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Finding the Generalized Solitary Wave Solutions within
the (G′/G)-Expansion Method

K. Sayevand1, Yasir Khan2, E. Moradi 3 and M. Fardi4

Abstract: In this study, the solitary wave solutions for third order equal-width
wave-Burgers (EW-Burgers) equation, the second order Bratu and sinh-Bratu type
equations will be discussed. The EW-Burgers equation models the propagation
of nonlinear and dispersive waves with certain dissipative effects and furthermore
the Bratu type problem appears a simplification of the solid fuel ignition model
in thermal combustion theory. Our methodology, is investigated by using (G

′
/G)-

expansion method. The obtained results can be extended to the other models.
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′
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1 Introduction

It is well known that most of the phenomena that appear in physics can be described
by partial differential equations Ebaid (2007), Bekir and Boz (2008), Yan (1996),
Parkes (2010) and Ramos (2006). In this paper, the following problems will be
investigated:

a. Canonical EW-Burgers equation as a special case of the generalized regularized
long-wave (GRLW) equation which can be written as following
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∂ 2u
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+ γ
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) = δ
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∂ t2 +β

∂
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),(x, t)⊆ R2, (1)

where α , γ , δ and β are given non-negative real constants and p ≥ |t|+ 2, is a
constant.
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The equal width wave equation is a model partial differential equation for the sim-
ulation of one-dimensional wave propagation in nonlinear media with dispersion
processes. This equation is an important mathematical model arising in many dif-
ferent physical contexts to describe many phenomena which are simultaneously
involved in nonlinearity, dissipation, dispersion, and instability, especially at the
description of turbulence processes Ebaid (2007).

b. The nonlinear second order Bratu and sinh-Bratu type equations in the following
form
d2u
dx2 +αexp(u)+βexp(−u) = 0, α,β ∈ R. (2)

The The Bratu type problem can be used as the model of thermal reaction process,
chemical reaction theory, radiative heat transfer and nanotechnology to the expan-
sion of universe Wazwaz (2005),Abbasbandy, Hashemi, and Liu (2011) and Boyd
(2011). The solving procedure of this method, by the help of Maple, Matlab, or
any Mathematical package, is of utter simplicity.

Recently, several direct methods such as Exp-function method Bekir and Boz (2008)
and Yan (1996), sine-cosine method Parkes (2010), tanh-coth method Wang, Zhou,
and Li (1996), the homogeneous balance method Wang and Li (2005b), F-expansion
method Wang and Li (2005a) and also wavelet methods Ray and Gupta (2014);
Gupta and Ray (2014) have been proposed to obtain exact solutions of nonlinear
partial differential equations. Using these methods many exact solutions, including
the solitary wave solutions, shock wave solutions and periodic wave solutions are
obtained for some kinds of nonlinear evolution equations.
The application of (G

′
/G)-expansion method to obtain more explicit traveling wave

solutions to many nonlinear differential equations has been developed by many re-
searchers Wang, Zhang, and Li (2008),Zayed and Gepreel (2009)Aslan and Öziş
(2009) and Bekir (2008). The (G

′
/G)-expansion method is based on the assump-

tion that the travelling wave solutions can be expressed by a polynomial in (G
′
/G).

It has been shown that this method is straightforward, concise, basic and effective.
Eq. (1) and Eq. (2) for different values of α,β ,δ ,γ and p are presented in Table
1 and Table 2 respectively. Finally, the paper is organized as follows. In the next
section, the basic (G

′
/G)-expansion method is introduced. Application of G

′
/G-

expansion method to our equations is presented in Section 3. Section 4 ends this
work with a brief conclusion.

