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A New Efficient Matrix Algorithm for a 3D Component
Mode Synthesis (CMS) Model Used on Sound

Transmission Problems

M. D. C. Magalhaes1,2

Abstract: The main goal of this study is to present an alternative and more ef-
ficient algorithm for a three-dimensional Component Mode Synthesis model to be
used on sound transmission problems. The influence of fluid-structure interaction
on airborne sound transmission problems is analysed using this model, which is
based on simple volume geometries. In principle, the same procedure can also be
applied when the component modes are obtained from alternative numerical tech-
niques. The modal behaviour of acoustic volumes and a partition is implemented in
two steps. The novelty of this alternative model is that the structural modes are in-
corporated on the acoustic CMS components. In other words, each acoustic volume
considers not only the acoustic modes of the volumes but also the structural modes
of the partition. Comparison is made with predictions based on a modal model of
which particle velocity continuity was not incorporated in the formulation.

Keywords: Algorithm, component mode synthesis, sound transmission, numeri-
cal simulations.

1 Introduction

In the literature significant studies have concentrated on analysing sound trans-
mission using uncoupled ‘rigid-walled’ acoustic modes for the acoustic volumes
[Magalhaes and Ferguson (2001); Pierce (1981); Fahy (1985)]. In this case the
boundary condition at the interface between the acoustic volumes, which is due to
the velocity of the partition, cannot be reproduced. The acoustic and the structural
response fields are typically expressed in terms of their uncoupled normal modes
by means of coupled differential equations for each mode. The structural motion is
expressed as a summation over the response of the in vacuo natural modes driven
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by fluid loading. The acoustic fields in the volumes are determined by a summa-
tion of the rigid-walled acoustic modes. According to Fahy (1985), the correct
convergence of the modal pressure on the structural interface is obtained due to
Gibb’s phenomenon, which is an overshoot that occurs whenever basis functions
(for instance acoustic mode shapes) are used to represent spatial distributions con-
taining discontinuities, e.g. in the derivatives of the response. In addition, the op-
timization of algorithms for the solution of particular numerical problems has been
widely used by several researchers [Gravvanis, Fidelis-Papadopoulos, Matiskani-
dis (2014); Magalhaes (2012); Razzac, Tsotskas, Turek, Kipouros, Savill and Hron
(2013); Santos, Matioli and Beck (2012)].

The CMS approach [Craig (1981)] was initially developed and applied to acoustic-
structural coupled volumes possessing one-dimensional wave propagation through
a limp partition to verify the accuracy and applicability of the approach [Maga-
lhaes and Ferguson (2003)]. Most sound transmission problems require a three-
dimensional model for better representation of the sound field distribution. Like-
wise, the application of the ‘limp’ mass description is not entirely appropriate in
frequency bands higher than the one that includes the fundamental resonance fre-
quency of a partition and so both requirements need to be considered herein. An-
other development is the extension of the one-dimensional CMS model [Magal-
haes and Ferguson (2003)] to the three-dimensional case [Magalhaes and Ferguson
(2005)]. This was shown for two simple volume geometries and a rectangular par-
tition. For irregular shapes, the same procedure can be developed when the compo-
nent modes are obtained from numerical techniques, such as FE, and then applied
in the described CMS methodology.

The modal behaviour of acoustic volumes and structural interface was implemented
in just one step where a modified version of the three-dimensional model imple-
mented in ref. [Magalhaes and Ferguson (2005)] was considered herein. The par-
tition structural modes were incorporated into the acoustic component formulation
as ’acoustic constraint modes’. In other words, the modal description for the struc-
tural interface (using normal in-vacuo structural modes with the relevant boundary
conditions) was incorporated in the source and receiver acoustic components.

The CMS method requires the user to model separate components of a problem in
terms of a summation over constraint modes and component normal modes and has
previously been applied in structural dynamics. A constraint mode is defined as the
static deformation of a subsystem when a unit displacement or velocity is applied
to one coordinate of a specific set of ‘interface’ coordinates. Usually the number of
constraint modes considered is equal in number to the number of redundant inter-
face degrees of freedom. The acoustic constraint modes used corresponded to rigid
walled conditions on all boundaries other than at the interface with the structure,
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which was specified as the actual structural normal modes for these modes. They
provide convergence to a better result, so that the particle velocity continuity at the
interface can be replicated.

The component normal modes adopted herein were classified according to their
boundary conditions as free-interface modes. The acoustic normal modes adopted
are taken to be those of the volumes with a flexible wall at the interface and rigid
walls on all other boundaries. The number of normal modes chosen depends upon
the frequency range of the calculations and convergence requirements.

In summary, the aim of this paper is to develop an alternative CMS model that
incorporates interface particle velocity continuity in the formulation for the predic-
tion of noise transmission between two volumes. The Component Mode Synthesis
(CMS) method [Craig (1981)] was used for the development of this alternative
model which is based on the one developed previously [Magalhaes and Ferguson
(2005)]. Subsequently, the CMS model implemented was then compared with the
traditional modal model [Fahy (1985)].

2 Sound transmission mechanism– Theoretical background

The mechanism of sound transmission may be considered in terms of the radiated
sound field from an elastic partition, itself excited by a sound field in a source room.
The partition, modelled by a thin plate, has a response to acoustic excitation, which
consists of both free and forced bending waves. Freely travelling bending waves
are generated when the plate is excited at its natural frequencies. As a result of
the plate edges, these waves interact with each other producing the plate mode of
vibration. On the other hand, forced waves occur due to pressure fluctuations which
force the plate to move in such a way that free-bending waves are not significantly
generated. The spatial distribution of the forcing produces a response that is similar
in its spatial response.

