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A Second-order Time-marching Procedure with Enhanced
Accuracy

Delfim Soares Jr.1

Abstract: In this work, a second-order time-marching procedure for dynamics is
discussed, in which enhanced accuracy is enabled. The new technique is uncon-
ditionally stable (according to its parameter selection), it has no amplitude decay
or overshooting, and it provides reduced period elongation errors. The method
is based on displacement-velocity relations, requiring no computation of acceler-
ations. It is efficient, simple and very easy to implement. Numerical results are
presented along the paper, illustrating the good performance of the proposed tech-
nique. As it is described here, the new method has no drawbacks when compared
to the Trapezoidal Rule (TR), which is one of the most popular time-marching
techniques in dynamics, being always more accurate than the TR.

Keywords: Time Integration Methods, Trapezoidal Rule, Central Difference Me-
thod, Stability, Accuracy, Period Elongation Errors.

1 Introduction

Time dependent hyperbolic equations have numerous applications in various bran-
ches of science and in practical engineering design. Since it is usually very difficult
to obtain analytical transient responses for these equations, numerical techniques
must be applied to find approximate solutions, and step-by-step time integration
algorithms are routinely employed when dynamic problems are focused, because
of their various inherent advantages to solve a great deal of initial value problems.

The literature reports many classical explicit [Tamma and Namburu (1990); Hul-
bert and Chung (1996) etc.] and implicit [Newmark (1959); Chung and Hulbert
(1993) etc.] algorithms for time-marching analysis (for a comprehensive review,
see Tamma et al., 2000). Explicit procedures are usually preferable because of their
lower computational effort, being the restrictions due to stability conditions their
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main disadvantage. Implicit approaches, on the other hand, can be settled uncondi-
tionally stable, being characterized, however, by higher computational costs. Many
procedures can be employed to improve stability and accuracy of time-integration
algorithms, such as subcycling techniques [Smolinski (1996); Soares et al. (2007);
Casadei and Halleux (2009)], high-order accurate schemes [Fung (2002); Mancussi
and Ubertini (2003)], automatic time step control [Hulbert and Jang (1995); Rossi
et al. (2014)] etc. As a matter of fact, a lot of research is continuously realized
on this field and several time-marching techniques are available nowadays for dy-
namic and wave propagation analyses [Bathe (2007); Chang (2010); Soares (2011,
2015); Elgohary et al. (2014a,b) etc.].

Amongst explicit time integration methods, the nearly universal choice is the Cen-
tral Difference Method (CD). Amongst implicit approaches, the Trapezoidal Rule
(TR), or Constant Average Acceleration Method, is probably the most widely used
technique. More elaborate schemes have been proposed, which require larger im-
plicit systems or more implicit systems of the size of the stiffness and mass to be
solved at each step, and improved properties have been obtained. However, these
techniques require considerable higher storage and computational effort and thus
have not been widely adopted. As a matter of fact, it can be considered that for
a method to be competitive, no more than one set of standard implicit equations
should have to be solved at each time step [Hughes (2000)].

In this work, an improved second-order time-marching technique is proposed. The
methodology is based on an intermediate behavior between the TR and the CD, in
a way that unconditional stability can be always ensured and reduced period elon-
gation errors are obtained. Thus, enhanced accuracy is provided by the new tech-
nique. Moreover, the proposed method is only based on single-step displacements-
velocities relations, being truly self-starting and very simple to implement. Along
the paper, numerical results are presented, illustrating the good performance of the
method.

2 Governing equations and time integration strategy

The governing system of equations describing a linear dynamic model is given by
[Clough and Penzien (1993)]:

MÜ(t)+CU̇(t)+KU(t) = F(t) (1)

where M, C and K are mass, damping and stiffness matrices, respectively, F(t)
stands for the force vector and U(t), U̇(t) and Ü(t) are displacement, velocity and
acceleration vectors, respectively. The initial conditions of the model are given by:

U0 = U(0) (2a)
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U̇0 = U̇(0) (2b)

where U0 and U̇0 stand for initial displacement and velocity vectors, respectively.

