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RBFN stochastic coarse-grained simulation method:
Part I - Dilute polymer solutions using

Bead-Spring Chain models

H.Q. Nguyen1, C.-D. Tran1 and T. Tran-Cong1

Abstract: In this paper, dynamic behaviours of dilute polymer solutions of var-
ious bead-spring chain models in shear flow are studied using a coarse-grained
method based on the Integrated Radial Basis Function Networks (IRBFNs) and
stochastic technique. The velocity field governed by the macroscopic conservation
equations is determined by the IRBFN-based method, whereas the evolution of
configurations of polymer chains governed by the diffusion stochastic differential
equations are captured by the Brownian Configuration Field (BCF) approach. The
system of micro-macro equations is closed by the Kramers’ expression, which al-
lows for the determination of the polymer stresses in terms of BCF configurations.
In this work, all nonlinear effects in a BSC model such as hydrodynamic interaction
and excluded volume are considered. Since the simulation requires a considerable
computational effort, parallel calculations are performed where possible. As an
illustration of the method, the start-up planar Couette flow is examined, in which
the evolution of viscometric functions such as shear stress, the first and the second
normal stress differences is assessed with various BSC models.

Keywords: Stochastic coarse-grained simulation, Brownian Configuration Fields,
Integrated Radial basis function, nonlinear bead-spring chain models, hydrody-
namic interaction, excluded volume.

1 Introduction

A polymer solution may be modelled as polymer chains suspended in a solvent.
Polymer chains are represented by particles connected by some connector force
laws. Several kinds of polymer chains have been used in polymer rheology as
coarse-grained (CG) models of macromolecules, for example, the bead-rod chain,
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the bead-spring chain (BSC), and the worm-like chain. The BSC is a simple coarse-
grained model of a polymer molecule, which can capture most of the important
nonlinear rheological properties of polymer solution Bird, Curtiss, Armstrong, and
Hassager (1987). Recently, the coarse-grained simulation methods have been de-
veloped and applied in several scientific and engineering areas because of their
advantages in the simulation of soft matters, including complex viscoelastic fluids
[Phan-Thien (2012)]. Stochastic multiscale methods have also been introduced to
model the constitutive relations and mechanical behaviour of concretes [Liu, Liu,
Guan, He, and Yuan (2013); Liu, Liu, Yuan, He, and Mang (2014); Liu, Liu, Yuan,
Mang, Zhang, Zhou, Yang, Du, Liang, and Yang (2014)]. For polymeric fluids, the
main idea of this approach is that the polymer-contributed stress is calculated aver-
agely from a large ensemble of configurations of microstructures, which describe
the real molecules existing in the polymer solutions. Meanwhile, the velocity field
is determined by discretising the conservation equations. One scheme of this ap-
proach, namely the CONNFFESSIT [Laso and Ottinger (1993); Ottinger (1996)], is
a stochastic macro-micro multiscale simulation method. Another scheme, known
as Brownian Configuration Field (BCF) [Hulsen, Van Heel, and Van Den Brule
(1997)], is based on the idea of an ensemble of configuration fields instead of using
a collection of individual micro elements as in CONNFFESSIT. In an alternative
approach, the combination of the Radial Basis Function Networks (RBFN) and the
stochastic CG method has been suggested by Tran-Canh and Tran-Cong (2002).
The method overcame the difficulties of complex meshing task by discretising the
conservation equations on a set of collocation points using the high order RBFN ap-
proximation. As a result, the computed global stress tensor and velocity field with
respect to time are very smooth. Furthermore, with a rather coarse set of collocation
points, the method showed a stable and accurate solution for a range of problems,
including planar Couette flow, Poiseuille flow, lid-driven cavity flow and 10 : 1 pla-
nar contraction flow [Tran-Canh and Tran-Cong (2002, 2004); Tran, Phillips, and
Tran-Cong (2009)]. Recently, the method was further improved by introducing the
integrated RBF (IRBF) based approximation instead of the differentiated/original
RBF (DRBF)-based techniques to decrease the white noise in the stochastic sim-
ulation and increase the convergence rate of numerical solutions [Tran, An-Vo,
Mai-Duy, and Tran-Cong (2011); Tran, Mai-Duy, Le-Cao, and Tran-Cong (2012)].
In this paper, more complex BSC models are used to investigate the efficiency and
adaptability of the IRBF-based stochastic CG method in the simulation of polymer
solutions.

In the context of polymer kinetic theory, the simplest BSC model is the Rouse one,
which represents the real polymer chain by a set of identical dumbbells, each of
which consists of two beads linked by a Hookean spring [Rouse and Prince (1953)].
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This model is very straightforward and is set up easily in Brownian dynamic sim-
ulations. However, the ability of the Rouse model to capture the properties of
viscoelastic fluids or polymer solutions is very limited. There are only a few ba-
sic features of the dilute solution able to be predicted through the Rouse model,
for example, the existence of a constant nonzero value of the first normal stress
difference. However, other features, for example, the appearance of the nonzero
second normal stress difference and the shear rate dependence of the viscometric
functions cannot be predicted by the Rouse model [Bird, Curtiss, Armstrong, and
Hassager (1987); Prakash (2001)]. These limitations are due to (i) the existence
of the Hookean law for the springs in the Rouse model, which can make the chain
become infinitely extensible in shear/elongational flows and (ii) the neglect of in-
tramolecular interactions of beads in a polymer chain such as the hydrodynamic
interaction (HI) and the excluded volume (EV) effects. In order to improve the per-
formance of the Rouse model, HI effect has been included in computational models
in the equilibrium averaged form by Zimm (1956). As a result, the Zimm model
has given better predictions of several properties of a polymer solution such as the
diffusion coefficient and the relaxation time which are dependent on the molecular
weight. Since both the Rouse and Zimm models are not successful in predict-
ing the nonvanishing second normal stress difference as well as the dependence
of viscometric functions on shear rate, the Finitely Extensible Nonlinear Elastic
(FENE) spring-force law has been developed to resolve the limits of the Hookean-
based BSC models [Wedgewood, Ostrov, and Bird (1991); Herrchen and Ottinger
(1997)]. A number of significant advancements of the BSC model have been re-
cently achieved to relevantly examine the effects of the intramolecular forces on the
motion of molecular chains [Ottinger (1987b, 1989); Magda, Larson, and Mackay
(1988)]. These improvements are very useful to predict the material properties of
viscoelastic fluid flows and polymer solutions. By incorporating HI and EV into
the simulations, the rheological characteristics including the existence of the sec-
ond normal stress difference or the shear dependence of viscometric functions are
accurately forecast [Ottinger (1989); Zylka (1991); Prakash (2001)]. Thus, the ob-
tained results from simulation are now able to be compared directly with those
achieved from experiments. However, the considerable consumption of time and
computer resources is a major hindrance in this simulation approach because the
nonlinear intramolecular forces of each pair of beads in a chain needs to be calcu-
lated successively at each time step. This barrier can be overcome by introducing
a parallel calculation into the simulation. Hence, the aim of this paper is to pre-
dict some rheological properties of polymer solutions in start-up shear flows, in
which all nonlinear effects such as spring force laws, HI and EV are included using
the IRBF-based stochastic CG method, taking advantage of parallel computation
where possible.
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The paper is organised as follows. Section 2 gives a short review of the governing
equations of incompressible non-Newtonian fluid flows using the CG approach. In
section 3, a stochastic CG simulation method is described in which the Brown-
ian Configuration Field (BCF) technique for the computation of the polymer con-
tributed stress is presented using different BSC models with/without nonlinear ef-
fects such as the HI and the EV. Specifically, the coupled macro-micro multiscale
system for the BSC model is introduced together with its dimensionless forms in
section 4. In section 5, the IRBF-based discretisation of governing macroscopic
equations is introduced in details, followed by the explicit integration scheme for
microscopic equations. A parallel computation for the microscopic simulation is
also presented in this section. Numerical examples and obtained results are dis-
cussed in section 6. Finally, the paper is closed by a conclusion in section 7.

