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New Spectral Solutions of Multi-Term Fractional-Order
Initial Value Problems With Error Analysis

W. M. Abd- Elhameed1,2 and Y. H. Youssri2

Abstract: In this paper, a new spectral algorithm for solving linear and nonlin-
ear fractional-order initial value problems is established. The key idea for obtaining
the suggested spectral numerical solutions for these equations is actually based on
utilizing the ultraspherical wavelets along with applying the collocation method to
reduce the fractional differential equation with its initial conditions into a system
of linear or nonlinear algebraic equations in the unknown expansion coefficients.
The convergence and error analysis of the suggested ultraspherical wavelets expan-
sion are carefully discussed. For the sake of testing the proposed algorithm, some
numerical examples are considered. The numerical results indicate that the result-
ing approximate solutions are close to the analytical solutions and they are more
accurate than those obtained by some other existing techniques in literature.

Keywords: Wavelets, ultraspherical polynomials, collocation method, fractional-
order differential equations

1 Introduction

Fractional calculus is an extension of derivatives and integrals to non-integer orders
and has been widely used to model scientific and engineering problems. Fractional-
order differential equations have prominent roles in various disciplines. Due to their
great importance, they have been investigated by a large number of authors from
both theoretical and practical points of view (see, for example, [Diethelm (2010);
Brunner, Pedas, and Vainikko (2001); Kilbas, Srivastava, and Trujillo (2006); Pod-
lubny (1998); Kilbas, Marichev, and Samko (1993); Wang, Liu, Chen, Liu, and Liu
(2015)]). It is well-known that many physical phenomena in acoustics, damping
laws electroanalytical chemistry, neuron modeling, diffusion processing and ma-
terial sciences (see for example, [Al-Mdallal, Syam, and Anwar (2010); Çenesiz,
Keskin, and Kurnaz (2010); Daftardar-Gejji and Jafari (2005)]) are described by
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fractional-order differential equations. Various algorithms are developed for han-
dling different kinds of fractional differential equations. Some of these methods
are, Adomian decomposition method [Momani (2007); Jafari and Seifi (2009)],
variational iteration method [Sweilam, Khader, and Al-Bar (2007); Das (2009)]
and fractional differential transform method [Arikoglu and Ozkol (2009); Erturk,
Momani, and Odibat (2008)].

Spectral methods have important roles in many fields of applied science. The main
characteristic of spectral methods is that the approximate solutions of differential
equations are expressed in terms of truncated series of various orthogonal poly-
nomials. There are three popular techniques for spectral methods, they are the
collocation, tau and Galerkin methods (see, for instance [Abd-Elhameed, Doha,
and Youssri (2013a,b); Abd-Elhameed (2014); Elgohary, Dong, Junkins, and Atluri
(2014); Costabile and Napoli (2015); Abd-Elhameed (2015)]).

The subject of wavelets has recently drawn a great deal of attention from mathemat-
ical scientists in various disciplines. Wavelets have been used for solving ordinary
and fractional differential equations. For example, a huge number of articles em-
ploy Legendre and Chebyshev wavelets for treating ordinary differential equations
as well as fractional differential equations (see, for instance [Zhu and Fan (2012);
Sadek, Abualrub, and Abukhaled (2007)]). In this paper, we aim to employ ul-
traspherical wavelets in handling fractional differential equations. A motivation
for constructing and employing ultraspherical wavelets is that the Chebyshev and
Legendre wavelets can be deduced as special cases of the ultraspherical wavelets.

The ultraspherical polynomials have received considerable attention in recent de-
cades, from both theoretical and practical points of view (see, for example [El-
gindy and Smith-Miles (2013a)]). Some authors are interested in employing these
polynomials for solving various kinds of differential equations. In this respect, El-
gindy and Smith-Miles in [Elgindy and Smith-Miles (2013b)], treated boundary
value problems, integral, and integro-differential equations using ultraspherical in-
tegration matrices. Moreover, Doha and Abd-Elhameed employed ultraspherical
polynomials for solving one and two dimensional second-order differential equa-
tions in [Doha and Abd-Elhameed (2002)]. In addition, the same authors in [Doha
and Abd-Elhameed (2005)] developed some accurate spectral solutions for treating
the parabolic and elliptic partial differential equations based on the ultraspherical
tau method.

The main aim of this article is twofold:

• Deriving the ultraspherical wavelets operational matrix of the fractional in-
tegration.

• Analyzing efficient spectral wavelets algorithm for treating fractional-order
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differential equations via ultraspherical wavelets operational matrices of the
fractional integration.