By time integrating the equation of motion (1), considering a time-step ∆t, one may
write:

M
∫ t+ ∆t

2

t− ∆t
2

Ü(τ)dτ +C
∫ t+ ∆t

2

t− ∆t
2

U̇(τ)dτ +K
∫ t+ ∆t

2

t− ∆t
2

U(τ)dτ =
∫ t+ ∆t

2

t− ∆t
2

F(τ)dτ (3)

which may be viewed as a simple weighted residual form of the governing equation.

The integrals in the l.h.s. of equation (3) may be approximated by:

ℑ
n+ 1

2
Ü =

∫ t+ ∆t
2

t− ∆t
2

Ü(τ)dτ ≈ U̇n+1− U̇n (4a)

ℑ
n+ 1

2
U̇ =

∫ t+ ∆t
2

t− ∆t
2

U̇(τ)dτ ≈ Un+1−Un (4b)

ℑ
n+ 1

2
U =

∫ t+ ∆t
2

t− ∆t
2

U(τ)dτ ≈ ∆t Un + 1
2(1−α)∆t2U̇n + 1

2 α ∆t2U̇n+1 (4c)

where Un, U̇n and Ün are the approximations of U(tn), U̇(tn) and Ü(tn), respec-
tively, tn = n∆t, and α is an integration parameter for the method. The displacement
Un+1 can be defined by the following simple finite difference expression:

Un+1 = Un + 1
2 ∆t U̇n + 1

2 ∆t U̇n+1 (5)

Taking into account approximations (4) and (5), equation (3) may be rewritten as
the following recursive relation:

(M+ 1
2 ∆t C+ 1

2 α ∆t2K) U̇n+1=ℑ
n+ 1

2
F +MU̇n−1

2 ∆t CU̇n−K(∆t Un+ 1
2(1−α)∆t2U̇n)

(6)

where ℑ
n+ 1

2
F stands for the integral in the r.h.s. of equation (3).

Equation (6) enables to compute the velocities U̇n+1, and equation (5) may then
be used to compute the displacements at the current time step. It is important to
highlight that the method described by equations (5) and (6) is a single-step method
based only on velocities and displacements, being no computation of accelerations
required. Thus, the first positive feature of the method is that it is truly self-starting,
eliminating any kind of cumbersome initial procedure, such as the computation of
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initial accelerations (which usually requires an extra system of equations to be dealt
with) and/or the computation of multistep initial values.

As it is discussed in the next section, the present formulation is second-order ac-
curate. For α = 1/2, the TR is reproduced. Thus, an unconditionally stable tech-
nique is obtained, without amplitude decay and with positive period elongation. For
α = 0, the basic features of the CD are reproduced. Thus, a conditionally stable
technique arises, which enables no amplitude decay and produces negative period
elongation (once its critical limit is not reached). For 0 < α < 1/2, the method is
conditionally stable (with its critical limit, which is function of α , always higher
than that of the CD), it has no amplitude decay and its period elongation errors
are intermediary between the TR and the CD. Thus, if stability is ensured, more
accurate results may be obtained by 0 < α < 1/2 than by α = 0 or α = 1/2, since
period elongation errors are reduced.

The strategy here is to select 0 < α < 1/2 in a way that stability is always ensured.
Then, an unconditionally stable technique can be obtained, which is more accurate
than the TR due to reduced period elongation errors. In order to do so, the following
expression for α may be adopted:

α =
1
2

tanh(aω ∆t) (7)

where a stands as a control parameter. Considering a proper selection of a, the
method is unconditionally stable. As it is described in the next section, this proper
selection is given by a≥ ac, where ac = 0.24567002 (rounded value) is the critical
value of a. One should observe that the TR is reproduced by a = ∞; thus, the
present formulation should always provide more accurate results than the TR, once
a≥ ac is selected.