2 Stochastic coarse-grained method for dilute polymer solutions

Consider the flow of an isothermal and incompressible dilute polymer solution, a
system of mass and momentum conservation equations is written as follows.

∇ ·u = 0, (1)

ρ

(
∂u
∂ t

+u ·∇u
)
= ∇ · τττ, (2)

where u is the velocity field; τττ is the total stress tensor given by

τττ =−pI+ τττs + τττ p, (3)

where τττs = 2ηsD and τττ p are stress components contributed by Newtonian solvent

and polymer, respectively; ηs is the solvent viscosity; D = 1
2

(
∇u+(∇u)T

)
is the

rate of strain tensor; p is the hydrostatic pressure and I is the unit tensor.

In a stochastic CG simulation method, the polymer-contributed stress (τττ p) can be
calculated by directly solving the Fokker-Planck equation or the corresponding
Stochastic differential equations (SDEs). The coupling of the conservation equa-
tions (Eqs. (1) and (2)) and the equations expressing the evolution of grain config-
urations forms the basis for stochastic CG methods (Ottinger, 1996; Phan-Thien,
2012). In this work, the BCF-based stochastic CG method is used to describe the
evolution of CG structures, and the non-Newtonian contribution to the stress is de-
duced from the evolution of coarse-grained configurations. This paper focuses on
considering BSC models (Fig. 1) with the effects of EV and HI.
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Figure 1: Schema of a BSC model. The Latin subscripts (i, j, k, ...) of a ten-
sor/vector denote springs while the Greek ones (µ , ν , ...) denote beads in a polymer
chain; Qi = rµ+1− rµ .

3 The BCF-based stochastic CG method for BSC models

In the BCF approach, the general BSC model with all nonlinear effects, including
HI and EV for the evolution of a connector vector Qi, is given as follows (Prabhakar
and Prakash, 2004).

dQi =

[
−u ·∇Qi +(∇u)T ·Qi +

1
ζ

Nb

∑
ν=1

(
ϒϒϒ(µ+1)ν −ϒϒϒµν

)
·Fφ

ν

]
dt

+

√
2kBT

ζ

Nb

∑
ν=1

(
B(µ+1)ν −Bµν

)
·dWν ,

(4)

where subscript i denotes the index of connecting vectors (i = 1, . . . ,Ns); subscript
µ indicates the index of beads (µ = 1, . . . ,Nb), µ = i; Ns and Nb = Ns + 1 are the
numbers of springs and beads, respectively in a polymer chain; u is the velocity
field; ζ is the friction coefficient of the solvent; kB is the Boltzmann constant; T
is the absolute temperature of the solution and Wν is the Wiener process defined
by an independent Gaussian variable with zero mean and dt variance. ϒϒϒµν is the
diffusion tensor and given by

ϒϒϒµν = δµνI+ζ ΩΩΩµν . (5)

where ΩΩΩµν and δµν are the hydrodynamic interaction tensor and the Kronecker
delta, respectively. ΩΩΩµν is a function of vector rµν (rµν = rν − rµ ) of the two
beads µ and ν . It is worth noting that if µ and ν are two adjacent beads then
rµν is the connector vector of spring (Q) between the two beads (Fig. 1). Bµν

is a second order tensor and determined by ϒϒϒµν = Bµν ·BT
µν . In the SDE (4),
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Fφ

ν is the intramolecular interaction force, defined as Fφ

ν = − ∂φ

∂rν
and includes two

components written as follows.

Fφ

ν = FS
ν +FE

ν , (6)

where φ is the potential energy; FE
ν is the excluded volume force on bead ν by

other beads in a chain and FS
ν is the spring force by springs connected to bead ν

and given by

FS
ν =


FD

1 if ν = 1,
FD

k −FD
k−1 if 1 < ν < Nb,

−FD
Ns

if ν = Nb,
(7)

where FD
k is the force of spring k on bead ν and depends on the kinetic model of

polymer used. For example, the spring forces of the Hookean and FENE dumbbells
are given respectively as follows.

FD
k = HQk, FD

k =
HQk

1− Q2
k

b0

, (8)

where H is the spring constant; Qk (Qk = rν+1− rν ) is the connector vector of the
kth spring (see Fig. 1); Qk is the norm of Qk and b0 is the square of dimensional
maximum length/extension of the kth spring for the FENE dumbbell.

The system of multiscale governing equations Eqs. (1), (2) and (4) are closed by
a connecting equation which determines the polymer stress contribution. For a
coarse-grained model with intramolecular forces, the connecting equation known
as Kramers’ expression is given by [Bird, Curtiss, Armstrong, and Hassager (1987);
Prakash (2002)]

τττ p = (Nb−1)npkBT I−np

Ns

∑
k=1

〈
QkFD

k
〉
+Z, (9)

where np is the number of polymer chains in a unit volume and the other parameters
were defined as before. On the right-hand side of Eq. (9), the first term is the stress
caused by the motion of beads in a polymer chain [Ottinger (1996)], the second
term results from spring forces and the last term is produced by excluded volume
interaction forces and given by [Prakash (2002)]

Z = np

Nb

∑
ν=1

Ns

∑
k=1

Dνk
〈
QkFE

ν

〉
, (10)

where Dνk are the entries of matrix Dνk of dimension Nb×Ns and defined as Dνk =
(k/Nb)−Θ(k−ν) where Θ(k−ν) is the Heaviside function.
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3.1 Nonlinear properties of bead-spring chain model

3.1.1 Hydrodynamic interaction effect

HI is an indirect influence by the motion of beads through a solvent. Indeed, a bead
moving in the solvent causes perturbations in the flow, which will influence the
motions of remaining beads in the chain. The HI effect is incorporated into BSC
models by introducing a hydrodynamic tensor ΩΩΩµν into the equation of motion
of beads. This tensor expresses the relationship between the force Fν exerted on
bead ν and the velocity perturbation by other beads µ’s in a polymer chain ∆u

(
rµ

)
(µ = 1, · · · ,Nb and µ 6= ν) as follows.

∆u
(
rµ

)
= ΩΩΩµν ·Fν (rν) . (11)

A hydrodynamic tensor proposed by Rotne-Prager-Yamakawa (RPY) is given by
[Rotne and Prager (1969); Yamakawa (1971)]

ΩΩΩµν =
1

8πηsrµν

C
(
rµν

)
, (12)

with

C
(
rµν

)
=


(

1+ 2
3

a2
b

r2
µν

)
I+
(

1− 2a2
b

r2
µν

)
rµν rµν

r2
µν

if rµν ≥ 2ab ,

rµν

2ab

[(
8
3 −

3rµν

4ab

)
I+ r2

µν

4ab

rµν rµν

r2
µν

]
if rµν < 2ab ,

(13)

where ab is the bead radius defined by the Stokes law as ζ = 6πηsab; rµν is the
connecting vector between two beads µ and ν and rµν is the length/norm of vector
rµν .

An alternative formula of the hydrodynamic tensor ΩΩΩµν is established by Zimm
(1956) as follows.

ΩΩΩµν =

{
1

6πηs

√
2H

πkBT |µ−ν |I, if µ 6= ν ,

0 if µ = ν ,
(14)

where all parameters were defined as before.