The contents of the paper are arranged as follows. Section 2 is devoted to present-
ing mathematical preliminaries containing some basic definitions in the fractional
calculus theory which are required for establishing our results. Also, some relevant
properties of ultraspherical polynomials and their shifted ones are presented and
the ultraspherical wavelets are constructed. In Section 3, we investigate in detail
the convergence and error analysis of the suggested ultraspherical wavelets expan-
sion. In Section 4, the ultraspherical wavelets operational matrix of the fractional
integration is derived. In Section 5, we present and implement an algorithm for
solving multi-term fractional-order initial value problems based on employing the
constructed ultraspherical wavelets operational matrix. In Section 6, some numer-
ical examples are given to ensure the efficiency, simplicity and applicability of the
suggested algorithm. Finally, conclusions are reported in Section 7.

2 Preliminaries

2.1 Some definitions and properties of fractional calculus

In this section, we present some notations, definitions and preliminary facts of the
fractional calculus theory which will be useful throughout this article.

Definition 1. The Riemann-Liouville fractional integral operator Iα of order α on
the usual Lebesgue space L1[0,1] is defined as

Iα f (t) =

 1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, α > 0,

f (t), α = 0.
(1)

The operator Iα has the following properties:

(i) Iα Iβ = Iα+β , (ii) Iα Iβ = Iβ Iα ,

(iii)Iα(t−a)ν =
Γ(ν +1)

Γ(ν +α +1)
(t−a)ν+α ,

where f ∈ L1[0,1], α,β > 0, and ν >−1.

Definition 2. The Riemann-Liouville fractional derivative of order α > 0 is defined
by

(Dα f )(t) =
(

d
dt

)n

(In−α f )(t), n−1 6 α < n, n ∈ N. (2)
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Definition 3. The Caputo definition of fractional differential operator is given by

(Dα
∗ f )(t) =

1
Γ(n−α)

∫ t

0
(t− τ)n−α−1 f (n)(τ)dτ, α > 0, t > 0, (3)

where n−1 6 α < n,n ∈ N.

The operator Dα
∗ satisfies the following two basic properties for n−1 6 α < n,

(Dα
∗ Iα f )(t) = f (t),

(IαDα
∗ f )(t) = f (t)−

n−1

∑
k=0

f (k)(0+)
k!

(t−a)k, t > 0.

For comprehensive study on the properties of fractional derivatives and integrals,
one can see for example, [Podlubny (1998)].

2.2 Some properties of ultraspherical polynomials and their shifted ones

The ultraspherical polynomials C(λ )
n (x) (a special type of Jacobi polynomials) asso-

ciated with the real parameter (λ >−1
2), are a sequence of orthogonal polynomials

defined on (-1,1), with respect to the weight function w(x) = (1− x2)λ− 1
2 . The

orthogonality relation is given by

1∫
−1

(1− x2)λ− 1
2 C(λ )

m (x)C(λ )
n (x) dx =


√

π n! Γ(2λ ) Γ(λ + 1
2)

Γ(n+2λ ) (n+λ ) Γ(λ )
, m = n,

0, m 6= n.
(4)

It should be noted here that the ultraspherical polynomials C(λ )
n (x) are normalized

such that C(λ )
n (1) = 1. This normalization is characterized by an advantage that

the polynomials C(0)
n (x) are identical with the Chebyshev polynomials of the first

kind Tn(x), C( 1
2 )

n (x) are the Legendre polynomials Ln(x), and C(1)
n (x) are equal to

(1/(n+1))Un(x), where Un(x) are the Chebyshev polynomials of the second kind.

The polynomials C(λ )
n (x) may be generated by using the recurrence relation

(n+2λ )C(λ )
n+1(x) = 2(n+λ ) xC(λ )

n (x)−nC(λ )
n−1(x), n = 1,2,3, . . . ,

with the initial values: C(λ )
0 (x) = 1 and C(λ )

1 (x) = x.

For more properties and relations of ultraspherical polynomials, see for instance
[Andrews, Askey, and Roy (1999)].
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The shifted ultraspherical polynomials C̃(λ )
n (x) = C(λ )

n (2x− 1) are a sequence of
orthogonal polynomials defined on (0,1), with respect to the weight function w̃(x)=
(x− x2)λ− 1

2 , i.e.

1∫
0

(x− x2)λ− 1
2 C̃(λ )

m (x) C̃(λ )
n (x) dx =


π 21−4λ Γ(n+2λ )

n!(n+λ ) (Γ(λ ))2 , m = n,

0, m 6= n.
(5)

They also may be generated by using the recurrence relation

(n+2λ )C̃(λ )
n+1(x) = 2(n+λ ) (2x−1)C̃(λ )

n (x)−nC̃(λ )
n−1(x), n = 1,2,3, . . . ,

with the initial values: C̃(λ )
0 (x) = 1 and C̃(λ )

1 (x) = 2x−1.

It is worthy to note here that, it is easy to transform all relations and properties of
ultraspherical polynomials to give the corresponding relations and properties of the
shifted ultraspherical polynomials.

Now, the following integral formula (see, [Andrews, Askey, and Roy (1999)]) is
needed∫

C(λ )
n (x)w(x)dx =

−2λ (1− x2)λ+ 1
2

n(n+2λ )
C(λ+1)

n−1 (x), n > 1. (6)

Also, the following theorem is essential in investigating the convergence analysis
for the suggested ultraspherical wavelets expansion.