In equation (7), ω represents the maximal natural frequency of the model. This
value does not need to be precisely computed, since a can always be selected a
bit higher than its critical value (a = 0.25 is recommended here). Thus, ω can be
simply estimated, so that the efficiency of the technique is not compromised.

3 Properties of the method

In this section, the single-degree-of-freedom (SDOF) problem is considered in or-
der to discuss the properties (i.e., stability, accuracy etc.) of the proposed method-
ology, following standard guidelines [Hughes (2000); Bathe (1996)]. The equation
of motion for the SDOF model can be written as:

ü(t)+2ξ wu̇(t)+w2u(t) = f (t) (8)
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where ξ is the damping ratio and w is the natural frequency of the model. Consid-
ering equation (8) and the proposed methodology, the following recursive relation-
ship can be written:

[
un+1

u̇n+1

]
=

[
A11 A12
A21 A22

] [
un

u̇n

]
+

[
L11 L12 L13
L21 L22 L23

]  f n

f n+ 1
2

f n+1

=A
[

un

u̇n

]
+L

 f n

f n+ 1
2

f n+1


(9)

where A and L stand for the amplification and the load operator matrices, respec-
tively.

In the new procedure, the amplification matrix A is given by equations (10):

A11 = [1+ξ w∆t + 1
2(α−1)w2∆t2]/A0 (10a)

A12 = [1+ 1
4(2α−1)w2∆t2]∆t/A0 (10b)

A21 = [−w2
∆t2] (1/∆t)/A0 (10c)

A22 = [1−ξ w∆t + 1
2 α w2∆t2]/A0 (10d)

where A0 = 1+ ξ w∆t + 1
2 α w2∆t2; or by equations (11), if relation (7) is consid-

ered:

A11 = [1+ξ w∆t + 1
4(tanh(aω∆t)−2)w2∆t2]/A0 (11a)

A12 = [1+ 1
4(tanh(aω∆t)−1)w2∆t2]∆t/A0 (11b)

A21 = [−w2
∆t2] (1/∆t)/A0 (11c)

A22 = [1−ξ w∆t + 1
4 tanh(aω∆t)w2∆t2]/A0 (11d)

where A0 = 1+ξ w∆t + 1
4 tanh(aω∆t)w2∆t2.

The load operator matrix L may be given by:

L11 =
1
2 β1 ∆t2/A0 (12a)

L12 =
1
2 β2 ∆t2/A0 (12b)

L13 =
1
2 β3 ∆t2/A0 (12c)

L21 = β1 ∆t/A0 (12d)

L22 = β2 ∆t/A0 (12e)

L23 = β3 ∆t/A0 (12f)
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where β 1, β 2 and β 3 are integration parameters. These parameters can be selected,
for instance, as β 1 = β 3 = 1/4 and β 2 = 1/2, if the trapezoidal rule is followed (in this
case, the term ’trapezoidal rule’ stands for the quadrature rule for approximating
integrals, and not for the time marching procedure), or as β 1 = β 3 = 1/6 and β 2
= 2/3, if the Simpson rule is followed. If linear behaviour is assumed for the load
within ∆t, the load integration parameters can be simply selected as β 1 = β 3 = 1/2
and β 2 = 0.

By analyzing the amplification and load operator matrices, one can notice that the
TR can be reproduced by adopting α= 1/2 (or a = ∞) and β 1 = β 3 = 1/2 and β 2 =
0. Thus, the new technique allows to select more accurate load operators than the
TR, if necessary.

3.1 Convergence

The expansion of the amplification matrix (11) in Taylor’s series is given by:

A11 = 1− 1
2 w2∆t2 + 1

2 ξ w3∆t3 +O(∆t4) (13a)

A12 = ∆t−ξ w∆t2− 1
4(1−4ξ 2)w2∆t3 +O(∆t4) (13b)

A21 = −w2
∆t +ξ w3

∆t2−ξ
2 w4

∆t3 +O(∆t4) (13c)

A22 = 1−2ξ w∆t− 1
2(1−4ξ 2)w2∆t2 + 1

2(ξ −4ξ 3)w3∆t3 +O(∆t4) (13d)