3.1.2 Excluded volume effect

The EV presence allows for an accurate prediction of the non-vanishing second
normal stress difference and the shear rate dependence of viscometric functions of
dilute polymer solutions. The EV effect can be incorporated into the simulation
by introducing a force FE

ν in the convective term of Eq. (4). The force exerted on
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bead ν by the repulsive interactions from other beads µ’s in the chain is written by
[Prakash (2001)]

FE
ν =− ∂E

∂rν

=−
Nb

∑
µ=1
µ 6=ν

∂

∂rν

Eµν

(
rµν

)
, (15)

where E is the EV potential energy and Eµν the short-range function and given by
[Prakash (2002)]

Eµν =

(
z

d
3

)
kBT exp

(
− H

2kBT
r2

µν

d
2

)
, (16)

where z̄ and d̄ are the quantities characterizing the strength and the range of the EV
interactions, respectively. For the FENE BSC model, the strength z̄ and range d̄ of
EV interaction are given by

z̄ =
zχ3
√

Nb
, (17)

d̄ = Kz̄ 1/5, (18)

where z is the solvent quality; K is an arbitrary constant and χ is a known function
of bBSC and given spring force law. For example, χ = 1 for the Hookean BSC
model and χ =

(
bBSC

bBSC+5

)
for the FENE BSC model [Sunthar and Prakash (2005)].

3.2 A coupled stochastic multiscale system

Collecting the conservation equations (1)-(2), the total stress formula Eq. (3), the
stochastic BCF equation (4) and the Kramers’ expression Eq. (9) yields a stochastic
multiscale system as follows.

ρ
∂u
∂ t

+ρ (u ·∇u)−ηs∆u+∇p = ∇ · τττ p, (19)

∇ ·u = 0, (20)

dQi =

[
−u ·∇Qi +(∇u)T ·Qi +

1
ζ

Nb

∑
ν=1

(
ϒϒϒ(µ+1)ν −ϒϒϒµν

)
·Fφ

ν

]
dt

+

√
2kBT

ζ

Nb

∑
ν=1

(
B(µ+1)ν −Bµν

)
·dWν ,

(21)

τττ p = (Nb−1)npkBT I−np

Ns

∑
k=1

〈
QkFD

k
〉
+Z, (22)

where all parameters were defined as before.
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4 Non-dimensionalisation

Let U be a characteristic velocity; ηp = npkBT λH the viscosity associated with the
polymers; λH and L =

√
kBT/H the time scale and the characteristic length scale

of the BSC polymer, respectively. Dimensionless variables are given as follows.

Q∗k =
Qk

L
, u∗ =

u
U
, t∗ =

t
λH

, τττ
∗
p = τττ p

L
ηoU

, (23)

where ηo (ηo = ηs +ηp) is the total viscosity of the solution.

The dimensionless numbers Re, We, and ε are defined respectively as follows [Ot-
tinger (1996); Laso and Ottinger (1993)].

Re =
ρUL
ηo

(Reynoldnumber), We =
λHU

L
(Weissenbergnumber), ε =

ηp

ηo
.

The stochastic multiscale system Eqs. (19)-(22) is rewritten in the dimensionless
form as follows.

Re
∂u∗

∂ t∗
+Re(u∗ ·∇∗u∗)− (1− ε)∆∗u∗+∇

∗p∗ = ∇
∗ · τττ∗p, (24)

∇
∗ ·u∗ = 0, (25)

dQ∗i =

[
−u∗ ·∇∗Q∗i +(∇∗u∗)T ·Q∗i +

1
4We

Nb

∑
ν=1

(
ϒϒϒ
∗
(µ+1)ν −ϒϒϒ

∗
µν

)
·Fφ∗

ν

]
dt∗

+

√
1

2We

Nb

∑
ν=1

(
B∗(µ+1)ν −B∗µν

)
·dW∗

ν ,

(26)

τττ
∗
p =

ε

W̃e

[
(Nb−1)I−

Ns

∑
k=1

〈
Q∗kFD∗

k
〉
+Z∗

]
, (27)

where W̃e is defined as We (Ns+1)2−1
3+15/bBSC

; bBSC = Hb0
kBT is the square of maximum dimen-

sionless extension of each spring in the chain [Wiest and Tanner (1989)]. The other
dimensionless quantities associated with the dimensional ones including ϒϒϒµν , Bµν

and Wν were defined as before. It is worth noting that λH =
λ D

H
d where λ D

H = ζ/4H
is the Hookean/FENE dumbbell relaxation time and coefficient d is given by

d =

[
bBSC(bD +7)

15bD(bBSC +5)

][
2(Ns +1)2 +7−

12
(
(Ns +1)2 +1

)
(Ns +1)(bBSC +7)

]

where bD is the square of dimensionless maximum extension of FENE dumbbell
model and defined as bD = bBSCNs [Koppol, Sureshkumar, and Khomami (2007)].
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The dimensionless form of Hookean and FENE spring forces FD
k (Eq. (8)) and the

EV interaction force Z (Eq. (10)) are respectively rewritten as follows.

FD∗
k = Q∗k , (28)

FD∗
k =

Q∗k
1− Q∗2k

bBSC

, (29)

Z∗ =
Nb

∑
ν=1

Ns

∑
k=1

Dνk
〈
Q∗kFE∗

ν

〉
, (30)

where the dimensionless form of the volume force FE∗
ν is given by

FE∗
ν =−

Nb

∑
µ=1
µ 6=ν

∂

∂r∗ν
E∗µν

(
r∗µν

)
, (31)

with

E∗µν =

(
z̄

d̄3

)
exp

(
−1

2
r∗2µν

d̄2

)
. (32)

The RPY hydrodynamic tensor in Eq. (12) is expressed in the dimensionless form
as follows [Prabhakar and Prakash (2004)].

ζ ΩΩΩ
∗
µν =

3
√

π h̄
4r∗µν

C∗
(
r∗µν

)
, (33)

with

C∗
(
r∗µν

)
=


(

1+ 2π

3
h

2

r∗2µν

)
I+
(

1− 2πh
2

r∗2µν

)
pp, if r∗µν ≥ 2

√
π h̄,

r∗µν

2
√

πh

(
8
3 −

3
4

r∗µν√
πh

)
I+ r∗2µν

8πh
pp, if r∗µν < 2

√
π h̄,

(34)

where h̄ is the HI parameter and chosen within [0.1,0.3] [Ottinger (1987a)]; p is the
unit vector (p = r∗µν/r∗µν ); r∗µν is the norm of r∗µν . Other parameters were defined
as before.

Henceforth, all variables will be written in dimensionless form and the asterisk
symbol will be removed for simplicity.

5 Numerical discretisation schemes

In this section, numerical schemes for the solution of the macro-micro system of
differential equations are presented. Specifically, the deterministic PDEs (con-
tinuity and momentum equations) are approximated by a semi-implicit method
based on IRBFNs while the evolution of the SDEs is determined using the Euler-
Maruyama explicit scheme.
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5.1 IRBF-based method for solution of the differential macroscopic governing
equations

Consider the conservation equations (24)-(25). In order to solve this system, the
problem domain is discretised using a set of nodal points, called the macro-scale
grid. Here, instead of using the continuity equation (25), the incompressibility
condition is enforced via the penalty method as follows [Laso, Picasso, and Ottinger
(1997); Tran-Canh and Tran-Cong (2004)].

p =−pe∇ ·u, (35)

where pe is a sufficiently large penalty parameter. Eqs. (24)-(25) and Eq. (35) yield
the following equation

Re
∂u
∂ t

+Re(u ·∇u)− (1− ε)∆u− pe∇(∇ ·u) = ∇ · τττ p. (36)

In this work, the 1D-IRBFN based semi-implicit scheme is employed to discretise
the governing equation and presented in the next subsections.