Theorem 1. (Bernstein-type inequality) [Giordano and Laforgia (2003)]. The fol-
lowing inequality holds for ultraspherical polynomials:

(sinθ)λ |C(λ )
n (cosθ)|<

21−λ Γ(n+ 3λ

2 )

Γ(λ )Γ(n+1+ λ

2 )
, 0 6 θ 6 π, 0 < λ < 1. (7)

2.3 Ultraspherical wavelets

Wavelets constitute a family of functions constructed from dilation and translation
of single function called the mother wavelet. When the dilation parameter A and
the translation parameter B vary continuously, we have the following family of
continuous wavelets:

ψA,B(t) = |A|−1/2
ψ

(
t−B

A

)
A,B ∈ R , A 6= 0. (8)

The ultraspherical wavelets ψ
(λ )
nm (t) = ψ(k,n,m,λ , t) are constructed in a way such

that they have five arguments: k,n can be assumed to be any positive integer, m is
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the order for the ultraspherical polynomial, λ is the ultraspherical parameter and t
is the normalized time. Explicitly, they are defined on the interval [0,1] as:

ψ
(λ )
nm (t) =

 2
k
2 ξm C̃(λ )

m
(
2k−1t−n+1

)
, t ∈ [ n−1

2k−1 ,
n

2k−1 ],

0, otherwise,
(9)

where m = 0(1)M−1, n = 1(1)2k−1, and

ξm = 2λ
Γ(λ )

√
m!(m+λ )

2πΓ(m+2λ )
. (10)

Remark 1. It is worthy noting here that ψ
( 1

2 )
nm (t) is identical to the Legendre wavelets

in [Razzaghi and Yousefi (2000); Yousefi (2006)], ψ
(0)
nm (t) is identical to the first

kind Chebyshev wavelets in [Babolian and Fattahzadeh (2007); Yuanlu (2010)]
and ψ

(1)
nm (t) is identical to the second kind Chebyshev wavelets in [Maleknejad,

Sohrabi, and Rostami (2007)].

Now, consider a function f (t) defined on [0,1] and suppose that f (t) may be ex-
panded in terms of ultraspherical wavelets as

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmψ
(λ )
nm (t), (11)

where

cnm =
(

f (t),ψ(λ )
nm (t)

)
w̃
=
∫ 1

0
(t− t2)λ− 1

2 f (t)ψ
(λ )
nm (t)dt.

Assume that f (t) is approximated in terms of ultraspherical wavelets as

f (t)≈
2k−1

∑
n=1

M−1

∑
m=0

cnmψ
(λ )
nm (t) = CT

Ψ
(λ )(t), (12)

where C and Ψ(λ )(t) are 2k−1M×1 matrices given by

C =
[
c1,0,c1,1, . . . ,c1,M−1,c2,0, . . . ,c2,M−1, . . . ,c2k−1,0, . . . ,c2k−1,M−1

]T
, (13)

Ψ
(λ )(t) =

[
ψ

(λ )
1,0 ,ψ

(λ )
1,1 , . . . ,ψ

(λ )
1,M−1,ψ

(λ )
2,0 , . . . ,ψ

(λ )
2,M−1, . . .ψ

(λ )

2k−1,0, . . . ,ψ
(λ )

2k−1,M−1

]T
.

(14)
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3 Convergence and error analysis

In this section, we give a comprehensive study on the convergence and error anal-
ysis of the suggested ultraspherical wavelets expansion. In this respect, we will
state and prove two important theorems, in the first, we follow [Abd-Elhameed and
Youssri (2014)] to show that the ultraspherical wavelets expansion of a function
f (x) with a bounded second derivative converges uniformly to f (x), and in the
second, we give an upper bound for the error (in L2

w̃-norm) of the truncated ultras-
pherical wavelets expansion.
The following lemma is needed.

Lemma 1. (see, [Stewart (2012)], p. 742) Let f (x) be a continuous, positive,
decreasing function for x > n. If f (k) = ak, provided that ∑an is convergent, and

Rn =
∞

∑
k=n+1

ak, then

Rn 6
∫

∞

n
f (x)dx.

Theorem 2. A function f (x) ∈ L2
w̃[0,1], w̃ = (x− x2)λ− 1

2 , 0 < λ < 1 can be ex-
panded as an infinite series of ultraspherical wavelets, which converges uniformly
to f (x), given that | f ′′(x)|6 L. Explicitly, the expansion coefficients in (12) satisfy
the inequality

|cnm|<
4L(1+λ )2 (m+1+λ )2

(m−2)4 n
5
2

, ∀ n > 1, m > 2. (15)

Proof. If we start with the definition (9) and apply the inner product of ψ
(λ )
nm (t) to

both sides of (12), then one can write the coefficients cnm in the form

cnm = 2
k
2 ξm

∫ n
2k−1

n−1
2k−1

f (t)C(λ )
m

(
2kt−2n−1

)
w(2kt−n)dt. (16)

If the right hand side of (16) is integrated by parts, then in virtue of relation (6), Eq.
(16) is turned into

cnm =
2

6−k
2 λξm

m(m+2λ )

∫ n
2k−1

n−1
2k−1

f ′(t)C(λ+1)
m−1

(
2kt−2n−1

)
(2kt−n)(1−2kt +n)w(2kt−n)dt.