By comparing it with the expansion of the analytical amplification matrix, which is
given by:

Aa
11 = 1− 1

2 w2∆t2 + 1
3 ξ w3∆t3 +O(∆t4) (14a)

Aa
12 = ∆t−ξ w∆t2− 1

6(1−4ξ 2)w2∆t3 +O(∆t4) (14b)

Aa
21 = −w2

∆t +ξ w3
∆t2 + 1

6(1−4ξ 2)w4∆t3 +O(∆t4) (14c)

Aa
22 = 1−2ξ w∆t− 1

2(1−4ξ 2)w2∆t2 + 2
3(ξ −2ξ 3)w3∆t3 +O(∆t4) (14d)

one may observe that the method is second-order accurate.

3.2 Stability

The stability condition requires that matrix A does not amplify errors as the time-
step algorithm advances on time. The conditions required to assure stability are
[Hughes (2000); Bathe (1996)]: (i) ρ(A)≤ 1; (ii) eigenvalues of A of multiplicity
greater than one are strictly less than one in modulus. In item (i), ρ(A) is the
spectral radius of matrix A, which represents the maximal absolute magnitude of
the eigenvalues of A.
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The eigenvalues of the amplification matrix of the method in focus are given by
equation (15), where A1 is half the trace of matrix A and A2 is the determinant of
A, as defined by equations (16):

λ1,2(A) = A1± (A2
1−A2)

1/2 (15)

A1 = [1+ 1
2(α−1)Ω2]/A0 (16a)

A2 = [1−ξ Ω+ 1
2(1+α)Ω2]/A0 (16b)

where Ω = w∆t is the sampling frequency of the model.

By analyzing the spectral radius of matrix A, it can be established that the method
is unconditionally stable for α ≥ 1/2. For α < 1/2, the method is conditionally
stable, and its critical sampling frequency is given by:

Ωc = (1
4 −

1
2 α)−1/2 (17)

or, taking into account expression (7), by:

Ωc =
1
a RootO f (Ω2−2e2Ωa2−2a2) (18)

where the function RootOf indicates the root of its argument.

The a value at which Ωc = Ω (and thus the method is stable) is given by:

aΩc =
1
Ω

tanh−1(1−4/Ω2) (19)

which has a maximal value of:

ac = max(aΩc) = 0.24567002... (20)

Thus, for a≥ ac one has Ωc ≥Ω, and the method is always stable.

3.3 Accuracy

Taking into account the homogeneous SDOF model equation, velocities may be
eliminated by repeated use of (9) to obtain a difference equation in terms of dis-
placements, as follows:

un+1−2A1un +A2un−1 = 0 (21)

Comparison of (21) with the characteristic equation of A indicates that the solution
has the representation:

un = c1λ
n
1 + c2λ

n
2 (22)
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where the coefficients c1 and c2 are determined by the initial data and it is consid-
ered that λ1 6= λ2. When λ1 and λ2 are complex conjugate, solution (22) can be
compared to the undercritically-damped model solution

ūn = exp(−ξ̄ w̄tn)[c̄1 cos(w̄Dtn)+ c̄2 sin(w̄Dtn)] (23)

allowing to establish error measures.

Considering λ1,2 = A±Bi, c1,2 = cr ± cii and c̄1,2 = c̄r ± c̄ii, the comparison of
equations (22) and (23) provides:

(cr± cii)(A±Bi)n = (c̄r± c̄ii)exp[(−ξ̄ w̄± w̄Di)∆t n] (24)

where:

cr = c̄r =
1
2 u0 (25a)

ci =
1
2 [(A−A11)/B]u0− 1

2 [A12/B] u̇0 (25b)

c̄i =
1
2 [−ξ w/wD]u0− 1

2 [1/wD] u̇0 (25c)

By adopting the polar forms A±Bi = ρ exp(±φ i), cr± cii = r exp(±θ i) and c̄r±
c̄ii = r̄ exp(±θ̄ i), equation (24) can be rewritten as:

(r/r̄)ρn exp[(±φn±θ ∓ θ̄ )i ] = exp(−ξ̄ w̄∆t n)exp[(±w̄D∆t n)i ] (26)

From which one may define:

w̄D∆t = φ +(θ − θ̄)/n (27a)

ξ̄ w̄∆t =− ln(ρ) (27b)

A f = (r/r̄)1/n (27c)

which allows to compute period elongation, amplitude decay and amplitude factor
error measures, respectively.