5.1.1 Spatial discretisation

Consider an one-dimensional parabolic differential equation, at a time t, the highest-
order derivative of the dependent variable u(x, t) (the second order in the case of
this work) is decomposed as follows [Mai-Duy and Tran-Cong (2007)].

d2u
dx2 =

m

∑
j=1

w j (t)g j (x) =
m

∑
j=1

w j (t)G
[2]
j (x) , (37)

where
{

w j (t)
}m

j=1 and
{

g j (x)
}m

j=1 are the set of RBF weights and the set of RBFs,
respectively; m is a number chosen in advance. In this paper, the multi-quadric
RBFs (MQ-RBFs) is employed to approximate (i) the velocity field in the macro-
scopic conservation equations and (ii) gradient of the stress field, and given by

g j (x) =
√
(x− c j)2 +a2

j , (38)

where
{

c j
}m

j=1 and
{

a j
}m

j=1 are RBF centres and widths, respectively. The centres
are chosen to be the same as the data points x j in this work.

The corresponding first-order derivative and function itself are then determined
through the direct integration as follows.

du
dx

=
m

∑
j=1

w j (t)G
[1]
j (x)+C1 (t) , (39)

u(x, t) =
m

∑
j=1

w j (t)G
[0]
j (x)+C1 (t)x+C2 (t) , (40)
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where G[1]
j (x) =

∫
G[2]

j (x)dx, G[0]
j (x) =

∫
G[1]

j (x)dx and C1 and C2 are unknown
integration constants at time t.

Collocating Eqs. (37), (39) and (40) at every grid point
{

x j
}m

j=1 yields the follow-
ing set of algebraic equations

d̂2u
dx2 = Ĝ[2] (x) ŵ(t) , (41)

d̂u
dx

= Ĝ[1] (x) ŵ(t) , (42)

û = Ĝ[0] (x) ŵ(t) , (43)

where

Ĝ[i] =

 G[i]
1 (x1) · · · G[i]

m (x1) a[i]1 b[i]1
...

. . .
...

...
...

G[i]
1 (xm) · · · G[i]

m (xm) a[i]m b[i]m

 , i = 0,1,2 (44)

with(
a[i]1 ,a

[i]
2 , . . . ,a

[i]
m

)T
=


(0 · · · 0)T , i = 2
(1 · · · 1)T , i = 1
(x1 · · · xm)

T , i = 0
,

(
b[i]1 ,b

[i]
2 , . . . ,b

[i]
m

)T
=

{
(0 · · · 0)T , i = 1,2
(1 · · · 1)T , i = 0

,

ŵ =
(

w1 (t) w2 (t) · · · wm (t) C1 (t) C2 (t)
)T

,

û =
(

u1 (t) u2 (t) · · · um (t)
)T

,

d̂ku
dxk =

(
dku1(x,t)

dxk
dku2(x,t)

dxk · · · dkum(x,t)
dxk

)T
,

where ui = u(xi) with i = (1,2, . . . ,m).

The presence of integration constants in the IRBFN based approximation yields
beneficial mechanism for the incorporation of additional constraints such as nodal
derivative values into the algebraic equation system. Thus, the algebraic equation
system Eq. (43) can be reformulated as follows.(

û
f̂

)
=

[
Ĝ[0]

L̂

]
ŵ = Ĉŵ,

where f̂ = L̂ŵ are additional constraints. The conversion of the network-weight
space into the physical space yields

ŵ = Ĉ−1
(

û
f̂

)
, (45)



RBFN stochastic coarse-grained simulation method 411

where Ĉ−1 is the conversion matrix. By substituting Eq. (45) into Eqs. (37) and
(39), the second and first-order derivatives of u will be expressed in terms of nodal
variable values as follows.

d2u
dx2 = D2û+ k2,

du
dx

= D1û+ k1 (46)

where D1 and D2 are known vectors of length m; and k2 and k1 are scalars deter-
mined by f̂. Applying Eq. (46) at every collocation point on the gridline yields

d̂2u
dx2 = D̂2û+ k̂2,

d̂u
dx

= D̂1û+ k̂1 (47)

where D̂2 and D̂1 are known matrices of dimension m×m; and k̂2 and k̂1 are known
vectors of length m; m is defined as before.

The values of the second and first order derivatives of u in the IRBF form for a 2-D
problem at all collocation points can be expressed similarly. More details can be
found in Tran, An-Vo, Mai-Duy, and Tran-Cong (2011).

5.1.2 Time discretisation

A semi-implicit scheme (Crank-Nicolson) is employed to temporally discretise the
momentum equation, which is solved for the velocity field u at each time step
where the polymer contributed stress τττ p is considered as a known variable from the
microscopic procedure. Details will be presented in numerical examples in section
6.

5.2 Euler-Maruyama explicit scheme for solving microscopic SDEs

The evolution of the configuration of polymer chains in Eq. (26) using the Euler-
Maruyama explicit scheme is given by [Ottinger (1996)]

Qi (tn+1) =Qi (tn)+

[
(∇u)T(tn+1) ·Qi (tn)−u(tn+1) ·∇Qi (tn)+

1
4We

Nb

∑
ν=1

(
ϒϒϒ(µ+1)ν(tn)

−ϒϒϒµν (tn)) ·Fφ

ν

]
∆t +

√
∆t

2We

Nb

∑
ν=1

[
B(µ+1)ν(tn)−Bµν(tn)

]
·Wν ,

(48)

where ∆t is the time step size; (∇u)T (tn+1) is the gradient of the known veloc-
ity field computed in the macroscopic procedure at the current time step; ϒϒϒ(µ+1)ν

and ϒϒϒµν are the diffusion tensors; Fφ

ν is the intramolecular forces and Wν is the
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three-dimensional (3-D) Wiener process at bead ν . The diffusion tensors and in-
tramolecular forces are calculated based on the configuration of all BS chains at
time step tn. After a new configuration is obtained, the new polymer stress ten-
sor is determined by Eq. (27) and its first order derivative is approximated using
MQ-RBF as presented in section 5.1.1

5.3 Parallel computation

The stochastic macro-micro simulation requires considerable numerical computa-
tion. Furthermore, since the processing of tasks in the microscopic procedure dom-
inates the throughput (Table 2), a parallel algorithm for the stochastic microscale
simulation is incorporated into the present method to speed-up the computation.
The stochastic tasks consist of: (i) solving SDEs and (ii) computing average stresses
at collocation points. In general, these tasks are carried out independently for all
configurations generated at each and every collocation point in the considered do-
main of a problem.

The parallel implementation of the algorithm is based on the message passing in-
terface for parallel communication in Matlab environment. The implementation
is carried out on the High Performance Computing system of the University of
Southern Queensland whose details can be found in htt p : //hpc.usq.edu.au. The
parallelisation is established in regard to stochastic tasks at collocation points. In
the framework of this paper, several results on the efficiency and speed-up are pre-
sented for the FENE-based BSC model, taking into account the HI and EV effects
and discussed in section 6.4.

5.4 Algorithm of the present procedure

The present simulation method can now be described in a more detailed algorithm
as follows and the implementation will be expressed in the illustrative examples.

(a) Generate a set of collocation points. Start with a given initial condition for
the first iteration (velocity field, BSC configurations) together with the given
boundary conditions of the problem. In the present work, the initial condi-
tions are zero initial velocity field, and initial BSC configurations sampled from
equilibrium Gaussian distribution.