(17)
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Repeated use of integration by parts and making use of the substitution: 2kt−2n−
1 = cosθ , enable one to write

cnm =

√
2(λ )2 ξm

22λ+ 5k−5
2 (m−1)2 (m+2λ −1)2

∫
π

0
f ′′
(

1+2n+ cosθ

2k

)
C(λ+2)

m−2 (cosθ)×

(sinθ)2λ+4 dθ .

(18)

Now, assuming that m > 2, taking into account the assumption | f ′′(t)| 6 L, and
with the aid of Theorem 1, we obtain

|cnm| 6

√
2 |(λ )(λ +1)ξm|

22λ+ 5k−5
2 (m−1)2 (m+2λ −1)2

×
∫

π

0

∣∣∣∣ f ′′(1+2n+ cosθ

2k

)∣∣∣∣ |C(λ+2)
m−2 (cosθ) |(sinθ)2λ+4 dθ

<

√
2L |λ |(1+λ )ξm|

22λ+ 5k−5
2 (m−1)2 (m+2λ −1)2

∫
π

0
|C(λ+2)

m−2 (cosθ) |(sinθ)2λ+4 dθ

<

√
2π L |λ |(1+λ ) |ξm|Γ(m+1+ 3λ

2 )Γ(3+λ

2 )

23λ+ 5k−5
2 (m−1)2 (m+2λ −1)2 Γ(λ +2)Γ(m+ λ

2 )Γ(2+ λ

2 )
.

Since λ > 0 and n < 2k−1, therefore with the aid of relation (10), we get

|cnm| <
2L |λ |(1+λ )Γ(3+λ

2 )Γ(m+1+ 3λ

2 )
√

m!(m+λ )

4λ Γ(2+ λ

2 )Γ(m+ λ

2 )
√

Γ(m+2λ )(m−2)4 n
5
2

<
4L(1+λ )2 Γ(m+1+ 3λ

2 )
√

m!(m+λ )

Γ(m+ λ

2 )
√

Γ(m+2λ )(m−2)4 n
5
2

<
4L(1+λ )2 (m+1+λ )2

(m−2)4 n
5
2

.

This completes the proof of the theorem.

Note. It should be noted here that, for large values of m and n, and making use
of the well known Stirling’s formula (see, [Li (2006)]), it can be easily shown that
|cnm| is of O

(
n−

5
2 m−2

)
.



Wavelets Solutions for Fractional IVPs 383

Theorem 3. If f ,λ satisfy the hypothesis of Theorem 2, and if we consider the

ultraspherical wavelets expansion fk,M(t) =
2k−1

∑
n=1

M−1

∑
m=0

cnmψ
(λ )
nm (t), then the following

error estimate (in L2
w̃-norm) is obtained

‖ f − fk,M‖w̃ <
(1+λ )2 L(M+λ )

4k (M−3)
7
2

, M > 3 (19)

Proof. From Eq. (11), and making use of the orthonormality property of {ψ(λ )
nm (t)},

we get

‖ f − fk,M‖2
w̃ =

∞

∑
n=2k−1+1

∞

∑
m=M

c2
nm.

In virtue of Theorem 2, one can write

‖ f − fk,M‖2
w̃ < 16L2 (1+λ )4

∞

∑
n=2k−1+1

∞

∑
m=M

(m+1+λ )4

(m−2)8 n5 ,

and the application of Lemma 1 leads to

‖ f − fk,M‖2
w̃ < 16L2 (1+λ )4

∫
∞

2k−1

∫
∞

M−1

(x+1+λ )4

(x−2)8 y5 dxdy

=
(λ +1)4 L2 43−2k

(
15λ 2−15λ +35λ M+21(M−1)M+9

)
105(M−3)7

<
(1+λ )4 L2 (M+λ )2

42k (M−3)7 ,

and hence

‖ f − fk,M‖w̃ <
(1+λ )2 L(M+λ )

4k (M−3)
7
2

,

which completes the proof of the theorem.