In terms of radiation efficiency, which is a non-dimensional measure of the sound
power radiated by a vibrating surface into an adjacent fluid [Fahy (1985)], the gen-
eration of free bending waves is more important at frequencies above the critical
frequency of the panel, where the natural modes of the partition consist of wave
motion with phase velocity greater than the speed of sound travelling in air. In this
condition, sound power is radiated efficiently [Fahy (1985)]. Below the critical fre-
quency, the free waves are produced but are not significant for sound transmission.

Forced waves at the acoustic wave number are predominant when a panel vibrates
at frequencies lower than its critical frequency. They are common when a panel
is excited acoustically [Fahy (1985)]. In addition, when a sound wave is incident
upon a partition, the response, which is frequency dependent, is also dependent on
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the radiation impedance of the modes of the partition. Thus, the air or fluid on the
receiver side of the plate is excited, and sound waves propagate away from the plate
into the receiving volume.

Below the first panel resonance, there is an increase in SRI with decreasing fre-
quency. In this frequency range, the panel moves with the pressure fluctuation to
transmit sound and has a very small frequency response. The vibration can be
reduced by stiffening the panel hence causing an increase in the SRI.

2.1 Sound transmission through an infinite partition

In general, the sound transmission theory for uniform and unbounded panels has
widely been used to approximate the sound transmission loss of a bounded panel in
a baffle. Of course, some assumptions, such as the random-incidence field over the
partition, as well as a limited frequency range (in which the acoustical wavelength
is smaller than the plate size), have been considered. For instance, the normal
incidence Mass Law theory is basically derived from an idealized model of normal
incidence transmission through an unbounded partition [Pierce (1981)]. On the
other hand, the diffuse field transmission coefficient can be obtained by considering
the whole range of incident angles with equal likelihood. In room acoustics there is
an important parameter, namely the ‘Schroeder’ frequency [Fahy (2000)], at which
the frequency or modal overlap of the room modes is large enough for the sound
field to be considered diffuse.

Two measures of the effectiveness of a partition in reducing sound transmission
are the transmission efficiency and the Sound Reduction Index. A transmission
efficiency parameter τ is defined as the ratio of transmitted to incident acoustic
power. A positive value of the Sound Reduction Index corresponds to a reduction
of the transmitted power compared to the incident. The mass law SRI expressions
for normal (SRIn), field (SRI f ) and diffuse (SRId) incidence are given in Fahy
(2000).

2.2 Sound transmission through a finite partition in a baffle

A finite-size and baffled rectangular plate is a more realistic model than the infinite
one described previously. The transmission is characterized by boundary effects,
which lead to the formation of standing-wave modes and resonance. Lepping-
ton [Leppington, Broadbent and Heron (1989)] proposed a different formula for
the transmission efficiency τLep averaged over all incidence angles and over a fre-
quency band. The resonant τres and non-resonant contributions τnr are expressed in
[Leppington, Broadbent and Heron (1989)].

The resonant contribution τres is due to the modes excited at or near resonance,
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which produce a large partition deflection but are inefficient in terms of sound
power radiation. The non-resonant contribution τnr corresponds to that from the
small amplitude off-resonant modes. However, for these non-resonant modes sound
energy is radiated efficiently and their wavenumbers are smaller than the acous-
tic wavenumber. According to Leppington [Leppington, Broadbent and Heron
(1989)], there is good agreement between the transmission values obtained via
solely the non-resonant contribution τnr and experimental tests with no need for an
ad hoc correction. As mentioned previously, it is assumed that the plate is simply-
supported. It is also assumed that the transmission efficiencies represent an average
over a large number of modes and over all incidence angles.

3 The CMS Method for the 3D case – Matrix formulation

As in the three dimensional case developed in ref. [Magalhaes and Ferguson
(2005)], the implementation of the modified CMS method for the 3D case was also
based on the selection of the sets of modes, definition of the constraint equations
and system synthesis. Two rigid-walled rectangular cross section volumes with a
common elastic partition at the interface, as shown in figure 1, are considered as
only two distinct CMS components, instead of three CMS components defined in
ref. [Magalhaes and Ferguson (2005)]. The first consists of the acoustic fluid vol-
ume, being defined for x = -Lx1 to x = 0. The second component is the receiving
acoustic fluid volume, which is defined as varying from x =0 to x = Lx2. Both
components have been considered with the same cross-section, but the extension
to other volumes is also straight forward. The elastic simply-supported partition,
which separates the two volumes, is represented dynamically by constraint flexural
modes included on both CMS acoustic components. A harmonic constant ampli-
tude volume velocity source is placed in one corner of the source volume, so that
all acoustic modes can be excited. It is assumed that the fluid velocity function
ε̇(x,y,z, t) can be written in terms of the generalized velocity potential Φ̄ (scalar
quantity) by the modal transformation [Fahy (1985)]

ε̇ =
(

Ψx~i+ Ψy~j+ Ψz~k
)

Φ̄ (1)

where Ψx, Ψy and Ψz are matrices which consist of pre-selected normal veloc-
ity modes for a rigid walled volume plus constraint modes, representing the fluid
velocity distribution in the x, y and z directions respectively; The fluid velocity
function and the generalized velocity potential are defined as ε̇(x,y,z, t) = ∂ε(x,y,z,t)

∂ t
and ε̇ = (u̇, v̇, ẇ) = ∇(Φ) respectively.

