12 =

〈σ11〉
ε̄22

, (94)

where the average values of the conjugated fields 〈σ11〉, 〈σ22〉 are given by for-
mulae (83), with the integrands being obtained from the solution of the considered
boundary value problem.

If effective elastic coefficients are available, we can calculate the stress-temperature
effective material coefficients. For selected boundary conditions in Fig. 6, the
average values of the secondary fields are given as

〈σ11〉= 0, 〈θ〉= θ̄ , 〈ε22〉= 0. (95)
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Figure 5: Boundary conditions appropriate for evaluation of ce f f
22 ,ce f f

12 .

Figure 6: Boundary conditions appropriate for evaluation of γ
e f f
11 , γ

e f f
22 .

The stress-temperature effective material coefficients are derived from vanishing
〈σ11〉 and constitutive equation for 〈σ22〉. They have the following form

γ
e f f
11 =

〈ε11〉
θ̄

ce f f
11 , γ

e f f
22 =

1
θ̄

[
ce f f

12 〈ε11〉−〈σ22〉
]
, (96)

where the average values of the conjugated fields 〈ε11〉, 〈σ22〉 are given by for-
mulae (84) and (83), with the integrands being obtained from the solution of the
considered boundary value problem.
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If boundary conditions are selected as shown in Fig. 7, the average values of the
secondary fields are given as

〈ε11〉= 0, 〈ε22〉= 0, 〈ε12〉= ε̄12 = const. (97)

Figure 7: Boundary conditions appropriate for evaluation of ce f f
44 .

Now, we can calculate the following effective material coefficients

ce f f
44 =

〈σ12〉
2ε̄12

. (98)

Thus, having solved the above considered boundary value problems in the RVE
sample, we can calculate all the effective material coefficients in materials with
voids.

6 Numerical examples

6.1 RVE with a single void

In this numerical example it is analyzed one circular void in square domain (a×a),
where various values of void radii are considered. The material parameters cor-
responding to cadmium selenide ceramic material; they are given by [Li at al.
(2015)]:

c11 = 7.41×1010Nm−2 , c12 = c23 = 3.93×1010Nm−2,
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c22 = 8.36×1010Nm−2 , c44 = 1.32×1010Nm−2 , c13 = 4.52×1010Nm−2 ,

α11 = α33 = 4.396×10−6 K−1, α22 = 2.458×10−6 K−1,

k11 = 50WK−1m−1 , k22 = 75WK−1m−1 ,

The analyzed domain is divided into polygons and each polygon is treated as a
scaled boundary finite element subdomain (see Fig. 8). To have a good visibil-
ity from the scale centre on boundaries of the analyzed domain, it is necessary to
introduce subdomains for this not simply-connected domain. There are needed at
least 4 subdomains to solve this problem. We have considered 12 polygons in nu-
merical analyses (Fig. 8) with getting quasi uniform fictitious triangulation which
is appropriate for approximation accuracy. Only boundaries of subdomains need to
be discretized with line elements. Three nodes elements are used for discretization
of subdomain boundaries. There are totaly 108 nodes in this mesh.

 25 
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Fig. 8 Discretization of a square domain with a circular void in the SBFEM 
 

For comparative purposes we have analyzed the same problem by the finite element method 

(FEM). The software Comsol has been applied. We used very fine mesh, where various numbers 

of elements have been considered in dependence on the radius of the circular void. Total number 

of elements 9689 and 5240 has been used for minimum porosity (volume fraction of 0.05) and 

maximum porosity with 0.5, respectively. The volume fraction of voids is defined as 

2 2

0 /f r a , where 
0r  is the radius of the circular void.  

Figure 8: Discretization of a square domain with a circular void in the SBFEM.

For comparative purposes we have analyzed the same problem by the finite element
method (FEM). The software Comsol has been applied. We used very fine mesh,
where various numbers of elements have been considered in dependence on the
radius of the circular void. Total number of elements 9689 and 5240 has been used
for minimum porosity (volume fraction of 0.05) and maximum porosity with 0.5,
respectively. The volume fraction of voids is defined as f = πr2

0/a2, where r0 is the
radius of the circular void.
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Figure 9: Variation of effective elastic coefficients c11, c12 on porosity.

Figure 10: Variation of effective elastic coefficient c22 on porosity.

Figure 11: Variation of effective elastic coefficient c44on porosity.
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The advantage of the present SBFEM is a significant reduction of elements with
respect to the conventional FEM. In the SBFEM we had only 12 macro-elements
with 108 nodes. It is about 50 times lower than in the FEM. There are no limita-
tions on applications of both methods. The numerical results for effective material
parameters are presented in Fig. 9-14. The fixed numbers of discretized lines nodes
were used in SBFEM for various radii of circular voids. One can observe from Figs.
9-10, that the effective elastic coefficients c11, c12 and c22 decrease with growing
porosity volume fraction. The influence of the porosity on c44 effective elastic co-
efficient is evident on Fig. 11. The effective thermal conductivities ke f f

11 and ke f f
22

shown in Fig. 12 and 13 have similar decreasing tendency with growing porosity as
it was observed for effective elastic coefficients. The effective stress-temperature
moduli γ

e f f
11 and γ

e f f
22 are shown on Fig. 14.