Note. It should be noted here that, for large values of k and M, it can be easily
shown that ‖ f − fk,M‖w̃ is of O

(
4−k M−

5
2

)
.
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4 Construction of ultraspherical wavelets operational matrix of the frac-
tional integration (UWOMFI)

In this section, we describe in detail the derivation of the shifted ultraspherical
wavelets operational matrix of the fractional integration. From now on, we set
m′ = 2k−1M. We select the collocation points ti to be the zeros of the shifted ultras-
pherical polynomials of degree m′ on the interval [0,1]. We define the ultraspherical
wavelets matrix Φm′×m′ as

Φm′×m′ =
[
Ψ

(λ )(t1), Ψ
(λ )(t2), . . . ,Ψ(λ )(tm′)

]
. (20)

Correspondingly, we have

f̃m′ =
[

f̃ (t1), f̃ (t2), . . . f̃ (tm′)
]
= CT

Φm′×m′ . (21)

Since the shifted ultraspherical wavelets matrix Φm′×m′ is an invertible matrix, the
ultraspherical wavelets coefficient vector CT can be obtained from the relation

CT = f̃m′ Φ
−1
m′×m′ . (22)

Now, and if we assume that f (t) can be expanded in terms of the shifted ultraspher-
ical wavelets as in Eq. (12), then the Riemann-Liouville fractional integration in
(1) becomes

Iα f (t) =
1

Γ(α)
tα−1 ∗ f (t) = CT 1

Γ(α)
tα−1 ∗Ψ

(λ )(t). (23)

Thus if tα−1 ∗ f (t) can be integrated, then expanded in the shifted ultraspherical
wavelets, the Riemann-Liouville fractional integration is solved via the shifted ul-
traspherical wavelets.

Now, define the following m-set of Block Pulse Function (BPF) on the interval
[0,1) as (see, [Zhu and Fan (2012)])

bi(t) =

{
1, i

m 6 t < i+1
m ,

0, otherwise.
(24)

where i = 0(1)m. The functions bi(t) are disjoint and orthogonal, in the sense that

bi(t)b j(t) =

{
0, i 6= j,
bi(t), i = j,

and
∫ 1

0
bi(t)b j(t)dt =

{
0, i 6= j,
1, i = j.

(25)
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From the orthogonality property of BPF, it is possible to expand functions in terms
of their block pulse series, so for every f (t) ∈ [0,1), one can write:

f (t)≈
m−1

∑
i=0

fi bi(t) = fT Bm(t),

where

f = [ f0, f1, . . . , fm−1]
T , Bm(t) = [b0(t),b1(t), . . . ,bm−1(t)]T ,

and

fi = m
∫ 1

0
f (t)bi(t)dt, i = 0(1)m−1.

Similarly, the shifted ultraspherical wavelets may be expanded into an m′-term
Block Pulse Functions as

Ψ
(λ )(t) = Φ

−1
m′×m′ Bm′(t). (26)

The Block Pulse operational matrix of the fractional integration Fα is given by
Kilicman in [Kilicman and Al Zhour (2007)]. This matrix has the following explicit
form

(IαBm)(t)≈ Fα Bm(t), (27)

where

Fα =
1

mα Γ(α +2)



1 γ1 γ2 . . . γm−1
0 1 γ1 γ2 . . γm−1
0 0 1 γ1 . . γm−1
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 0 1 γ1
0 0 0 0 0 0 1


and

γk = (k−1)α+1−2kα+1 +(k+1)α+1.

Now, for the sake of deriving the shifted ultraspherical wavelets operational matrix
of the fractional integration, let

(Iα
Ψ

(λ ))(t)≈ Pα

m′×m′Ψ
(λ )(t), (28)
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where, the matrix Pα

m′×m′ is the shifted ultraspherical wavelets operational matrix of
the fractional integration. Using Eqs. (26) and (27), we have

(Iα
Ψ

(λ ))(t)≈ Pα

m′×m′Ψ
(λ )(t) = Φm′×m′(IαBm′)(t)≈ Φm′×m′ FαBm′(t), (29)

and consequently, Eqs. (28) and (29) lead to

Pα

m′×m′Ψ
(λ )(t) = Pα

m′×m′Φm′×m′Bm′(t) = Φm′×m′ FαBm′(t), (30)

and therefore the ultraspherical wavelets operational matrix of the fractional inte-
gration Pα

m′×m′ is given by

Pα

m′×m′ = Φm′×m′ Fα
Φ
−1
m′×m′ . (31)

It should be noted that the operational matrix Pα

m′×m′ contains many zero entries.
This special structure, of course reduces the required computations. The calculation
for the matrix Pα

m′×m′ is carried out once and is used to solve fractional order as well
as integer order differential equations.