The modal matrices for the source component are given by

Ψx1 = sx1
[

Ψn1 Ψc1

]
(2)
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Ψy1 = sy1
[

Ψl1 Ψc1

]
(3)

Ψz1 = sz1
[

Ψq1 Ψc1

]
(4)

where the subscript c1 represents the constraint mode number. The subscripts n,
l, and q denote the normal mode number of a particular mode in the x, y and z
directions respectively. sx1, sy1 and sz1 represent scale constants whose units are
such that Ψx1, Ψy1 and Ψz1 have dimensions of (mass)−0.5. The matrix Ψx1 consists
of a set of fixed-fixed interface normal modes (Ψn1) plus a set of fixed-structural
constraint modes (Ψc1) in the x direction. Likewise, the matrix Ψy1 is comprised
of a set of fixed-fixed interface modes (Ψl1) in the y direction plus the set of fixed-
structural modes (Ψc1), which is due to the contribution of the constraint modes to
the fluid particle velocity in the x normal direction. Finally, matrix Ψz1 consists of
a set of fixed-fixed interface normal modes (Ψq1) plus the set of modes Ψc1 .

The set of constraint modes Ψc1 contributes to the fluid particle velocity distribution
only in the x direction, considering that the partition normal velocity equals the fluid
particle velocity at the interface. This is justified by the fact that the interface be-
tween components is only in the constant plane x= 0. The selected orthogonal and
constraint modes were defined as shape functions satisfying the geometric bound-
ary conditions for each acoustic component. By application of the well-known
relationship between velocity potential and particle velocity [Fahy, (1985)], the or-
thogonal modes Ψn1 (in the x direction) and their contributions to the fluid particle
velocity in the y and z directions (Ψl1 and Ψq1) can be expressed by [Magalhaes
and Ferguson (2005)]

Ψn1(x,y,z, t) =−kn1 sin(kn1x) cos(kl1y) cos(kq1z) for −Lx1 ≤ x≤ 0 (5)

Ψl1(x,y,z, t) =−kl1 cos(kn1x) sin(kl1y) cos(kq1z) for 0≤ y≤ Ly1 (6)

Ψq1(x,y,z, t) =−kq1 cos(kn1x) cos(kl1y) sin(kq1z) for 0≤ z≤ Lz1 (7)

where kn1 , kl1 and kq1 are equal to n1π /(Lx1), l1π /Ly1 and q1π/Lz1 respectively.
It is seen that the natural modes given by eqs. (5), (6) and (7) have units equal to
[m−1].

As mentioned previously, an additional set of constraint modes Ψc1 , which satisfies
zero velocity on x = -Lx1 and the structure velocity modal distribution in the x
direction on x = 0 over the partition area is used for the source room. In principle,
the elastic partition covers the whole of the common boundary (x = 0). For the
source room component, the constraint modes Ψc1 (in the x direction) are then
given by

Ψc1(x,y,z, t) =
(

1+
x

Lx1

)
φp,q(y,z) (8)
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where φp,q(y,z) is the analytical mode shape for a simply-supported rectangular
plate in vacuo. It is given by

φp,q(y,z) = sin(kpY y) sin(kqZ z) (9)

where kpY = pπ/Lyp and kqZ = qπ/Lzp are the plate modal wavenumbers in the y
and z directions respectively. For general boundary conditions, the structure mode
shape can be obtained numerically, for instance via the FEM.

Eqs. 8 and 9 apply over the area of the partition, even if it might only cover a partial
area of the whole interface (common wall). It is seen that this set of Eqs. (8-9) do
not have the same dimensions of those equations defined previously in Eqs. (5-7).

However, all original mode shape vectors defined above, the natural and constraint
modes, were normalized to the more useful mass-normalized mode shape vec-
tors [Craig (1981)]. It should be noted that the natural modes have units equal
to [m−1] and the constraint modes are dimensionless, while after normalization
[Craig (1981)], the mass-normalized vectors defined in Eqs. (2-4) have dimensions
of (mass)−0.5.

A linear function was chosen to represent the particle velocity distribution in the
xdirection, as higher order functions did not provide better convergence. The parti-
cle velocity of a fluid is defined by the first order derivative of its velocity potential.
A certain function appears in eq. (9), which represents the constraint modes veloc-
ity contributions in the y and z directions respectively.

Additionally, it is assumed that the set of normal structural modes φp are the flexural
vibration mode shapes of a simply supported isotropic rectangular thin plate [Craig
(1981)]. No constraint modes are necessary for the structural component and other
structural boundary conditions could similarly be considered.