(b) Assign N f bead-spring chains of Ns springs to each collocation point. All BSCs
having the same index constitute a configuration field. Hence, there is an en-
semble of N f configuration fields. Since all the BSCs having the same index
receive the same random number, there is a strong correlation between BSCs
in a configuration field.
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(c) Solving the macro PDEs for the velocity field using the 1D-IRBFN collocation
method described in section 5.1;

(d) Solving the micro SDEs for the polymer configuration fields using the method
presented in section 5.2. As mentioned in step (a), in order to ensure strong
correlation within a configuration field, all the BSCs of the same index have
the same random number;

(e) Determine the polymer contributed stress by taking the ensemble average of the
polymer BSC configurations at each collocation point xi, using Eq. (27). The
tasks include the computation of the HI tensor (the RPY tensor in this work)
and the EV interaction forces with regard to the hydrodynamic interaction and
the excluded volume effects, respectively.

Note: A parallel algorithm is installed within steps (d) and (e), see section 5.3
for details.

(f) With the stress field just obtained, approximate the gradient of stress field using
the IRBFNs and then solve the macroscopic governing equation (36) for the
new velocity field by the 1D-IRBFN method described in section 5.1;

(g) Terminate the simulation when either the desired time or convergence is reached.
The latter is determined by a convergence measure (CM) for the velocity field,
defined by

CM(u) =

√√√√∑
N
1 ∑

ds
i=1

(
un

i −un−1
i

)2

∑
N
1 ∑

ds
i=1(u

n
i )

2
≤ tol (49)

where ds is the number of dimensions; tol a preset tolerance; ui the i-component
of the velocity at a collocation point; N the total number of collocation points
and n the iteration number.

(h) Return to step (d) for the next time step of the microscopic procedure until
steady state or a given time is reached.

6 Numerical examples

The present method is employed to simulate the planar Couette flow described in
Fig. 2 using several BSC models. This problem with simpler polymer models was
earlier studied by Laso and Ottinger (1993); Mochimaru (1983); Tran-Canh and
Tran-Cong (2002, 2004). Koppol, Sureshkumar, and Khomami (2007) studied the
same problem using a finite element-based method.
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Firstly, a creeping flow of viscoelastic fluid using FENE-BSC model which was
considered in Koppol, Sureshkumar, and Khomami (2007) is simulated to assess
the validity of the present method. The problem is then further investigated with
the Rouse and Zimm models to study the HI effect on the rheological properties
of the flow. Finally, the start-up problem is solved using general BSC models with
fully nonlinear effects.

The problem is defined as follows. For time t < 0, the fluid is at rest. At t = 0, the
lower plate starts to move with a constant velocity V = 1. No-slip condition is as-
sumed at the walls. The fluid parameters of each considered BSC model mentioned
above are presented in the next subsections. A set of collocation points is initialized
uniformly along the y direction. Then the same number of BSC configurations is
initiated randomly on each and every collocation point (see section 5.4, item a).

Figure 2: The start-up planar Couette flow problem. The collocation points and the
velocity profile are only presented schematically.

The polymer stress field is calculated by Eq. (27) based on the initial BSC con-
figurations. The obtained values by the microscopic procedure are located on the
collocation points (i.e. micro-structural properties are transferred to a bulk prop-
erty). These values at the grid points along with the boundary and initial conditions
are used to start the simulation in the macroscopic procedure. The macroscopic
governing equation is solved for the velocity field, and afterwards the transpose
of velocity gradient (∇u)T in the SDE (26) is defined by the IRBF-based approx-
imation. All above calculations are repeated at each time step until the numerical
convergence is satisfied.
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6.1 Governing equations

From the characteristics of the start-up Couette flow of dilute polymer solution
using the general BSC model, the system of stochastic multiscale equations (24)-
(27) is developed as follows.

Re
∂u
∂ t

(y, t)− (1− ε)
∂ 2u
∂y2 (y, t) =

∂τp,xy

∂y
(y, t), (50)

dQi,x (y, t) =

[
∂u
∂y

(y, t)Qi,y (y, t)+
1

4We

Nb

∑
ν=1

∆ϒϒϒ
ν ,[1]
(µ+1)µ ·F

φ

ν (Qi (y, t))

]
dt+√

1
2We

Nb

∑
ν=1

∆Bν ,[1]
(µ+1)µ ·dWν ,

dQi,y (y, t) =
1

4We

Nb

∑
ν=1

∆ϒϒϒ
ν ,[2]
(µ+1)µ ·F

φ

ν (Qi (y, t))dt +

√
1

2We

Nb

∑
ν=1

∆Bν ,[2]
(µ+1)µ ·dWν ,

dQi,z (y, t) =
1

4We

Nb

∑
ν=1

∆ϒϒϒ
ν ,[3]
(µ+1)µ ·F

φ

ν (Qi (y, t))dt +

√
1

2We

Nb

∑
ν=1

∆Bν ,[3]
(µ+1)µ ·dWν ,

(51)

τττp =
ε

W̃e

[
(Nb−1)I−

Ns

∑
k=1

〈
QkFD

k
〉
+Z

]
, (52)

where u is the x-component of the velocity; τττ p is the stresses of the flow including
the shear stress τp,xy; Qi,x, Qi,y and Qi,z are the components of connector vector Qi

at location y. ∆Hν ,[k]
(µ+1)µ is row k (k = 1,2,3) of matrix ∆Hν

(µ+1)µ (H = ϒϒϒ or B) with

∆Hν

(µ+1)µ = H(µ+1)ν −Hµν ,

Fφ

ν =
(

Fφ

ν ,x,F
φ

ν ,y,F
φ

ν ,z

)T
,

dWν = (dWν ,x,dWν ,y,dWν ,z)
T .

Other parameters are defined as before. The discretisation of equations (50), (51)
and (52) are carried out through two interlaced procedures of different scales as
presented in section 5.4.

6.1.1 Discretisation of the macro-scale governing equation

Applying the Crank-Nicolson scheme for time discretisation of the macroscopic
governing equation (50) yields

Re
ut+1−ut

∆t
− (1− ε)

2
d2ut+1

dy2 =
(1− ε)

2
d2ut

dy2 +
dτ t

p,xy

dy
,
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or

βut+1−α
d2ut+1

dy2 = α
d2ut

dy2 +
dτ t

p,xy

dy
+βut , (53)

where ∆t is uniform time step; β = Re/∆t; α = 0.5(1−ε); and ut+1 = u(y,(t +1))
with u0 = u(y,0).

6.1.2 Discretisation of the micro-scale stochastic governing equation

The equations in Eq. (51) are discretised using the Euler explicit scheme with
N f = 1024 realizations of each random process as follows.

Qt+1
i,x = Qt

i,x +
dut+1

dy
Qk,t

i,y∆t +
∆t

4We

Nb

∑
ν=1

∆ϒϒϒ
ν ,[1]
(µ+1)µ ·F

φ ,t
ν +

√
∆t

2We

Nb

∑
ν=1

∆Bν ,[1]
(µ+1)µ ·W

k,t
ν ,

Qt+1
i,y = Qt

i,y +
∆t

4We

Nb

∑
ν=1

∆ϒϒϒ
ν ,[2]
(µ+1)µ ·F

φ ,t
ν +

√
∆t

2We

Nb

∑
ν=1

∆Bν ,[2]
(µ+1)µ ·W

t
ν ,

Qt+1
i,z = Qt

i,z +
∆t

4We

Nb

∑
ν=1

∆ϒϒϒ
ν ,[3]
(µ+1)µ ·F

φ ,t
ν +

√
∆t

2We

Nb

∑
ν=1

∆Bν ,[3]
(µ+1)µ ·W

t
ν ,

(54)

where t is the time level. The velocity field of the flow at the time t is given by
either the initial conditions or the solution of the macro-scale procedure which
was previously determined using the 1D-IRBFN method. The stress τττ p is then
calculated using the coupling equation (52).