5 A new matrix algorithm for solving multi-term fractional-order differen-
tial equation

Consider the one-dimensional multi-term fractional-order differential equation

Dα1z(t)+
N

∑
i=2

εi(t)Dαiz(t) = f (t,z(t)) , t ∈ [0,1], (32)

governed by the initial conditions

z(i)(0) = βi, i = 0(1)n1−1, (33)

where

ni−1 < αi ≤ ni, n1 > n2 > · · ·> nN , n1,n2, . . . ,nN ∈ N, βi ∈ R,

and εi : [0,1]→R, i= 2(1)N, f : [0,1]×R→R is a given continuous function.
The function z(t) may be approximated by the ultraspherical wavelets as

Dα1z(t)≈ ZT
Ψ

(λ )(t). (34)

Based on Eqs. (4), (29) and (34), we have the following approximations

Dα j z(t)≈ ZT Pα1−α j
m′×m′ Ψ

(λ )(t)+
m′−n j−1

∑
i=0

u(i)(0+)
t i

i!
, j = 2(1)N, (35)
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z(t)≈ ZT Pα1
m′×m′Ψ

(λ )(t)+
m′−1

∑
i=0

z(i)(0+)
t i

i!
, (36)

and hence the residual of Eq. (32) takes the form

R(t) = ZT
Ψ

(λ )(t)+
N

∑
j=2

ε j(t)ZT Pα1−α j
m′×m′ Ψ

(λ )(t)+
N

∑
j=2

ε j(t)

(
m′−n j−1

∑
i=0

z(i)(0+)
t i

i!

)

− f

(
t,ZT Pα

m′×m′Ψ
(λ )(t)+

m′−1

∑
i=0

z(i)(0+)
t i

i!

)
.

(37)

Now, Eq. (37) is enforced to be satisfied exactly at the points t j, j = 1(1)m′− n1

which are selected to be the first (m′− n1) roots of the polynomial C(λ )
m′+1(t), then

we have

R(t j) = 0, j = 1(1)m′−n1. (38)

Moreover, the initial conditions (33) yield

dr

dtr

(
ZT Pα

m′×m′Ψ
(λ )(t)+

m′−1

∑
i=0

z(i)(0+)
t i

i!

)
t=0

= βr, r = 0(1)n1−1. (39)

Eqs. (38) together with Eqs. (39) constitute m′ nonlinear equations in the expansion
coefficients, cnm, which can be solved with the aid of the well-known Newton’s
iterative method.

6 Numerical examples

In this section, the ultraspherical wavelets collocation method (UWCM) which em-
ploys the operational matrix of fractional integration is applied for handling some
numerical examples accompanied with some comparisons hoping to demonstrate
the efficiency and applicability of the proposed algorithm.

Example 1. Consider the following nonlinear initial value problem (see, [Pedas
and Tamme (2014)]):

(D0.5z)(t) = z2(t)+
√

t
Γ(1.5)

− t2, z(0) = 0, t ∈ [0,1]. (40)

The exact solution of (40) is z(t) = t. We apply UWCM to Eq. (40) for the case
corresponding to k = 1,M = 2(m′ = 2) and λ = 1

2 , The initial condition and the
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evaluation of the residual of Eq. (40) at the collocation point x0 = 1
2 , yield the

following two equations

ξ 2

16
−
√

ξ

π
+2

√
ξ

π
c1,1−

(
c1,0 +

(
ξ

2
−1
)

c1,1

)2

= 0,

c1,0− c1,1 = 0,

where ξ = 2−
√

2. This system can be solved to give

c1,0 = c1,1 =
1
2
,

and consequently

z(t) =
( 1

2
1
2

)( 1
2t−1

)
= t,

which is the exact solution.

Example 2. Consider the following nonlinear initial value problem (see, [Sweilam,
Khader, and Al-Bar (2007); Gejji and Jafari (2007); Saadatmandi and Dehghan
(2010); Kazem, Abbasbandy, and Kumar (2013); Kazem (2013)]):

D3z(t)+D
5
2 z(t)+ z2(t) = t4, z(0) = z′(0) = 0, z′′(0) = 2, t ∈ [0,1]. (41)

The exact solution of (41) is z(t) = t2. If UWCM is applied on Eq. (41), for the case
corresponding to k = 1,M = 4(m′ = 4), and λ = 1, then we have the following
approximations

D3z(t)≈ ZT
Ψ

(1)(t),

D
5
2 z(t)≈ ZT P

1
2

4×4Ψ
(1)(t),

z(t)≈ ZT P3
4×4Ψ

(1)(t)+ t2,

and hence the residual of Eq. (41) is given by

R(t) = ZT
Ψ

(1)(t)+ZT P
1
2

4×4Ψ
(1)(t)+

(
ZT P3

4×4Ψ
(1)(t)+ t2

)2
− t4. (42)

If R(t) is enforced to vanish at the collocation point x1 =
2−
√

3
4 , then the resulting

equation jointly with the three equations resulted from the satisfaction of the initial
conditions, yield a system of four equations whose solution is

c1,0 =
5
16

, c1,1 =
1
4
, c1,2 =

1
16

, c1,3 = 0,
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and consequently

z(t) =
(

5
16

1
4

1
16

0
)

1
4 t−2

16 t2−16 t +3
64 t3−96 t2 +40 t−4

= t2,

which is the exact solution.