2 The basic (G
′
/G)-expansion method

We suppose that the given nonlinear partial differential u(x, t) to be in the form

P(u,ux,ut ,uxx,uxt ,utt , . . .) = 0, (3)
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Table 1: Eq. (1) for different values of α,β ,δ ,γ and p

Equation Condition
First order linear wave β = δ = γ = 0,α 6= 0

First order nonlinear wave α = β = δ = 0,γ 6= 0
One dimensional heat transfer α = β = γ = 0,δ 6= 0

On dimensional linear advection 1̈-diffusion β = γ = 0,α,δ 6= 0
One dimensional nonlinear advection 1̈-diffusion α = β = 0,γ,δ 6= 0

One dimensional nonlinear Burgers α = β = 0,γ,δ 6= 0, p = 2
EW α = δ = 0,γ = 1,β 6= 0, p = 2

RLW α = 1,δ = 0,γ,β 6= 0, p = 2
EW-Burgers α = 0,γ = 1,δ ,β 6= 0, p = 2

Table 2: Eq. (2) for different values of α,β ,δ ,γ and p

Equation Condition
Bratu type α 6= 0,β = 0 or α = 0,β 6= 0

Sinh-Bratu type α =−β 6= 0

where P is a multivariate polynomial in its arguments. In the following, it is ex-
plained the essential steps for implementing (G

′
/G)-expansion method.

Step 1. Taking the change of variable ξ = x−wt, gives u(x, t) = U(ξ ), where
w is a constant parameter to be determined later. Substituting ξ = x−wt into the
Eq. (3) yields an ODE for U(ξ ) of the form

Q(U,U
′
,−wU

′
,U

′′
,−wU

′′
,w2U

′′
, . . .) = 0, (4)

where U ( j) = d jU(ξ )
dξ j . So, if possible, integrate Eq. (4), term by term one or more

times. This introduces one or more constants of integration.

Step 2. Introduce the approach

U(ξ ) =
N

∑
j=0

(
G
′

G
) j, (5)

where G = G(ξ ) satisfies the differential equation

G
′′
+λG

′
+µG = 0, (6)
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here N is a positive integer (to be determined). The b j, j = 0, · · · ,N and λ and µ

are real constants with bN 6= 0, and the prime denotes derivative with respect to ξ .
(G

′
/G) satisfies the differential equation

d(G
′

G )

dξ
=−[µ +λ (G

′
/G)+(G

′
/G)2], (7)

and so,

d
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′
/G)2](

d

(G′

G )
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G
′

G
)+(

G
′
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d
d(G′/G)

) (9)

+[µ +λ (
G
′

G
)+(

G
′

G
)2]2(

d2

d(G′/G)2 ).

Substituting Eq. (5) and (8) and (9) into the ODE from step 1, yields an algebraic
equation in powers of the (G

′
/G). Then, the positive integer N is determined by the

balance of linear and nonlinear terms of the highest order in the resulting algebraic
equation.

Step 3. With N being determined, the coefficients of each power of (G
′
/G) in the

algebraic equation from Step 2 put equal to zero. This yields a system of algebraic
equations involving b j, j = 0, . . . ,N,w and the integration constants. Finally, the
general solution of Eq. (6) is to be substituted into Eq. (5).

3 Application of G
′
/G-expansion method to EW-Burgers equation

To look for travelling wave solutions of Eq. (1), we use the wave transformation
ξ = x−wt and change Eq. (2) into the form of an ODE

−wU
′
+2UU

′−δU
′′
+wβU

′′′
= 0. (10)

Integrating it with respect to ξ and setting the constant of integration to zero, we
obtain

−wU +U2−δU
′
+wβU

′′
= 0. (11)
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Now, we make an approach Eq. (6) for the solution of Eq. (10). Balancing the terms
U2 and U

′′
in Eq. (11), then we get 2N = N+2 which yields the leading term order

N = 2. Therefore, we can write the solution of Eq. (11) in the form

U(ξ ) = b0 +b1(
G
′

G
)+b2(

G
′

G
)2. (12)

Substituting Eq. (12) into Eq. (11), collecting the coefficients of (G
′

G ) j, j = 0, · · · ,4,
and set it to zero we obtain the system of algebraic equations for b0,b1,b2 and w.
Then, solving the system by Mathematica 7., we obtain the following answers

b0 =
6δ µ

λ [β (λ 2−4µ)−1]
, b1 =

6δ

[β (λ 2−4µ)−1]
,

b2 =
6δ

λ [β (λ 2−4µ)−1]
, w =− δ (λ 2−4µ)

λ [β (λ 2−4µ)−1]
,

(13)

b0 =−
δ (2µ +λ 2)

λ [β (λ 2−4µ)+1]
, b1 =−

6δ

[β (λ 2−4µ)+1]
,

b2 =−
6δ

λ [β (λ 2−4µ)+1]
, w =− δ (λ 2−4µ)