6.2 Creeping flows of viscoelastic fluid using FENE BSC models

This problem was solved by Koppol, Sureshkumar, and Khomami (2007) with the
Reynolds number Re = 0 using the FENE-BSC model of NS = 1,3,6-dumbbell
chains and neglecting HI and EV effects. The parameters of the BSC model fluid
include: the ratio of polymer viscosity and total viscosity of the fluid ε = 0.5, the
square of maximum extensibility of the FENE dumbbell model bD = 900 and thus
the square of maximum extension of each spring in the chain bBSC = bD/Ns, and
the Weissenberg number of the flow We = 5. The SDE equation is developed for
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each dumbbell in a configuration of the 3-dumbbell BSC model as follows.

dQ1 =

[
(∇u)T ·Q1−

1
4We

(
2FD

1 −FD
2
)]

dt +
1√
2We

(dW2−dW1) ,

dQ2 =

[
(∇u)T ·Q2−

1
4We

(
−FD

1 +2FD
2 −FD

3
)]

dt +
1√
2We

(dW3−dW2) ,

dQ3 =

[
(∇u)T ·Q3−

1
4We

(
−FD

2 +2FD
3
)]

dt +
1√
2We

(dW4−dW3) ,

(55)

where FD
k (k = 1,2,3) is given by Eq. (29) for a FENE dumbbell. The 3-D devel-

opment of the first equation of Eq. (55) for dumbbell 1 is given by

dQ1,x =

[
− 1

4We

(
2Q1,x

C1
−

Q2,x

C2

)
+

∂u
∂y

Q1,y

]
dt +

1√
2We

(dW2,x−dW1,x) ,

dQ1,y =−
1

4We

(
2Q1,y

C1
−

Q2,y

C2

)
dt +

1√
2We

(dW2,y−dW1,y) ,

dQ1,z =−
1

4We

(
2Q1,z

C1
−

Q2,z

C2

)
dt +

1√
2We

(dW2,z−dW1,z) ,

(56)

where Ck = 1− ‖Qk‖2

bBSC
and ‖Qk ‖2= Q2

k,x +Q2
k,y +Q2

k,z (k = 1,2).

6.2.1 Temporal discretisation scheme

For microscopic procedure, the use of Euler integration scheme to discretise the
SDEs in (55) yields

Qt+1
1 = Qt

1 +

[
(∇ut+1)T ·Qt

1−
1

4We

(
2FD

1 −FD
2
)t
]

∆t +

√
∆t

2We

(
Wt

2−Wt
1
)
,

Qt+1
2 = Qt

2 +

[
(∇ut+1)T ·Qt

2−
1

4We

(
−FD

1 +2FD
2 −FD

3
)t
]
∆t +

√
∆t

2We

(
Wt

3−Wt
2
)
,

Qt+1
3 = Qt

3 +

[
(∇ut+1)T ·Qt

3−
1

4We

(
−FD

2 +2FD
3
)t
]

∆t +

√
∆t

2We

(
Wt

4−Wt
3
)
.

(57)
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Based on the Euler explicit scheme, the time discretisation of Eq. (56) for dumbbell
1 is written as follows.

Qt+1
1,x =

(
1− ∆t

2WeC1

)
Qt

1,x +
∆t

4WeC2
Qt

2,x +
dut+1

dy
Qt

1,y∆t +

√
∆t

2We

(
W t

2,x−W t
1,x
)
,

Qt+1
1,y =

(
1− ∆t

2WeC1

)
Qt

1,y +
∆t

4WeC2
Qt

2,y +

√
∆t

2We

(
W t

2,y−W t
1,y
)
,

Qt+1
1,z =

(
1− ∆t

2WeC1

)
Qt

1,z +
∆t

4WeC2
Q2,z +

√
∆t

2We

(
W t

2,z−W t
1,z
)
.

(58)

For the creeping problem (Re = 0), the pseudo-time scheme is used to discretise the
momentum conservation equation with time step size ∆t = 0.001 for both the micro
and macro procedures. With a coarse spatial discretisation ∆y = 0.1 (Ny = 11) and
number of chains N f = 1024 at each collocation point, the numerical solutions ob-
tained by the present method confirm a very good agreement with the results where
finer meshes were used in Koppol, Sureshkumar, and Khomami (2007), evidenced
by the following

• Fig. 3 describes evolutions of the velocity at four locations y = 0.2, 0.4, 0.6
and 0.8 of the BSC models of 1, 3 and 6 dumbbells. The evolution of the
velocity profile indicates that the overshoots before reaching the steady state
are not significant. The results show that the method is able to achieve a very
high accuracy using a coarse grid (Ny = 11, ∆t = 0.001);

• Fig. 4 depicts the evolution of the first normal stress (Upper figure) and the
shear stress (Lower figure) at the location y = 0.8 for several BSC models of
1, 3 and 6 dumbbells using 1024 and 2048 configurations at each collocation
point. The absolute values of shear stresses reach a stable stage around 0.42
to 0.48 while the stable first normal stresses cover a range from 3.2 to 4.
Theses results are in very good agreement with ones in Fig. 3 presented in
Koppol, Sureshkumar, and Khomami (2007);

• Fig. 5 shows the evolution of the first normal stress difference (Upper figure)
and the square of end-to-end distance of chain configuration (Lower figure)
at the location y = 0.8 for the different BSC models of 1, 3 and 6 dumbbells.
Several interesting points by the results for this case include: (i) the number
of configurations N f = 1024 is sufficient for a reliable stochastic simulation
and (ii) the more number of springs/dumbbells in a BSC model is, the higher
extensibility of the BSC is.
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Figure 3: The creeping planar Couette flow problem using FENE-based BSC mod-
els of 1, 3 and 6 dumbbells. The parameters of the problem: number of collocation
points Ny = 11, N f = 1024, bD = 900, We = 5, ε = 0.5, Re = 0 and ∆t = 0.001.
The evolution of the velocity at four locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8.

Figure 6 depicts the evolution of the convergence measure of the velocity field
using the FENE-based BSC model of 1, 3 and 6 dumbbells by the present IRBF-
BCF collocation method. While most published results confirmed that convergence
measures obtained for a stochastic approach are not high (from 1E-2 to 1E-3 for
velocity and stress [Laso and Ottinger (1993); Tran, Mai-Duy, Le-Cao, and Tran-
Cong (2012)]), the results in Fig. 6 show that the convergence measure has been
significantly enhanced by the present method. Furthermore, the statistical errors
obtained at the steady state show a significant improvement by the present method
as described in Table 1. Indeed, in most of the cases, except Ns = 3 with N f =
1024, the statistical errors by the present method are smaller than those of Koppol,
Sureshkumar, and Khomami (2007).

6.3 Comparisons between the Rouse and Zimm models

In this section, the difference in dynamic behaviour of dilute polymer solution in
shear flow using the Rouse and Zimm models is discussed. While both of them are
Hookean dumbbell-based BSC models, only the Zimm model takes into account
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Figure 4: The creeping planar Couette flow problem using the FENE-based BSC
model of 1, 3 and 6 dumbbells. The parameters of the problem are given in Fig. 3.
The evolution of the first normal stress (Upper figure) and the shear stress (Lower
figure) at location y = 0.8.
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Figure 5: The creeping planar Couette flow problem using the FENE-based BSC
model of 1, 3 and 6 dumbbells. The parameters of the problem are given in Fig. 3.
The the evolution of first normal stress difference (Upper figure) and the square of
end-to-end distance of the BSC configuration (Lower figure) at location y = 0.8.
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Figure 6: The creeping planar Couette flow problem using the FENE-based BSC
model of 1, 3 and 6 dumbbells. The parameters of the problem are given in Fig.
3. The convergence measures for the velocity field are significantly enhanced in
comparison with other published results.