The modal matrices for the receiving component can be expressed as

Ψx2 = sx2
[

Ψn2 Ψc2

]
(10)

Ψy2 = sy2
[

Ψl2 Ψc2

]
(11)

Ψz2 = sz2
[

Ψq2 Ψc2

]
(12)

Likewise for the source component, sx2, sy2 and sz2 represent scale constants whose
units are such that Ψx2, Ψy2 and Ψz2 have dimensions of (mass)−0.5. The matrix Ψx2
comprises of a set of fixed-fixed interface normal modes (Ψn2) plus a set of free-
fixed constraint modes (Ψc2) in the x direction. The matrix Ψy2 is composed of a
set of fixed-fixed interface normal modes (Ψl2) plus another set of free-fixed modes
(Ψc2) in the x direction, which is due to the contribution of the constraint modes
Ψc2 to the fluid particle normal velocity. In the same way, matrix Ψz2 comprises
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a set of fixed-fixed interface normal modes (Ψq2) plus the set of constraint modes.
As for the source room, the set of free-fixed constraint modes Ψc2 is sufficient for
the formulation of the problem.

Additionally, the (x,y,z) particle velocity Cartesian components for the receiving
volume are given respectively by

Ψn2(x,y,z, t) =−kn2 sin(kn2x) cos(kl2y) cos(kq2z) for 0≤ x≤ Lx2 (13)

Ψl2(x,y,z, t) =−kl2 cos(kn2x) sin(kl2y) cos(kq2z) for 0≤ y≤ Ly2 (14)

Ψq2(x,y,z, t) =−kq2 cos(kn2x) cos(kl2y) sin(kq2z) for 0≤ z≤ Lz2 (15)

where kn2 , kl2 and kq2 are equal to n2π/Lx2, l2π/Ly2 and q2π/Lz2 respectively.

The constraint modes c2 in the x direction have velocity components then given by

Ψc2(x,y,z, t) =
(

1+
x

Lx2

)
φp,q(y,z) (16)

where φp,q(y,z) was defined previously.

It is also seen that for the receiving component the constraint modes given by Eq.
(16) are dimensionless while the natural modes defined by Eqs. (13), (14) and (15)
have units [1/m].

Although the fluid particle velocity was considered in all directions (see Eq. (1)),
for calculating the dynamic response of the acoustic components 1 and 2 the com-
patibility equations describing velocity continuity were only formulated in terms
for the x direction normal to the partition or interface. Hence although the fluid
velocity function is equal to ε̇ = (ε̇x, ε̇y, ε̇z), one only needs ε̇x for the formulation
of the constraint equations at the interface. On this alternative formulation, the
structural partition was not considered as an extra modal system. Thus, sufficient
compatibility or constraint function is given by

C=

∫
S

((
∂εx,1

∂ t

)∣∣∣∣
x=0
−
(

∂εx,2

∂ t

)∣∣∣∣
x=0

)2

dS =
∫
S

(
(ε̇x,1)|x=0− (ε̇x,2)|x=0

)2 dS (17)

where εx,1 and εx,2 are the fluid particle displacements in the x direction for volumes
1 and 2 respectively and S is the surface area of the interface.

This equation is used to determine a reduced set of generalized coordinates equal
to the difference between the number of component coordinates and the number
of constraint conditions. In situations where a partition covers only a part of the
common boundary the integral in the constraint equation is evaluated only over the
partition area.
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It is implicit in eq. (17) that the same reference coordinate is used for all compo-
nents. It is not a linear problem in the generalised co-ordinates to set the constraint
function C1 to zero, instead one tries to minimise the error in a least squares sense
by minimizing the function. Hence, the following matrix form for the constraint
equations can be obtained

∂C
∂ ε̇x,1

=
∂C

∂ ε̇x,2
= 0 (18)

or RcḠ = 0 (19)

where G =
[

Φ̄c1 Φ̄c2
]T and Rc =

[
R1

...R2

]
(20)

and R1 =

[
0 R11
0 R12

]
R2 =

[
0 R21
0 R22

]
(21)

The column vector G and the matrix Rc contain the system generalized coordinates
and the geometrical coupling coefficients respectively.

The sub-matrices R11, R12, R21 and R22 defining the geometrical coupling are given
by

R11 =
∫
S

(Ψc1)
T (Ψc1) dS (22)

R12 =
∫
S

(Ψc1)
T (Ψc2) dS (23)

R21 =
∫
S

(Ψc2)
T (Ψc1) dS (24)

R22 =
∫
S

(Ψc2)
T (Ψc2)dS (25)

The acoustic modal matrices Ψx1 and Ψx2 are defined in eqs. (2) and (10) respec-
tively. No terms exist in coupling between the normal modes of the volumes (Ψn1

or Ψn2) and the constraint modes (Ψc), as the former have zero velocity at the inter-
face (x = 0). The matrix R12 and R21 are also diagonal matrices due to orthogonality
of the structural modes.

In this section the dynamic properties of an acoustic component driven by a volume
velocity source are derived using the direct application of Lagrange’s equations
[Craig (1981)]. It is necessary to formulate the scalar potential and kinetic energy
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quantities. The kinetic energy TA for an acoustic volume V1 can be expressed as
[Pierce (1981)]

TA =
1
2

ρo

∫
V1

((ε̇)∗)T (ε̇) dV (26)

Substituting eq. (1) into eq. (26), the expression for the total kinetic energy using
all of the modes employed in the formulation then becomes

TA =
1
2
(Φ̄T )∗ρo


∫
V1

(
(Ψx)

T
Ψx
)

dV1 +
∫
V1

(
(Ψy)

T
Ψy
)

dV1 +
∫
V1

(
(Ψz)

T
Ψz
)

dV

(Φ̄)

(27)

The potential energy of a fluid inside a volume V1 is defined in terms of a velocity
potential function Φ as [Pierce (1981)]