λ [β (λ 2−4µ)+1]
,

(14)

where λ and µ are arbitrary constants. Substituting Eqs. (13) and (14) into Eq. (12)
yields

U±(ξ ) =


6δ

λ [β (λ 2−4µ)−1] [µ +λ (G
′

G )+(G
′

G )2],

− 6δ

λ [β (λ 2−4µ)+1] [λ
2 +2µ +λ (G

′

G )+(G
′

G )2],

(15)

where ξ = x− (− δ (λ 2−4µ

λ [β (λ 2−4µ)∓1)t.
Substituting the general solutions of Eq. (6) into Eq. (15) we have three types of
travelling wave solutions of the EW-Burger equation as follows

1. when λ 2−4µ > 0, we have

U1
±(ξ )=


3δ (λ 2−4µ)

2λ [β (λ 2−4µ)−1] [(
c1 sinh 1

2

√
λ 2−4µξ+c2 cosh 1

2

√
λ 2−4µξ

c1 cosh 1
2

√
λ 2−4µξ+c2 sinh 1

2

√
λ 2−4µξ

)2−1],

− 30δ µ

λ [β (λ 2−4µ)+1] −
3δ (λ 2−4µ)

2λ [β (λ 2−4µ)−1] [(
c1 sinh 1

2

√
λ 2−4µξ+c2 cosh 1

2

√
λ 2−4µξ

c1 cosh 1
2

√
λ 2−4µξ+c2 sinh 1

2

√
λ 2−4µξ

)2+3],

(16)
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2. when λ 2−4µ < 0, we have

U2
±(ξ )=


3δ (4µ−λ 2)

2λ [β (4µ−λ 2)+1] [(
−d1 sin 1

2

√
4µ−λ 2ξ+d2 cos 1

2

√
4µ−λ 2ξ

d1 cos 1
2

√
4µ−λ 2ξ+d2 sin 1

2

√
4µ−λ 2ξ

)2−1],

− 30δ µ

λ [1−β (4µ−λ 2)]
− 3δ (4µ−λ 2)

2λ [β (4µ−λ 2)−1][(
−d1 sin 1

2

√
4µ−λ 2ξ+d2 cos 1

2

√
4µ−λ 2ξ

d1 cos 1
2

√
4µ−λ 2ξ+d2 sin 1

2

√
4µ−λ 2ξ

)2+3],

(17)

3. when λ 2−4µ = 0, we have

U3
±(ξ ) =


−6δ

λ
[ 1
(ξ−x0)2 ],

−6δ

λ
[µ +λ 2 + 1

(ξ−x0)2 ],

(18)

where c1,c2 in Eq. (16), d1,d2 in Eq. (17) and x0 in Eq. (18) are arbitrary real
constants.

4 Application of G
′
/G-expansion method to Bratu and sinh-Bratu type equa-

tions

4.1 The Bratu type equations

We first consider the Bratu type equations

d2u(x)
dx2 +αexp(u(x)) = 0. α > 0. (19)

To look for solutions of Eq. (28), we use the wave transformation ξ = kx+ x0 and
change Eq. (28) into the form of an ODE

k2U
′′
+αexp(U(ξ )) = 0. (20)

Using the transformation U(ξ ) = lnv(ξ ), will change Eq. (29) into the ODE in the
form

k2(v
′′
v− (v

′
)2)+αv3 = 0, (21)

where v
′
= dv

dξ
and v

′′
= d2v

dξ 2 . Now, we make an Eq. (6) for the solution of Eq. (17).

Balancing the terms v3 and vv
′′

in Eq. (17), then we get 3N = 2N +2 which yields
the leading term order N = 2. Therefore, we can write the solution of v in the form

v(ξ ) = b0 +b1(
G
′

G
)+b2(

G
′

G
)2, (22)
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substituting Eqs. (8), (9) and (13) into Eq. (12), collecting the coefficients of
(G
′