Example 3. Consider the following linear initial value problem (see, [Doha, Bhrawy,
and Ezz-Eldien (2011); Doha, Bhrawy, Baleanu, and Ezz-Eldien (2013)]):

D2z(t)+D
3
2 z(t)+ z(t) = g(t), z(0) = 0, z′(0) = γ, t ∈ [0,1], (43)

where g(t) is chosen such that the exact solution of (43) is z(t) = sin(γ t). In Ta-
ble 1, we display the maximum absolute error E resulted from the application of
UWCM for the case k = 2, with various choices of M,γ and λ . In addition, Ta-
ble 2 illustrates a comparison between the results obtained by UWCM with those
obtained by using the following two methods:

• Shifted Chebyshev tau method (SCT) in [Doha, Bhrawy, and Ezz-Eldien
(2011)].

• Shifted Jacobi tau method (SJT) in [Doha, Bhrawy, Baleanu, and Ezz-Eldien
(2013)].

The results in Table 2 show that our algorithm is more accurate if compared with
the two methods developed in [Doha, Bhrawy, and Ezz-Eldien (2011)] and [Doha,
Bhrawy, Baleanu, and Ezz-Eldien (2013)].

Table 1: Maximum absolute error of Example 3

γ = 1 γ = 4π

M λ = 0 λ = 1
2 λ = 1 λ = 0 λ = 1

2 λ = 1

2 1.314 .10−3 1.228 .10−3 1.148 .10−3 2.152 .10−2 3.514 .10−2 2.912 .10−2

4 6.062 .10−9 7.068 .10−9 7.899 .10−9 3.712 .10−7 5.661 .10−7 6.725 .10−7

8 2.360 .10−14 8.113 .10−15 8.351 .10−15 7.291 .10−11 9.147 .10−12 2.982 .10−12

Example 4. Consider the following linear initial value problem (see, [Doha, Bhrawy,
and Ezz-Eldien (2011)]):

D
5
2 z(t)−3D

2
3 z(t) = g(t), z(0) = 1, z′(0) = γ, z′′(0) = γ

2, t ∈ [0,1], (44)
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Table 2: Comparison between the best errors of Example 3

γ = 1

SCT [Doha, Bhrawy, and Ezz-Eldien
(2011)]

SJT [Doha, Bhrawy, Baleanu, and
Ezz-Eldien (2013)]

UWCM

N = 64 N = 32 m′ = 16

E 2.4 .10−11 7.1 .10−10 8.1 .10−15

γ = 4π

E 4.8 .10−8 1.4 .10−6 2.9 .10−12

where g(t) is chosen such that the exact solution of (44) is z(t) = exp(γ t). In Table
3, we list the maximum absolute errors E by using UWCM for the case k = 3
with various choices of M,γ and λ . Moreover, in Table 4, we give a comparison
between the present method with the shifted Chebyshev tau method (SCT) obtained
in [Doha, Bhrawy, and Ezz-Eldien (2011)]. In addition, in Figure 1, we illustrate
the exact and numerical wavelets solutions for the case corresponding to γ = 6,k =
3,M = 1 and for various values of λ . The results in Table 4 show that the error
resulted from the application of our method are smaller than those obtained if SCT
method in [Doha, Bhrawy, and Ezz-Eldien (2011)] is applied.

Table 3: Maximum absolute error of Example 4

γ = 1 γ = 6

M λ = 0 λ = 1
2 λ = 1 λ = 0 λ = 1

2 λ = 1

1 6.06 .10−3 2.54 .10−3 1.22 .10−3 7.52 .10−1 1.14 .10−1 9.57 .10−2

2 8.43 .10−8 5.67 .10−8 4.37 .10−8 5.24 .10−6 5.34 .10−6 2.71 .10−7

3 5.16 .10−10 7.58 .10−10 7.64 .10−10 2.14 .10−8 8.27 .10−8 7.62 .10−9

Table 4: Comparison best errors of Example 4

γ = 1

SCT [Doha, Bhrawy, and Ezz-Eldien (2011)] UWCM
N = 64 m′ = 12

E 1.6 .10−5 5.2 .10−10

γ = 6

E 6.5 .10−5 7.6 .10−9

Example 5. Consider the following linear initial value problem (see, [Bhrawy,
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Exact

Figure 1: Different solutions of Example 4.

Alofi, and Ezz-Eldien (2011); Doha, Bhrawy, Baleanu, and Ezz-Eldien (2013)]):

D2z(t)+ sin t D
1
2 z(t)+ t z(t) = g(t), z(0) = z′(0) = 0, t ∈ [0,1], (45)

where

g(t) = t9− t8 +56 t6−42 t5 + sin t
(

32768
6435

t
15
2 − 2048

429
t

13
2

)
.

The exact solution for (45) is z(t) = t8− t7. In Table, 5 we introduce the maximum
absolute error E resulted from the application of UWCM for the case k = 1,M =
8(m′ = 8) with various choices of λ , while in Table 6, we give a comparison be-
tween the best errors obtained from the application of UWCM with those obtained
by the following two methods

• Quadrature shifted Legendre tau method (Q-SLT) in [Bhrawy, Alofi, and Ezz-
Eldien (2011)].