Figure 12: Variation of effective thermal conductivities on porosity.

 

Fig. 13 Variation of effective thermal conductivities on porosity 

 

Figure 13: Variation of effective thermal conductivities on porosity.
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Figure 14: Variation of effective stress-temperature moduli γ
e f f
11 and γ

e f f
22 on poros-

ity.

6.2 RVE with multiple voids

In order to show the capabilities of present SBFEM formulation, the numerical ex-
ample considering four circular voids in square domain (a×a) is presented next,
where various values of void radii are again considered. The analyzed domain is
divided into 33 polygons and each polygon is treated as a scaled boundary finite
element subdomain. SBFEM subdomains for volume fraction f = 35% are shown
in Fig. 15. Three node elements are used for discretization of subdomain bound-
aries. There are totaly 316 nodes in this mesh. In comparison, FEM mesh created
in Comsol Multiphysics for the same problem would consist of 6707 quadrilateral
elements.

Effective material parameters are again computed for same values of porosity rang-
ing from 0.05 to 0.5. The numerical results for effective material parameters are
shown in Figs. 16-19. Comparison between results for single voided domain
marked as RVE1 and domain with four voids marked as RVE2 is presented.

One can observe from Figs. 16-18, that the effective thermal conductivities ke f f
11 ,

ke f f
22 , effective stress-temperature moduli γ

e f f
11 and γ

e f f
22 as well as effective elastic

coefficients c11, c12 and c22 decrease with growing porosity volume fraction in
the same way for both considered RVEs. However, Fig. 19 shows a significant
difference for effective elastic coefficient c44, even though both cases with one and
four voids fulfill the Hill’s conditions of RVE [Hill (1963)]. It is observed lower
value of the effective shear coefficient for the RVE with higher number of voids
than for one-voided RVE at the same level of porosity.
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Fig. 15 Discretization of a square domain with four circular voids in the SBFEM 

 

Effective material parameters are again computed for same values of porosity ranging from 0.05 

to 0.5. The numerical results for effective material parameters are shown in Figs. 16-19. 

Comparison between results for single voided domain marked as RVE1 and domain with four 

voids marked as RVE2 is presented.  

One can observe from Figs. 16-18, that the effective thermal conductivities 11

effk , 22

effk  , effective 

stress-temperature moduli 11

eff  and 22

eff  as well as effective elastic coefficients 
11c , 

12c  and 
22c  

decrease with growing porosity volume fraction in the same way for both considered RVEs. 

However, Fig. 19 shows a significant difference for effective elastic coefficient
44c , even though 

both cases with one and four voids fulfill the Hill’s conditions of RVE (Hill, 1963). It is 

observed lower value of the effective shear coefficient for the RVE with higher number of voids 

than for one-voided RVE at the same level of porosity. 

 

Figure 15: Discretization of a square domain with four circular voids in the
SBFEM.

Figure 16: Variation of effective thermal conductivities on porosity for two RVEs.

Figure 17: Variation of effective stress-temperature moduli on porosity for two
RVEs.
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Figure 18: Variation of effective elastic coefficients c11, c12 and c22 on porosity for
two RVEs.

Figure 19: Variation of effective elastic coefficient c44on porosity for two RVEs.

7 Conclusions

The scaled boundary finite element method is applied to solve uncoupled thermoe-
lastic boundary value problems for the RVE to get effective material properties of
elastic solids with voids. In the first step the temperature distribution is analyzed
by the SBFEM. In the second step the elastic problem with known temperature is
solved. The scaled boundary finite element equation is derived, which has a non-
homogeneous form with temperature and its gradients on the right hand side. The
eigenvalue method is applied to solve the homogeneous equation and the technique
of variation of integration constants is applied to the non-homogeneous system.
The average values of the conjugated fields on the RVE are computed for evaluation
effective mechanical and thermal coefficients. The numerical results are compared
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with finite element method (FEM) results and a very good agreement is observed.
The mesh is significaly coarser in the SBFEM than in the FEM and a tremendous
reduction in the total number of DOFs is achieved in comparison with the FEM
model. The SBFEM is applied to the RVE with multiple voids to demonstrate the
relative superiority of the SBFEM with respect to the conventional FEM.

In future work we consider to analyze fiber or particle reinforced composite ma-
terials. In the RVE instead of voids the inclusion material properties have to be
considered. On the interface of the matrix and inclusion the continuity for the dis-
placements and temperature, as well as the equilibrium for the tractions and heat
fluxes have be taken into account.
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