G ) j, j = 0, . . . ,4, and set it to zero we obtain a system of algebraic equations for
b0,b1,b2 and k, that solving this system by Mathematica 7. gives

b0 =−
2µk2

α
,b1 =−

2λk2

α
,b2 =−

2k2

α
,k = k, (23)

where λ and µ are arbitrary constants. Substituting Eq. (31) into Eq. (12) yields

v(ξ ) =−2k2

α
[µ +λ (

G
′

G
)+(

G
′

G
)2], (24)

where ξ = kx+ x0. Substituting the general solutions of Eq. (5) into Eq. (15) we
have three types of solutions of the Bratu type equations as follows

1. When λ 2−4µ > 0, we have

v(ξ ) =−k2(λ 2−4µ)

2α
[(

c1 sinh 1
2

√
λ 24µξ + c2 cosh 1

2

√
λ 2−4µξ

c1 cosh 1
2

√
λ 2−4µξ + c2 sinh 1

2

√
λ 2−4µξ

)2−1],

(25)

2. When λ 2−4µ < 0, we have

v(ξ ) =
k2(4µ−λ 2)

2α
[(

c1 sin 1
2

√
4µ−λ 2ξ + c2 cos 1

2

√
4µ−λ 2ξ

c1 cos 1
2

√
4µ−λ 2ξ + c2 sin 1

2

√
4µ−λ 2ξ

)2−1],

(26)

3. When λ 2−4µ = 0, we have

v(ξ ) =−2K2

α
(

1
(ξ − x0)2 ), (27)

where ξ = kx+ x0,c1 and c2 in Eqs. (16) and (17), and x0 = − c1
c2

in Eq. (18) are
arbitrary constants. In particular, if we choose c2 6= 0,c1

2 < c2
2 then the solution

Eq. (16) give the solution

v1(ξ ) =−
k2(λ 2−4µ

2α
)sech2(

1
2

√
λ 2−4µξ +ξ0), (28)
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where λ 2−4µ > 0,ξ0 = tanh−1 c1
c2

and solution Eq. (17) give the following solution

v2(ξ ) =−
k2(λ 2−4µ)

2α
csch2(

1
2

√
λ 2−4µξ +ξ1), (29)

where λ 2−4µ < 0,ξ0 = tanh−1 c1
c2

and recall that u(x) =U(ξ ) = ln(v(ξ )), hence
we obtain the following solutions of the Bratu type equations from Eqs. (28) and
(29) as follows, respectively

u1(x) = ln[
k2(λ 2−4µ)

2α
sech2(

1
2

√
λ 2−4µξ +ξ0)], (30)

where λ 2−4µ > 0 and ξ0 = tanh−1 c1
c2

,

u2(x) = ln[−k2(λ 2−4µ)

2α
csch2(

1
2

√
λ 2−4µξ +ξ0)], (31)

where λ 2−4µ < 0,ξ1 = tanh−1 c1
c2

, and another solution from Eq. (28) is as follows:

u3(x) = ln[− 2
α
(

1
x2 )]. (32)
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Figure 1: Approximate solution of Eq. (20) where α =−1 and x ∈ [1,2].

4.2 The sinh-Bratu type equations

We secondly consider sinh-Bratu type equations

d2u(x)
dx2 +αsinh(u(x)) = 0. α > 0. (33)
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Figure 2: Approximate solution of Eq. (20) where α =−1.5 and x ∈ [1,2].

In order to apply the (G
′
/G) method, we use the transformation ξ = kx+ x0 and

change Eq. (33) into the form

k2U
′′
+αsinh(U) = 0. (34)

And then we use the transformation U(ξ ) = lnv(ξ ), so that

sinh(U(ξ )) =
v(ξ )− v−1(ξ )

2
,cosh(U(ξ )) =

v(ξ )+ v−1(ξ )

2
, (35)

this transformation will change Eq. (34) into the ODE in the form

2k2(v
′′
v− (v

′
)2)+α(v3− v) = 0, (36)

where v
′
= dv

dξ
,v
′′
= d2v

dξ 2 . Now, we make an Eq. (6) for the solution of Eq. (36). By

balancing the terms v3 and vv
′′

in Eq. (36), then we get 3N = 2N +2 which yields
the leading term order N = 2. Therefore, we can write the solution of v in the form

v(ξ ) = b0 +b1(
G
′

G
)+b2(

G
′

G
)2, (37)

substituting Eqs. (8), (9) and (37) into Eq. (36), collecting the coefficients of
(G
′