VA =
1
2

∫
V1

(
κ ρ

2
o

∂ (ΦT )∗

∂ t
∂Φ

∂ t

)
dV1 (28)

where κ =
1

ρoc2
o

is the compressibility of the fluid (29)

Using the relationship between sound pressure and velocity potential, the potential
energy can then be expressed in terms of pressure as

VA =
1
2

∫
V1

(
κ (p∗)T p

)
dV1 (30)

Assuming that the acoustic disturbances in each component are sufficiently small, a
linear relationship between pressure and the fluid velocity ε̇(x,y,z, t) can be written
as2

p =
1

jωκ
div(ε̇) (31)

and div(ε̇) = ∇.ε̇ =

(
∂Ψx

∂x
+

∂Ψy

∂y
+

∂Ψz

∂ z

)
Φ̄ (32)

where κ is defined in eq. (29) and Φ̄ is the velocity potential of the fluid.
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Substituting eq. (31) and (32) into eq. (30), the expression for potential energy
becomes

VA=
1

2κ
(Φ̄T )∗


∫
V1

(
∂(Ψx)

T

∂x
∂Ψx

∂x

)
dV1+

∫
V1

(
∂(Ψy)

T

∂y
∂Ψy

∂y

)
dV1+

∫
V1

(
∂(Ψz)

T

∂ z
∂Ψz

∂ z

)
dV1

(Φ̄)

(33)

For non-conservative systems, a dissipation function [Ghlaim and Martin (1986);
Klein and Dowell (1974)] must be included. For an acoustic component, it can be
expressed as

D =
1
2
(Φ̄T )∗ρo


∫
V1

(
(Ψx)

T 2ωNζNΨx
)

dV1 +
∫
V1

(
(Ψy)

T 2ωNζNΨy
)

dV1+

∫
V1

(
(Ψz)

T 2ωNζNΨz
)

dV1

Φ̄

(34)

where ζN is the viscous modal damping ratio matrix for the components and ωN is
the modal matrix of natural frequencies. The damping matrix can then be derived
from the above expression. Linear viscous damping was adopted for the purpose of
simplification, as this is a reasonable choice for highly reverberant acoustic spaces
[Fahy (1985)].

The system equations of motion can be obtained for a damped system by using
Lagrange’s equation of motion [Craig (1981)] as follows

∂

∂ t

(
∂L
∂ q̇i

)
− ∂L

∂qi
+

∂D
∂ q̇i

= Qi i = 1,2, . . .n (35)

where L is the Lagrangian for the system of coupled components described be-
low, D is the damping dissipation function and qi are the elements of the gen-
eralized coordinate Φ̄. In addition, it is assumed that the modes are real. Qi is
the time-dependent generalized volume velocity source strength in the case of a
source within an acoustic volume or generalized force for a general system. The
Lagrangian is defined by [Craig (1981)]

L = TA−VA +λ
T RcḠ (36)

where λ is a Lagrange multiplier vector which enforces interface compatibility. It
has the dimension of force.
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The dynamic properties of a separate acoustic component 1 may be determined via
Lagrange’s equations (Eq. 35), which lead to the following equations of motion

M3D
1

¨̄
Φ1 + C3D

1
˙̄
Φ1 + K3D

1 Φ̄1− (R1)
T

λ1 = Q3D
1 (37)

where

M3D
1 = ρo


∫
V1

(
(Ψx1)

T
Ψx1
)

dV1 +
∫
V1

(
(Ψy1)

T
Ψy1
)

dV1 +
∫
V1

(
(Ψz1)

T
Ψz1
)

dV1


(38)

K3D
1 =ρoc2

∫
V1

(
∂ (Ψx1)

T

∂x
∂Ψx1

∂x

)
dV1+

∫
V1

(
∂ (Ψy1)

T

∂y
∂Ψy1

∂y

)
dV1

+
∫
V1

(
∂ (Ψz1)

T

∂ z
∂Ψz1

∂ z

)
dV1

(39)

C3D
1 = 2ωNρ


∫
V1

(
(Ψx1)

T
ζNΨx1

)
dV1+

∫
V1

(
(Ψy1)

T
ζNΨy1

)
dV1+

∫
V1

(
(Ψz1)

T
ζNΨz1

)
dV1


(40)

Q3D
1 = jωρoQo

∫
Ψx1

δo (x− xo,y− yo,z− zo) dx (41)

δo (x− xo,y− yo,z− zo) is the three-dimensional Dirac delta function representing
a point volume velocity source at (xo,yo,zo), and M3D

1 , K3D
1 , and C3D

1 are scalar
quantities representing the modal mass, stiffness and damping matrices for the fluid
volume respectively. Q3D

1 is the column matrix of generalized volume velocity
source strength where the individual terms relate to the excitation of individual
model components. R1 is the matrix defined in eq. (21). λ1 is a column vector with
a number of rows equal to the total number of constraint modes in component 1
and the total number of constraint modes in component 2.

As a consequence of classifying the modes into two categories, namely constraint
modes and normal modes, the mass, stiffness and damping matrices are partitioned
into sub-matrices as follows [Magalhaes and Ferguson (2005)]

M3D
1 =

[
mNN mNC

mT
NC mCC

]
; K3D

1 =

[
kNN kNC

kT
NC kCC

]
; C3D

1 =

[
cNN cNC

cT
NC cCC

]
; (42)
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The sub-matrix mNN , kNN and cNN are diagonal matrices. This is true due to the
orthogonality property of these component modes. The order of these matrices
depends upon the number of modes chosen for the analysis. The sub-matrices mCC,
kCC and cCC are square matrices associated with the constraint modes; their orders
are equal to the number of constraints. Finally, the rectangular matrices mNC, kNC

and cNC are associated with the coupling between the normal and constraint modes,
as these are generally not orthogonal and cross-terms exist in the potential and
kinetic energy expressions as well as in the dissipation function.