In Fig. 1, spectral radii, period elongation and amplitude decay measures are de-
picted, considering several values for a. In the present method, there is no over-
shooting nor amplitude decay, and A f = 1 and ξ̄ = 0 are always obtained for a≥ ac.
In Fig. 2, a closer look at period elongation errors is depicted, taking into account
the proposed technique (with a = 0.25), the TR, the CD and the two-step Bathe
method [Bathe (2007); Bathe and Baig (2005)]. In Fig. 3, the relative errors (com-
puted in the discrete L2 norm) of an undamped unitary initial displacement model
(i.e., u0 = 1 and u̇0 = 0) are depicted (in this case, the analytical solution is given
by u(t) = cos(wt)). As one can observe in the figures, the new technique may
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considerably improve the accuracy of the analysis, reducing period elongation and
providing overall reduced errors (one should keep in mind that the TR and the basic
features of the CD are reproduced by a = ∞ and a = 0, respectively). As it is illus-
trated in Fig. 2, the proposed single-step technique can even provide more accurate
results than some multistep techniques.
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Fig.1 – Spectral radius, period elongation and amplitude decay: (a) conditionally stable 

( ...24567002.0a ); (b) unconditionally stable ( ...24567002.0a ). 

Figure 1: Spectral radius, period elongation and amplitude decay: (a) conditionally
stable (a < 0.24567002...); (b) unconditionally stable (a≥ 0.24567002...).
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Fig.2 – Period elongation considering different numerical methods. 

 

Figure 2: Period elongation considering different numerical methods.
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Fig.3 – Error vs. discretization: (a) conditionally stable ( ...24567002.0a );  

(b) unconditionally stable ( ...24567002.0a ). 

Figure 3: Error vs. discretization: (a) conditionally stable (a < 0.24567002...); (b)
unconditionally stable (a≥ 0.24567002...).

4 Numerical examples

In this section, three numerical examples are presented to further illustrate the su-
perior accuracy of the proposed technique.

In the first application, the axial displacements of an elastic rod are analyzed,
whereas, in the second application, the transversal motion of a square membrane is
studied. Both the rod and the membrane models are spatially discretized by linear
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triangular finite elements and, for all the analyses that follow, β 1 = β 3 = 1/2 and β 2
= 0 are adopted. Unconditionally stable procedures are focused here, and a = 0.25
is always considered. These two examples aim to illustrate the superior accuracy
of the new technique taking into account its amplification matrix. The obtained
results are compared to those obtained by the TR and by the Bathe method [Bathe
(2007); Bathe and Baig (2005)].

In the third application the possibility of enhanced accuracy due to a better load
operator selection (which is enabled by the new method) is illustrated. In this case,
explicit conditional stable techniques (a = 0) are focused, and results are compared
to those obtained by the CD.

In the next two applications, a measure of the adopted time-step length is computed
according to the following expression:

ϕ = c∆t/` (28)

where cis the (primary) wave velocity and ` is the characteristic finite element
length.

4.1 Rectangular rod

The first example is that of a rectangular body behaving like a one-dimensional rod
[Soares and Mansur (2007)]. It is fixed at one end and subjected to a Heaviside type
forcing function acting at its opposite end. A sketch of the model is shown in Fig.
4(a). The material properties of the rod are: ν = 0 (Poisson’s ratio); E = 100N/m2

(Young’s modulus); and ρ = 1.0kg/m3 (mass density). The geometry of the model
is defined by L = 1m. As depicted in Fig. 4(b), 320 finite elements are employed
to spatially discretize the model. Regarding the temporal discretization, different
time-steps are adopted, uniformly varying from ∆t = 6.25 · 10−4 s (ϕ = 0.25) to
∆t = 6.25 ·10−3 s (ϕ = 2.5).