G ) j, j = 0, . . . ,4, and set it to zero we obtain a system of algebraic equations for
b0,b1,b2 and k. By solving the resulted system with the help of Mathematca 7. we
have the following sets of solutions

b0 =±
λ 2

λ 2−4µ
,b1 =±

4λ

λ 2−4µ
,b2 =±

4
λ 2−4µ

,k =±
√

α

|λ 2−4µ|
, (38)
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where λ , µ and λ 2 6= 4µ are arbitrary constants. Substituting Eq. (38) into Eq. (37)
yields

v(ξ ) =± 1
λ 2−4µ

λ
2 +4λ (

G
′

G
)+4(

G
′

G
)2], (39)

where ξ = kx+x0. By substituting the general solutions of Eq. (5) into Eq. (39) we
have three types of solutions of the sinh-Bratu type equations as follows

1. When λ 2−4µ > 0, we have

v1
±(ξ ) =±[(

c1 sinh 1
2

√
λ 2−4µξ + c2 cosh 1

2

√
λ 2−4µξ

c1 cosh 1
2

√
λ 2−4µξ + c2 sinh 1

2

√
λ 2−4µξ

)2], (40)

where ξ =±
√
∓ α

λ 2−4µ
x+ x0,c1 and c2 are arbitrary constants.

2. When λ 2−4µ < 0, we have

v2
∓(ξ ) =∓[(

−c1 sin 1
2

√
4µ−λ 2ξ + c2 cos 1

2

√
4µ−λ 2ξ

c1 cos 1
2

√
4µ−λ 2ξ + c2 sin 1

2

√
4µ−λ 2ξ

)2], (41)

where ξ =±
√
± α

λ 2−4µ
x+ x0, c1 and c2 are arbitrary constants.

In particular, if we choose c2 6= 0,c1
2 < c2

2 then the solutions Eqs. (40) and (41)
give the following solutions

v1
±(ξ ) =±tanh2(

1
2

√
λ 2−4µξ +ξ0), (42)

where λ 2−4µ > 0,ξ0 = tanh−1( c1
c2
) and

v2
∓(ξ ) =∓coth2(

1
2

√
4µ−λ 2ξ +ξ1), (43)

where λ 2−4µ < 0,ξ1 = tan−1( c1
c2
) and recall that u(x) =U(ξ ) = ln(v(ξ )), hence

we obtain the some solutions of the sinh-Bratu type equations from Eqs. (42) and
(43) as follows, respectively

u1
±(x) = Arccos[±1

2
(tanh2(

1
2

√
λ 2−4µξ +ξ0))]+(coth2(

1
2

√
λ 2−4µξ +ξ0)),

(44)
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where λ 2−4µ > 0,ξ0 = tanh−1( c1
c2
),

u2
∓(x) = Arccos[∓1

2
(tan2(

1
2

√
4µ−λ 2ξ +ξ1))]+(cot2(

1
2

√
4µ−λ 2ξ +ξ1)),

(45)

where λ 2−4µ < 0,ξ1 = tan−1( c1
c2
).

3.5 4.0 4.5 5.0 5.5 6.0

0.66

0.67

0.68

0.69

Figure 3: Approximate solution of Eq. (33) where µ = 0.125,λ = 0.7,k = 1,x0 =
0,ξ0 = 1 and x ∈ [π,2π]

4.0 4.5 5.0 5.5 6.0

0.71

0.72

0.73

Figure 4: Approximate solution of Eq. (33) where µ = 0.125,λ = 0.7,k = 1,x0 =
0,ξ1 = 1 and x ∈ [π,2π].

Remark : The computations associated in Figures [1-4] were performed by using
Mathematica 7.
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5 Conclusions

In this paper, we apply the (G
′
/G)-expansion method to third order EW-Burgers

equation and Bratu and sinh-Bratu type equations. Our results show that the (G
′
/G)-

expansion method is entirely efficient and well suited for finding exact solutions of
these equation. The advantage of this method over other methods is that we can
obtain the exact solution by using a simple computer program.

References

Abbasbandy, S.; Hashemi, M.; Liu, C.-S. (2011): The lie-group shooting
method for solving the bratu equation. Communications in Nonlinear Science
and Numerical Simulation, vol. 16, no. 11, pp. 4238–4249.
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