The equations of motion for the source volume (acoustic component 1) and the re-
ceiving volume (acoustic component 2) are expressed in terms of their generalized
coordinates Φ̄ as

M3D
1

¨̄
Φ1 + C3D

1
˙̄
Φ1 + K3D

1 Φ̄1 − RT
1 λ1 = Q3D

1 (43)

M3D
2

¨̄
Φ2 + C3D

2
˙̄
Φ2 + K3D

2 Φ̄2 − RT
2 λ2 = 0 (44)

where λ1 and λ2 are column vectors of Lagrange multipliers for components 1
and 2 respectively. The set of equations presented above as well as the dynamic
properties of the acoustic components M3D,C3D, and K3D and the generalized vol-
ume velocity source strength Q3D can all be derived as shown previously using
Lagrange’s equations of motion.

The coupled set of equations for the entire system is then given by

µ
¨̄G+ ς

˙̄G+χG−λRc = Qs (45)

and RcG = 0 (46)

where

λ =

{
λ1
λ2

}
; µ =

[
M3D

1 0
0 M3D

2

]
; ς =

[
C3D

1 0
0 C3D

2

]
; χ =

[
K3D

1 0
0 K3D

2

]
;

and Qs =
[

Q3D
1 0

]T . The matrices µ , ς and χ are the modal mass, damping and
stiffness matrices respectively. Qs is a column vector containing the generalized
‘forces’ exerted on the components. It can also be shown that the coordinates G
are not linearly independent in the set of Eqs. (45), due to the constraint equations
(Eqs. 46).

The matrix of generalized coordinates G cannot easily be rearranged and parti-
tioned into dependent and linearly independent coordinates as in the one-dimensional
case [Magalhaes and Ferguson (2003)].
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Alternatively, eqs. (45) and (46) may be written in the partitioned form [Klein and
Dowell (1974)][ (

χ−ω2µ + jως
)
−Rc

RT
c 0

]{
Ḡ
λ

}
=

{
Qs

0

}
(47)

The use of the Lagrange’s Multiplier technique for the present situation, whilst
more tedious than the transformation matrix technique, permits the incorporation
of the constraint equations in a systematic manner. Eq. (47) can be solved nu-
merically by the application of a pseudo-inversion technique, e.g. using Singular
Value Decomposition [Gialamas, Tsahalis, Otte, Van Der Auwaraer and Manolas
(2001)]. One decision that has to be made by the analyst who uses component
modes is how many modes to use. In order to prevent the matrices becoming sin-
gular, the number of constraint modes should be equal in number to the number of
redundant constraints. In this case, the set of equations in (47) is overdetermined.

4 Results and discussion

All numerical simulations and results are presented for the three dimensional prob-
lem, which also includes the modal contribution of the partition.

4.1 Comparison between the 3D Modified CMS and the Modal approach

First, a comparison between the CMS and the modal model is presented using a
particular numerical model. A flexible partition with dimensions equal to 1m x
1.2m was considered over the whole common interface. The source and receiving
volume dimensions were equal to 2.5m x 1.0m x 1.2m (depth by height by width).
A constant viscous modal damping equal to ς = 0.005 was used for both the normal
and constraint modes. Figure 1 shows that a monopole source with constant volume
velocity equal to 3x10−5 m3/s was placed at one corner of the source volume (-
2.5,0,0).

A modal model was used to calculate a reference solution to compare with the one
obtained using the CMS model. The analytical Modal model developed and imple-
mented here is an extension of the set of integro-differential equations presented
in ref. [Fahy (1985)] to a system comprising two coupled rooms and a simply
supported partition. Thus, the problem involving sound transmission between two
connected rooms can be tackled. For the Modal model, the acoustic and the struc-
tural response fields are expressed in terms of their uncoupled normal modes by
means of differential equations for each mode. Therefore, the structural motion is
expressed as a summation over the response of the in vacuo natural modes driven
by fluid loading. The acoustic field of rigid-walled rectangular components has
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been determined by the summation of the acoustic modes over the fluid volume. In
fact, these acoustic modes in the source room were excited by a generalized volume
velocity source. According to Fahy (1985), the correct convergence of the modal
pressure on the partition surface is obtained due to the Gibb’s phenomenon, which
is an overshoot that occurs whenever basis functions (for instance acoustic mode
shapes) are used to represent spatial distributions containing discontinuity of slope.

The effect of the inclusion of the 0 Hz bulk elastic mode in the Modal model has
been checked by eliminating it from the calculations (not shown). As a result, the
variation of sound pressure in the source and receiving volumes for the CMS model
tended to zero at frequencies below their first ‘dynamic’ modes.

Table 1 shows two groups of natural frequencies of rooms, obtained analytically,
using the modal and the modified 3D CMS models.

In Fig. 1 peaks at about 136 Hz and 141 Hz can be seen in the response of both the
source and receiving volumes. However, there are some extra peaks in the response
for the receiving volume, which correspond to coupled modes of the complete sys-
tem. This is because the receiving volume controlled modes are weakly excited by
the source volume.