For this model, analytical answers for the axial displacements are available, and
they are expressed as:

u(x, t) =
8PL
Eπ2

∞

∑
n=1

(−1)n−1

(2n−1)2 sin
(

2n−1
2L

πx
)(

1− cos
(

2n−1
2L

πct
))

(29)

where P stands for the amplitude of the applied load.

In spite of its geometrical and load simplicity, the present application represents
a rather complex time-domain numerical computation, since successive reflections
occur at the model extremities. These systematic multiple reflections can empha-
size some numerical aspects, such as numerical instabilities and/or errors amplifi-
cations. In Fig. 5(a), relative error results (L2norm) for the computed displacements
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Fig.4 – Sketch of the rod (a) and adopted finite element mesh (b). 

 

Figure 4: Sketch of the rod (a) and adopted finite element mesh (b).

at the middle of the rod are depicted, taking into account the proposed technique
and the TR. As one can observe, considerably better accuracy is obtained by the
proposed formulation. For instance, the computed error related to the new method
and ∆t = 1.875 · 10−3 s (ϕ = 0.75), is close to that obtained by the TR for a time-
step three times smaller (ϕ = 0.25). In Fig. 5(b), relative error results are presented
taking into account the proposed technique and the Bathe method. Since the Bathe
method is a two-step time marching procedure, in order to present results related to
equivalent computational demands, the errors of the proposed technique depicted in
Fig. 5(b) are evaluated taking into account two applications of the method within
a time-step. As one can observe in Fig. 5(b), the new technique provides much
more accurate results than the Bathe method for the same computational effort.
In fact, for the present application, even if a single-step approach is considered,
regarding the proposed technique, it still provides more accurate results than the
two-step Bathe method for ϕ ≤ 1, as it is illustrated in Fig. 5. Thus, the proposed
technique not only is very accurate, but also quite efficient, demanding very low
computational effort to provide very good results.

4.2 Square membrane

The subject of this investigation is the transverse motion of a square membrane
that has initial velocity prescribed over its central domain (grey area in Fig. 6(a))
and null displacements prescribed over its entire boundary [Mansur et al. (2004)].
The physical properties of the membrane are c = 10m/s (wave velocity) and ρ =
1.0kg/m3 (mass density). The geometry of the model is defined by L = 10m and
l = 4m. The symmetry of the membrane is considered and just 1/4 of it is dis-
cretized. The adopted finite element mesh is depicted in Fig. 6(b) (1250 elements
are employed in the mesh).
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Fig.5 – Error vs. time discretization for the rod:  

(a) single-step approach; (b) two-step approach. 

Figure 5: Error vs. time discretization for the rod: (a) single-step approach; (b)
two-step approach.
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Fig.6 – Sketch of the membrane (a) and adopted finite element mesh (b). 

 

Figure 6: Sketch of the membrane (a) and adopted finite element mesh (b).

For this model, analytical answers for the transversal displacements are available,
and they are expressed as:

u(x,y, t)=
4V L
cπ3

∞

∑
m=1

∞

∑
n=1

Cmn

mn(m2 +n2)1/2 sin
(m

L
πx
)
sin
(n

L
πy
)
sin

(
(m2 +n2)1/2

L
πct

)
(30)

where Cmn = [cos(0.7π m)− cos(0.3π m)][cos(0.7π n)− cos(0.3π n)] and V stands
for the amplitude of the applied initial velocity.

In Fig. 7, relative error results for the computed displacements at the middle of
the membrane are depicted, taking into account different temporal discretizations
(with ϕ varying uniformly from 0.25 to 2.5). Once again, as expected, the proposed
technique provides better accuracy than the TR. In fact, as demonstrated in section
3, the proposed technique will always provide an enhanced performance.