Table 1: The creeping planar Couette flow problem using the FENE-based BSC
model of 1, 3 and 6 dumbbells. The parameters of the problem are given in Fig. 3.
An evaluation on the numerical stability of the present method: the statistical errors
of the shear stress and the first normal stress of the present method are compared
with those of Koppol, Sureshkumar, and Khomami (2007). S[τxy] and S[τxx] are the
statistical errors of the shear stress and the first normal stress, respectively.

Koppol et al.(2007) The present method
Ns N f S[τxy] S[τxx] S[τxy] S[τxx]

1 1024 0.025 0.172 0.024 0.167
1 2048 0.018 0.120 0.017 0.112
3 1024 0.016 0.123 0.018 0.137
3 2048 0.012 0.091 0.012 0.085
6 1024 0.015 0.117 0.015 0.117
6 2048 0.011 0.088 0.011 0.077
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the effect of HI. The SDE (26), describing the evolution of the configuration in
dimensionless form, is rewritten for the Rouse model as

dQi =

[
(∇u)T ·Qi−

1
4We

Ns

∑
k=1

AR
ikFD

k

]
dt +

√
1

2We

(
dWµ+1−dWµ

)
, (59)

where µ = i and AR
ik are entries of the Rouse matrix of dimension Ns×Ns and given

by

AR
ik =


2 if |i− k|= 0,
−1 if |i− k|= 1,

0 otherwise.
(60)

and for the Zimm model by

dQi =

[
(∇u)T ·Qi−

1
4We

Ns

∑
k=1

AZ
ikFD

k

]
dt +

√
1

2We

Nb

∑
ν=1

(
B(µ+1)ν −Bµν

)
·dWν ,

(61)

where AZ
ik are entries of the Zimm matrix of dimension of Ns×Ns and defined as

AZ
ik = AR

ik +
√

2h̄

(
2√
|i− k|

− 1√
|i− k+1|

− 1√
|i− k−1|

)
, (62)

where h̄ is the HI parameter (h̄ = 0.25 is used in this work); tensor Bµν is deter-
mined by formulae (5) and (14).

The polymer stresses are given by

τττp =
ε

W̃e

[
(Nb−1)I−

Ns

∑
k=1

〈
QkFD

k
〉]

, (63)

where Nb and Ns are the numbers of beads and springs, respectively. Other param-
eters are defined as before.

The start-up problem of the Rouse and Zimm models is analysed using 2-dumbbell
chains with the following physical parameters: ηo = ηs+ηp = 1,ρ = 1.2757,λH =
49.62,ηs = 0.0521 as done in Laso and Ottinger (1993); Tran-Canh and Tran-Cong
(2004) where ηo, ηs, ηp, ρ , are defined above.

The corresponding Weissenberg number, Reynolds number and the ratio ε are given
by

Re =
ρUL
ηo

= 1.2757; We =
λHU

L
= 49.62 and ε =

ηp

ηo
= 0.9479.
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Since the Zimm model takes into account the HI effect, the mechanical behaviours
are significantly different from those in the Rouse model and that is shown in nu-
merical results by the present method. Results clearly showed that the maximum
extension of BS chains of the two models increases monotonically with respect to
time and the increment rate of Zimm chains is higher than the Rouse ones because
of the HI effect (Fig. 7). Indeed, BS chain lengths reach the values of 800 and 1000
after the elapsed time t = 25 for the Rouse and Zimm models, respectively.
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Figure 7: The start-up planar Couette flow problem using the Rouse and the Zimm
models. The parameters of the problem: number of configurations N f = 1024,
number of springs Ns = 2, the hydrodynamic interaction parameter for Zimm model
h̄ = 0.25, number of collocation points Ny = 11, Re = 1.2757, We = 49.62, ε =
0.9479 and ∆t = 0.001. The evolution of the square of end-to-end distance at the
location y = 0.2.

Fig. 8 depicts the evolution of velocity field at four locations y = 0.2, y = 0.4,
y = 0.6 and y = 0.8 by the Rouse and Zimm models. Since they are Hookean-based
BS chains, the evolution of velocity profile and values of flow velocity are nearly
identical (Upper figure) except a small difference during the velocity overshoot at
the start-up period (Lower figure).

On the rheological behaviour, the comparison between the models in the Couette
start-up flows is summarised in Fig. 9 for the evolution of stresses. Results in Fig.
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Figure 8: The start-up planar Couette flow problem using the Rouse and the Zimm
models. The parameters are given in Fig. 7. The evolution of the velocity pro-
file (Upper figure) and the comparison of the evolution of velocity (Lower figure)
between Rouse and Zimm models at locations y = 0.2, y = 0.4, y = 0.6 and y = 0.8.
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9 show that due to the HI effect, the magnitude of shear stress (Upper figure) and
the first normal stress difference (Lower figure) by the Zimm model are higher than
the Rouse’s ones whereas a zero-value is observed for the second normal stress
differences of the two models. These results are completely in line with predictions
in classical kinetic theory [Bird, Curtiss, Armstrong, and Hassager (1987); Ottinger
(1996)].
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Figure 9: The start-up planar Couette flow problem using the Rouse and the Zimm
models. The parameters are the same as in Fig. 7. The evolution of the shear stress
(Upper figure) and the evolution of the first and the second normal stress differences
(Lower figure) at location y = 0.2.
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The simulation is also carried out with a range of Weissenberg numbers (We = 5,
10 and 30) to investigate the present method. Results presented in Figs. 10 and
11 confirm the influence of the Weissenberg number on the velocity through the
start-up period, the shear stress and the first normal stress difference.

For the evolution of velocity, Fig. 10 shows that the maximum amplitude as well as
the oscillatory frequency of the over/undershoot are higher for smaller Weissenberg
numbers for both Rouse and Zimm models. Meanwhile, with a given Weissenberg
number, due to the HI effect, the over/undershoot of velocity is stronger with the
Zimm model.

On the polymer stresses, the higher Weissenberg number is, the lower magnitude
of the shear stress (Fig. 11 - Upper figure) and the first normal stress difference
(Fig. 11 - Lower figure) are for both Rouse and Zimm models. Furthermore, with
a given Weissenberg number, the absolute value of shear stress and the first normal
stress difference of flow by the Zimm model are higher than those by the Rouse
model.
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Figure 10: The start-up planar Couette flow problem using the Rouse and the Zimm
models. The parameters are the same as in Fig. 7. Comparison of the fluid rheolog-
ical properties using the Rouse and Zimm models for several Weissenberg numbers
(We = 5,10 and 30). The evolution of velocity.
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Figure 11: The start-up planar Couette flow problem using the Rouse and the Zimm
models. The parameters are the same as in Fig. 7. Comparison of the fluid rheolog-
ical properties using the Rouse and Zimm models for several Weissenberg numbers
(We = 5,10 and 30). The evolution of the shear stress (Upper figure) and the first
normal stress difference at location y = 0.2 (Lower figure).
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6.4 Start-up Couette flow using the FENE-based BSC models with HI and EV
effects

The method is finally demonstrated with the start-up Couette flow of fully nonlinear
FENE-based BSC model fluids. The HI and EV effects are included in the model
with varying number of FENE dumbbells in each chain (Ns = 1,2, · · · ,6). The
governing SDE (26) of a general BSC model with HI and EV effects and the extra
stress formula for the polymer (27) are reproduced as follows.

dQi =

[
(∇u)T ·Qi +

1
4We

Nb

∑
ν=1

(
ϒϒϒ(µ+1)ν −ϒϒϒµν

)
·Fφ

ν

]
dt

+

√
1

2We

Nb

∑
ν=1

(
B(µ+1)ν −Bµν

)
·dWν ,

(64)

τττp =
ε

W̃e

[
(Nb−1)I−

Ns

∑
k=1

〈
QkFD

k
〉
+Z

]
, (65)

where Z is determined by Eq. (30) and other parameters are defined as before.