• Quadrature shifted Jacobi tau method (Q-SJT) in [Doha, Bhrawy, Baleanu,
and Ezz-Eldien (2013)].

Moreover, in Figure 2, we illustrate the exact and numerical wavelets solutions in
case of k = 1,M = 8 and for various values of λ .

Remark 2. The results of Tables 3 and 5 ensure that the results corresponding to
the first kind of Chebyshev wavelets expansion (in case of λ = 0) are not always
better than the other expansions (see, [Doha and Abd-Elhameed (2005)] and [Light
(1986)]).
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Table 5: Maximum absolute error of Example 5
λ −0.49 −0.25 0.00 0.25 0.50 0.75 1.00

E 5.2 .10−16 2.0 .10−16 3.4 .10−15 5.9 .10−16 4.7 .10−16 1.6 .10−16 1.2 .10−16

Table 6: Comparison between the best errors of Example 5

Method E

UWCM 1.2 .10−16

Q-SLT [Bhrawy, Alofi, and Ezz-Eldien (2011)] 4.5 .10−16

Q-SJT [Doha, Bhrawy, Baleanu, and Ezz-Eldien (2013)] 8.8 .10−16

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.005

0.010

0.020

0.050

x

-
y

HxL

l=0.00

l=0.50

l=1.00

Exact

Figure 2: Different solutions of Example 5

Example 6. Consider the following nonlinear initial value problem (see, [Doha,
Bhrawy, Baleanu, and Ezz-Eldien (2013)]):

aD2.2z(t)+bDα2z(t)+ cDα1z(t)+ e|z(t)|3 = f (t),

z(i)(0) = 0, i = 0,1,2, t ∈ [0,1],
(46)

where

f (t) =
2at0.8

Γ(1.8)
+

2bt3−α2

Γ(4−α2)
+

2ct3−α1

Γ(4−α1)
+

et9

27
.

The exact solution of (46) is z(t) = t3

3 . We apply UWCM to Eq. (46), for the case
corresponding to k = 1, M = 3(m′ = 3) and λ = 1

2 . In this case

z1,3, 1
2
(t) = c0 L̃0(t)+ c1 L̃1(t)+ c2 L̃2(t)+ c3 L̃3(t),
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where L̃i(t) is the well-known shifted Legendre polynomial of degree i on [0,1] and
ci =
√

2ξi c1,i, i = 0,1,2. We solve Eq. (46) for a = b = c = e = 1, α2 = 1.25, α1 =
0.75. (see, [Doha, Bhrawy, Baleanu, and Ezz-Eldien (2013)]). In this case, we have
the following approximations

D2.2z(t)≈ ZT
Ψ

( 1
2 )(t),

D1.25z(t)≈ ZT P0.95
3×3 Ψ

( 1
2 )(t),

D0.75z(t)≈ ZT P1.45
3×3 Ψ

( 1
2 )(t),

z(t)≈ ZT P2.2
3×3Ψ

( 1
2 )(t).

The residual of Eq. (46) is given by

R(t) = ZT
Ψ

( 1
2 )(t)+ZT P0.95

3×3 Ψ
( 1

2 )(t)+ZT P1.45
3×3 Ψ

( 1
2 )(t)+ |ZT P2.2

3×3Ψ
( 1

2 )(t)|3− f (t).

(47)

If Eq. (47) is collocated at the first root of L̃4(t), i.e, at t1 =
35−

√
35(15+2

√
30)

70 , then
we get

(c0−0.86c1 +0.6094c2−0.30014c3)
3 +67.9679c0−72.0141c1

+99.8085c2−174.575c3−0.26967 = 0.
(48)

Moreover, the use of the initial conditions yield

c0− c1 + c2− c3 = 0, (49)

2c1−6c2 +12c3 = 0, (50)

12c2−60c3 = 0. (51)

The system of equations (48)-(51) can be solved to give

c0 =
1
12

, c1 =
3

20
, c2 =

1
12

, c3 =
1
60

,

and consequently

z(t) =
( 1

12
3
20

1
12

1
60

)
1

2 t−1
6 t2−6 t +1

20 t3−30 t2 +12 t−1

=
t3

3
,

which is the exact solution.
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7 Conclusions

In this paper, we have presented a new algorithm for obtaining some numeri-
cal spectral solutions for multi-term fractional-order initial value problems. The
derivation of this algorithm is essentially based on constructing the ultraspherical
wavelets operational matrix of the fractional integration. The convergence and er-
ror analysis of the suggested expansion is carefully investigated. One of the main
advantages of the presented algorithm are its availability for application on both
linear and non linear fractional-order initial value problems. Another advantage of
the developed algorithm is its high accuracy since accurate approximate solutions
can be achieved by using a few number of terms of the ultraspherical wavelets
expansion.

Acknowledgement: The authors would like to thank the anonymous referees for
carefully reading the manuscript and also for their valuable comments which im-
proved the manuscript in its present form.
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