In Fig. 8, results computed along the discretized membrane are depicted, taking
into account 9 selected time instants (one should keep in mind that a relative poor
spatial discretization is being considered here). As it can be observed, the wave
propagation evolution becomes quite complex in the present application, with suc-
cessive reflections and superposition of wave fronts taking place.
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Fig.7 – Error vs. time discretization for the membrane:  

(a) single-step approach; (b) two-step approach. 

 

 

Figure 7: Error vs. time discretization for the membrane: (a) single-step approach;
(b) two-step approach.
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Fig.8 – Computed fields at different instants of time, considering ∆t = 0.02s (φ =1):  

(a) t = 0.22s; (b) t = 0.42s; (c) t = 0.62s; (d) t = 0.82s; (e) t = 1.02s;  

(f) t = 1.22s; (g) t = 1.42s; (h) t = 1.62s; (i) t = 1.82s. 

Figure 8: Computed fields at different instants of time, considering ∆t = 0.02s (φ
=1): (a) t = 0.22s; (b) t = 0.42s; (c) t = 0.62s; (d) t = 0.82s; (e) t = 1.02s; (f) t =
1.22s; (g) t = 1.42s; (h) t = 1.62s; (i) t = 1.82s.

4.3 Mass-spring model

In order to completely discuss the effectiveness of the new technique, it is also im-
portant to analyze the performance of its load operator matrix. In order to do so,
consider an undamped SDOF model, with w = 2π , submitted to a load defined by
f (t) = sin(t). For this model, displacement results are depicted in Fig. 9, consider-
ing the simplest load operator matrix discussed in section 3, i.e., β 1= β 3 = 1/2 and
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Fig.9 – Time history results for the loaded mass-spring model considering:  

(a) st 3.0 ; (b) st 318.0 . 

  

 

 

Figure 9: Time history results for the loaded mass-spring model considering: (a)
∆t = 0.3s; (b) ∆t = 0.318s.

β 2= 0. Results are computed considering explicit conditionally stable techniques
(i.e., the new technique with a = 0 and the CD) and time-steps close to their critical
value (i.e., ∆tcrit = 1/π). As one can notice, whereas in the CD strong oscillatory
behaviour is observed in the results as the time-steps of the analyses get closer to
their critical value, this oscillatory behaviour is not observed in the new method.
These results illustrate once more the superior performance of the proposed tech-
nique.

Thus, not only the present technique is more accurate than the TR if implicit anal-
yses are focused (in this case, a = 0.25 is suggested), but also it may be more
accurate than the CD if explicit analyses (a = 0) are required.

5 Conclusions

In this work, a second-order time-marching procedure with enhanced accuracy is
presented. The technique is based on selecting an α parameter lower than 1/2
(which characterizes the TR) and in a way that stability may be always ensured.
Thus, the main features of the TR are retained (e.g., unconditional stability, no
amplitude decay, no overshooting etc.) whereas accuracy is always improved, due
to the reduction of period elongation errors (and due to an eventual selection of
more accurate load operators, which is allowed by the new technique).

The new procedure is simple and easy to implement. It is efficient and, as the TR,
requires no more than one set of implicit equations to be solved at each time step.
Moreover, as described in section 2, the technique is truly self-starting, requiring
no initial procedures at all. Thus, the proposed method is very competitive: it has
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no drawbacks compared to the TR (which is one of the most popular time-marching
techniques), and it provides superior accuracy. In sections 3 and 4, numerical re-
sults are presented, illustrating the good performance of the methodology. Fig. 1(b)
illustrates that the method is unconditionally stable, it introduces no amplitude de-
cay and it always provides reduced period elongation errors, in comparison to the
TR.

If explicit analyses are required, the new technique can also be more accurate than
the CD (another extremely popular second-order time-marching technique), as it is
illustrated in the third example. In this case, both methodologies are conditionally
stable and have the same critical time-step value. Thus, the main features of the CD
are retained, with enhanced accuracy being enabled due to richer load operators.
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