The physical parameters of the fluid, including the Weissenberg number, Reynolds
number and the ratio ε , are chosen as presented in section 6.3. The parameters
h̄ = 0.25 for the HI effect and the constants z = 1 (Eq. (17)) and K = 1 (Eq. (18))
for the EV effect are used in this section.

On the mechanical behaviour, Fig. 12 depicts the evolution of shear stress and Fig.
13 the first normal stress difference (Upper figure) and the second normal stress dif-
ference (Lower figure) at the location of y = 0.2. Overshoots are observed for shear
stress, the first and the second normal stress differences. In particular, the existence
of the non-zero second normal stress difference is very clear as compared with sim-
ulations using the BSC models without both HI and EV effects (see cases of Rouse
and Zimm models in Fig. 9 - Lower figure). This is because the nonlinear effects of
HI and EV have been included in the simulations. Results also show the influence
of the number of dumbbells in a polymer chain on the dynamics properties through
the start-up time before reaching stable values. For example, the overshoot of the
shear stress (Fig. 12) and the first normal stress difference (Fig. 13 - Upper figure)
decrease with increasing number of dumbbells in the chain configuration.

The development of velocity with respect to time at different locations (y= 0.2, 0.4,
0.6 and 0.8) are presented in Fig. 14. Generally, an overshoot at the beginning time
is formed before a stable state is reached. The obtained results show a significant
influence of the number of dumbbells in the chain on the initial transient behaviour.
It can be seen clearly that the velocity simulated with higher number of dumbbells
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achieves the maximum value (or the debut position of the overshoot) sooner and
thus needs less time to reach stable state (Lower figure).

Last but not least, it is worth noting that with a given bD, the HI and EV influences
on the polymer stresses increase and only significantly for polymer chains having
large enough number of dumbbells in chain (Fig. 15). For example, the difference
of the shear stress (Upper figure) and the first normal stress difference (Lower fig-
ure) of the FENE-BSC models with and without HI and EV are very small for the
2-dumbbell chain model but very significant for the 6-dumbbell chain model. A
similar observation can be seen for the square maximum extension of end-to-end
connecting vector (Fig. 16). Meanwhile, these nonlinear effects are not significant
for the velocity field of the flow (Fig. 17).
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Figure 12: The start-up planar Couette flow problem using FENE-based BSC mod-
els of several numbers of dumbbells with HI and EV effects. The parameters of the
problem: h̄ = 0.25, z = 1, K = 1, Ny = 11, We = 49.62, ε = 0.9479, bD = 50. The
evolution of the shear stress at location y = 0.2 using 1,2,3,4,5 and 6 dumbbells.
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Figure 13: The start-up planar Couette flow problem using FENE-based BSC mod-
els of several numbers of dumbbells with HI and EV effects. The parameters are
the same as in Fig. 12. The evolution of the first normal stress difference (Upper
figure) and the second normal stress difference (Lower figure) at location y = 0.2
using 1,2,3,4,5 and 6 dumbbells.
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Figure 14: The start-up planar Couette flow problem using FENE-based BSC mod-
els of several numbers of dumbbells with HI and EV effects. The parameters are
the same as in Fig. 12. The evolution of the velocity field at locations y = 0.2,
y = 0.4, y = 0.6 and y = 0.8 (Upper figure) and an enlarged velocity profile at
location y = 0.6 (Lower figure) using 1,2,3,4,5 and 6 dumbbells.
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Figure 15: The start-up planar Couette flow problem using FENE-based BSC mod-
els of several numbers of dumbbells. The parameters are shown as in Fig. 12. The
influence of HI and EV effects on rheological properties of the fluid. The evolu-
tion of the shear stress (Upper figure) and the first normal stress difference (Lower
figure) at location y = 0.2.
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Figure 16: The start-up planar Couette flow problem using FENE-based BSC mod-
els of several numbers of dumbbells. The parameters are shown as in Fig. 12. The
influence of HI and EV effects on rheological properties of the fluid. The evolution
of the end-to-end connector vector at location y = 0.2.
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Figure 17: The start-up planar Couette flow problem using FENE-based BSC mod-
els of several numbers of dumbbells. The parameters are shown as in Fig. 12. The
influence of HI and EV effects on rheological properties of the fluid. The evolution
of the velocity profile with/without EV and HI effects using 2-dumbbell (Upper
figure) and 6-dumbbell (Lower figure) BSC models at locations y = 0.2, y = 0.4,
y = 0.6 and y = 0.8.
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6.5 Performance of Parallel computation

The problem is solved using 1024 BSCs at each collocation point to ensure the ac-
curacy and stability in stochastically determining the stresses. In order to estimate
the efficiency of the parallel algorithm, a range of 2, 4 and 8 CPUs is used to solve
the SDEs corresponding to 1024 configurations in parallel generated at each and
every collocation point and to determine the averaged stresses at the grid points.
Especially, the presence of HI and EV effects makes a massive increase in the com-
putational cost because of the bead-bead and bead-spring interactions in the fluid
model. For this numerical example, the FENE-BSC model of 2 dumbbells with
HI and EV effects is considered to initially evaluate the efficiency of the parallel
algorithm.

Table 2 shows the effect of the number of CPUs on the speed-up as well as the
efficiency of the parallel technique. A significant improvement of the throughput
has been achieved. For example, the speed-up increased 1.7, 2.96 and 3.66 times
when using 2, 4 and 8 CPUs, respectively. However, the efficiency of the algorithm
reduces with increasing number of CPUs. The results presented in Table 2 and Fig.
18 show the effect of the number of CPUs on the speed-up and the efficiency of
the present method are in agreement with several recent results reported in Tran,
Phillips, and Tran-Cong (2009); Laso, Picasso, and Ottinger (1997).

Table 2: The start-up planar Couette flow problem using FENE-BSC models
with HI and EV effects. The parameters of problem: number of dumbbells in a
BSC Ns = 2, number of BSC configurations at each collocation point N f = 1024,
∆t = 0.001, number of iterations it = 2.5E + 4. Parallel computation results are
shown in the table where CPUs is number of CPUs, tm is elapsed time for the
micro-procedure, tM is elapsed time for the macro-procedure, S is single mode, P
is parallel mode, Spd is speed-up and Eff is efficiency.

Mode CPUs tm tM Spd Eff (%)
S 1 3.02E+5 3.957267 1.00 100%
P 2 1.78E+5 4.311329 1.70 85%
P 4 1.02E+5 4.334896 2.96 74%
P 8 8.27E+4 4.333779 3.66 46%

7 Conclusions

The IRBFN-BCF based coarse-grained method is employed to simulate the flow of
dilute polymer solutions using complex nonlinear BSC models. The hybrid simu-
lation method is a combination of a high order RBFN-based approximation for the
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Figure 18: The start-up planar Couette flow problem using FENE-BSC models
of 2 dumbbells with HI and EV effects: The parameters are shown as in Fig. 12.
Parallel computation results: The efficiency (Left figure) and the speed-up (Right
figure) with respect to the number of CPUs.

solution of macroscopic conservation equations and a BCF-based CG technique
for the evolution of polymer configuration. The present method offers the advan-
tages of a mesh-free based stochastic CG method in the simulation of viscoelas-
tic polymer flows as presented in Tran, An-Vo, Mai-Duy, and Tran-Cong (2011).
The method efficiency based on both the enhanced convergence rate of numeri-
cal solution and the stability of a stochastic process is evidenced by the successful
simulation of flows using complex BSC models which take into account nonlinear
interaction forces in the polymer solution, e.g. HI and EV effects. This allows
the method to effectively simulate models which are realistic in comparison with
experimental results.
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