Table 1: Comparison between groups of natural frequencies of the rooms obtained
analytically using both modal and Modified CMS models.

Mode Number Uncoupled FN (Hz)
(Modal model)

Uncoupled FN (Hz)
(Modified 3D CMS model)

1 0 0
2 68.0 68.5
3 136.0 136.3
4 141.7 141.6
5 157.1 157.5
6 170.0 170.1
7 183.1 185.0
8 196.4 196.8
9 204.0 204.3
10 217.7 218.1

Figs. 2 and 3 show the Noise Reduction (NR) values in narrow and 1/3 octave
bands respectively. The difference in the NR between the CMS and Modal models
in 1/3 octave bands tends to be less than about 15 dB (for both materials consid-
ered herein) at centre frequencies greater than 150 Hz. Below 150 Hz, the results
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show poor agreement. In Fig. 3 an alternative comparison shows that there is a
fair agreement between the CMS model and Leppington’s approach [Leppington,
Broadbent and Heron (1989)] for the lighter material. The calculated ‘Schroeder’
frequency [Pierce (1981)] was 1,115 Hz for the source and receiving rooms. They
were greater than the highest 1/3 octave band centre frequency considered in the
model configuration. Thus, the predicted system response was strongly influenced
by individual modes of the rooms. The NR results obtained using the models may
not be appropriate, for the acoustic fields involved are not diffuse.
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Figure 1: Comparison between the CMS and a Modal model in terms of spatial-average mean square sound 
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Figure 1: Comparison between the CMS and a Modal model in terms of spatial-
average mean square sound pressure (in narrow bands). The panel mass per
unit area is equal to ρh= 8.06 kg/m2 and E = 2.12×109 N/m2. (a) source:
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2×10−5 Pa]. The subscript 1 and 2 indicates source and receiving volumes respec-
tively; — CMS model; −−−Modal model.
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Figure 2: The variation of the Noise Reduction (NR = 10 log10
(〈

p̄2
1
〉
/
〈

p̄2
2
〉)

) [dB
re 1] in narrow bands normalized to the system power input. (a). The panel mass per
unit area is equal to ρh= 8.06 kg/m2 and E = 2.12×109 N/m2. (b) The panel mass
per unit area is equal to ρh= 78.50 kg/m2 and E = 210×109 N/m2.The subscript 1
and 2 indicates source and receiving volumes respectively; — CMS model; −−−
Modal model.

In addition, Fig. 3 shows that significant differences between the models occur at
low frequencies. As the frequency increases, a fairly good agreement is obtained
between the models. Moreover, the CMS result shows fairly good agreement with
those obtained via Leppington’s approach and with the field incidence Mass Law.
For the model considered the incidence Mass Law appears to still be underestimat-
ing the NR at the higher frequencies being considered here. The spatial results are
presented in terms of normalized mean square pressure and particle velocity dis-
tribution at 190 Hz over a certain position (plane) that has been specified a priori.
This particular frequency, which do not necessarily coincide with the fundamental
room modes, was arbitrarily chosen above the lowest natural frequency of the re-
ceiving room, above which tangential and oblique acoustic modes are generated in
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Figure 3: The variation of the Noise Reduction (NR = 10 log10
(〈

p̄2
1
〉
/
〈

p̄2
2
〉)

) [dB
re 1] in 1/3 octave bands normalized to the system power input. (a). The panel
mass per unit area is equal to ρh= 8.06 kg/m2 and E = 2.12×109 N/m2. (b) The
panel mass per unit area is equal to ρh= 78.50 kg/m2 and E = 210x109 N/m2.The
subscript 1 and 2 indicates source and receiving volumes respectively; — CMS
model;−−−Modal model; *** Diffuse incidence Mass Law; +++ Field incidence
Mass Law; ♦♦♦ Leppington’s prediction.

the receiving room.

4.2 Comparison between the modified 3D and the 1D CMS models

A second example is presented herein in order to compare the 3D CMS model
presented herein and the 1D CMS model developed previously [Magalhaes and
Ferguson (2003)].

A flexible partition with dimensions and density equal to 2m × 2m and 806 kg/m3

respectively was considered over the whole common interface. The thickness,
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Young’s modulus and Poisson’s ratio for the partition were 0.01m, 2.12×10−9

N/m2, and 0.24 respectively. Its fundamental natural frequency is 3.8 Hz. The
source and receiving room dimensions were as before equal to 5m × 2m × 2m
and 3m × 2m × 2m respectively. A constant volume velocity source was placed at
one corner of the source room (-5,0,0). As mentioned above, the following results
are presented in terms of the mean square pressure and particle velocity distribu-
tion at 190 Hz. The mean square values are normalized to their maximum value
in the plane. The normal particle velocity values presented in this section were
considered in the x direction normal to the partition. The mean square pressure and
particle velocity distributions were symmetric with respect to the principal axes of
both rooms.

Fig. 4 presents the normalized mean square pressure distribution with respect to
the vertical plane x− z along the centre line length of the room (y = 1 m) at 190
Hz. The pressure at the end wall x = -5m, where the source was located, assumed a
maximum value. It can be seen that good agreement was found between the modal
and CMS model for the mean square pressure distribution. Similarly there is good
agreement for the mean square particle velocity distribution (not shown). The re-
sults are close to particular modes of both rooms. For instance the natural frequency
at 190.1 Hz corresponds to the modes (5,0,1) and (3,0,1) for the source and receiv-
ing rooms respectively. Nevertheless, in terms of mean square pressure distribution
the results obtained via the Modal and CMS models present some differences for
the receiving room.

The sound pressure value in the source and receiving rooms tended to zero at fre-
quencies below their first ‘elastic’ modes, i.e. at 34 Hz and 56.7 Hz as the ’zero
order’ mode has not been considered in this example. Peaks at 34 Hz and 68 Hz can
be seen in both the source and receiving rooms. However, there are some ‘extra’
peaks in the receiving room which correspond to the coupled modes of the system.
For example, the peak at about 19 Hz corresponds to the coupled mode 19.3 Hz
shown in Table 2.

In Fig 5 a comparison is made between the one dimensional CMS model, which
considers a limp partition and was presented previously [Magalhaes and Ferguson
(2003)], and the actual modified three-dimensional CMS model in terms of average
mean square sound pressure. Figs. 5a and 5b show the results for the source and
receiving room respectively. It is seen that the resonance peaks for the CMS-1D
model tend to match those for the CMS-3D model as frequency increases. Accord-
ing to the Figs., the first resonance peak for the 1D case is lower than the one for
the 3D case, which considers an ‘elastic’ partition. This is due to the effect of the
partition elastic properties, which is considered in the modified 3D CMS model.
Some agreement can be seen near the 1D modes as expected.
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Figure 4: Normalized mean square pressure distribution with respect to the horizontal plane y = 1m at 190 Hz. 
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Figure 4: Normalized mean square pressure distribution with respect to the hori-
zontal plane y = 1m at 190 Hz. The square elastic partition has dimensions, mass
per unit area and Young’s Modulus equal to 2m × 2m, ρh= 8.06 kg/m2 and E
= 2.12×109 N/m2 respectively. (a) CMS model and (b) Modal model in relative
pressure levels to the maximum in the plane.
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Figure 5: Comparison between the CMS-1D and the CMS-3D models in terms of the variation of spatial-average 
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Table 2: The first nine undamped ‘eigenvalues’ of rooms and partition for the
CMS Model considering a flexible partition with dimensions 2m×2m. Mass per
unit area and Young’s Modulus are ρh = 8.06 kg/m2 and E = 2.12×109 N/m2 re-
spectively. ‘f1’ and ‘f2’ are the ‘eigenvalues’ corresponding to the fixed-fixed nor-
mal modes for the source and receiving rooms. ‘F’ is the coupled frequency with
subscripts 1, 2 and ‘p’ representing the source room, receiving room and partition
respectively. The subscripts c,3D and c,1D represent the 3D and 1D CMS mod-
els respectively. N.B. Note degenerate modes for the coupled models because of
symmetry in the square cross-section of the panel and volumes.

f1(Hz) f2(Hz) fp(Hz) Fc,3D(Hz) Fc,1D(Hz)
34.0 56.7 3.8 8.1 12.8
68.0 85.0 9.5 11.2 36.2
85.0 85.0 9.5 11.2 58.9
85.0 102.2 15.2 15.8 69.5
91.5 102.2 18.9 19.3 102.8
91.5 113.3 18.9 19.3 114.7
102.0 120.2 24.6 24.5 136.7
108.9 132.9 24.6 24.5 170.0
108.9 141.7 32.2 34.6 171.4

34.6
37.8

5 Conclusions

The study presented herein is an alternative for improving the quality, reliability
and reproducibility of the results. Firstly, it is verified that the CMS technique is
a reliable approach which provides a rapid and practical analysis of fluid-structure
interaction.

Secondly, the modified 3D CMS approach outlined in this study should be a cost-
effective technique that can be used in place of traditional CMS techniques which
depend on the use of costly equipments due to the computational efforts. The CMS
approach for the three-dimensional problem [Magalhaes and Ferguson (2005)] has
been optimized in this paper and the structural component was removed from the
analytical formulation by including the structural modes as the constraint modes in
the acoustic components. Thus, the performance of the modified 3D CMS model
has approximately improved ten percent (10%) in terms of the total computer run-
ning time.
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Thirdly, the modified CMS model developed herein has been a more effective
model in comparison with the modal model. The application described the cou-
pling of two similar rectangular volumes separated by an elastic partition which
might form only partial coverage of a common interface with all of the rest being
rigid. For the present examples considered it has been possible to use existing ana-
lytical expressions for the modes under certain assumptions, e.g. simply-supported
edges for the partition, and then rapid numerical calculations for the coupled sys-
tems have been possible. The modal model, which considers rigid-walled modes,
is more representative at higher frequencies where the system boundary conditions
are much less important.

Next, important findings from the simulations performed are when comparison is
made between this modified 3D CMS and the 1D CMS model [Magalhaes and
Ferguson (2003)]. As mentioned previously the 1D model is not appropriated for
real room acoustics problems as tangential and oblique modes are dominant on the
modal acoustic response.

Finally, the number of modes, and hence the order of the equations, increases
significantly and for practical computational and numerical reasons this modified
CMS approach is only useful for low frequency predictions. This comment is also
applicable to the existing modal methods and is a consequence of the high modal
density with increasing frequency for acoustic volumes and is a reason why statis-
tical approaches (e.g. SEA) have been developed.
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