A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position

Farzad Ebrahimi^{1,2} and Erfan Salari¹

Abstract: In this paper, a semi-analytical method is presented for free vibration and buckling analysis of functionally graded (FG) size-dependent nanobeams based on the physical neutral axis position. It is the first time that a semi-analytical differential transform method (DTM) solution is developed for the FG nanobeams vibration and buckling analysis. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form. The physical neutral axis position for mentioned FG nanobeams is determined. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying DTM. It is demonstrated that the DTM has high precision and computational efficiency in the vibration analysis of FG nanobeams. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as neutral axis position, small scale effects, the material distribution profile, mode number, thickness ratio and boundary conditions on the normalized natural frequencies and dimensionless buckling load of the FG nanobeams in detail. It is explicitly shown that the vibration and buckling behaviour of a FG nanobeams is significantly influenced by these effects.

Keywords: Buckling, Vibration, Functionally graded nanobeam, Neutral axis, Differential transformation method, Nonlocal elasticity.

¹ Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran.

² Corresponding author. E-mail: febrahimy@eng.ikiu.ac.ir

1 Introduction

Functionally graded materials (FGMs) are composite materials with inhomogeneous micromechanical structure and are generally composed of two different parts such as ceramic and metal in which the material properties changes smoothly between two surfaces. This kind of material as a novel generation of composites of microscopical heterogeneity are achieved by controlling the volume fractions, microstructure, porosity, etc. of the material constituents during manufacturing, resulting in spatial gradient of macroscopic material properties of mechanical strength and thermal conductivity [Ebrahimi & Rastgoo (2008a, b)]. As a result, in comparison with traditional composites, FGMs possess various advantages, for instance, ensuring smooth transition of stress distributions, minimization or elimination of stress concentration, and increased bonding strength along the interface of two dissimilar materials. Therefore, FGMs have received wide applications in modern industries including aerospace, mechanical, electronics, optics, chemical, biomedical, nuclear and civil engineering to name a few during the past two decades. Motivated by these engineering applications, FGMs have also attracted intensive research interests, which were mainly focused on their static, dynamic and vibration characteristics of FG structures [Ebrahimi et al. (2009a, b)].

Recently there has been growing interest for application of nonlocal continuum mechanics especially in the field of fracture mechanics, dislocation mechanics and micro/nano technologies. Structural elements such as beams, plates, and membranes in micro or nanolength scale are commonly used as components in micro/nano electromechanical systems (MEMS/NEMS). Therefore understanding the mechanical and physical properties of nanostructures is necessary for its practical applications. At nanolength scales, size effects often become prominent, which cause an increasing interest in the general area of nanotechnology. The classical continuum mechanics is unable to account for the size effects. Therefore, we need to consider the small length scales associated with nanostructures such as lattice spacing between individual atoms, surface properties, grain size, etc. Nonlocal elasticity theory introduced by Eringen accounts for the small-scale effects arising at the nanoscale level. It has been extensively applied to analyze the bending, buckling, vibration and wave propagation of beam-like elements in nanomechanical devices. Unlike the constitutive equation in classical elasticity, Eringen's nonlocal elasticity theory states that the stress at a point in a body depends not only on the strain at that point, but also on those at all points of the body. This observation is in accordance with atomic theory of the lattice dynamics and experimental observation of the phonon dispersion.

Nanoscale engineering materials have significant mechanical, electrical and thermal performances that are superior to the conventional structural materials. They have attracted great interest in modern science and technology after the invention of carbon nanotubes (CNTs) by Iijima (1991). For example, in micro/nano electromechanical systems; nanostructures have been used in many areas including communications, machinery, information technology and biotechnology technologies. In recent years, nanobeams and CNTs hold a wide variety of potential applications [Zhang et al. (2004); Wang (2005); Wang and Varadan (2006)] such as sensors, actuators, transistors, probes, and resonators in NEMSs. So far, three main methods were provided to study the mechanical behaviors of nanostructures: atomistic model [Baughman et al. (2002)], semi-continuum and continuum models [Wang and Cai (2006)]. However, both atomistic and semi-continuum models are computationally expensive and are not suitable for analyzing large scale systems. In other words, since conducting experiments at the nanoscale is a daunting task, and atomistic modeling is restricted to small-scale systems owing to computer resource limitations, continuum mechanics offers an easy and useful tool for the analysis of CNTs. Therefore, there are considerable efforts made to develop and calibrate continuum structural models for CNTs analysis. Moreover due to the inherent size effects, at nanoscale, the mechanical characteristics of nanostructures are often significantly different from their behavior at macroscopic scale. Such effects are essential for nanoscale materials or structures and the influence on nanoinstruments is great [Maranganti and Sharma (2007)]. Consequently, the classical continuum models need to be extended to consider the nanoscale effects and this can be achieved through the nonlocal elasticity theory proposed by Eringen [Eringen and Edelen (1972)] which considers the size-dependent effect. According to this theory, the stress state at a reference point is considered as a function of strain states of all points in the body. This nonlocal theory is proved to be in accordance with atomic model of lattice dynamics and with experimental observations on phonon dispersion [Eringen (1983)]. In nonlocal theory, the nonlocal nanoscale in the constitutive equation could be considered simply as a material-dependent parameter. The ratio of internal characteristic scale (such as lattice parameter, C-C bond length, granular distance, etc.) to external characteristic scale (such as crack length, wave length, etc.) is defined within a nonlocal nanoscale parameter. If the internal characteristic scale is much smaller than the external characteristic scale, the nonlocal nanoscale parameter approaches zero and the classical continuum theory is recovered.

The application of nonlocal elasticity theory, in micro and nanomaterials has received a considerable attention within the nanotechnology community. Peddieson et al. (2003) proposed a version of nonlocal elasticity theory which is employed to develop a nonlocal Euler-Bernoulli beam model. Wang and Liew (2007) carried out the static analysis of micro- and nano-structures based on nonlocal continuum mechanics using Euler-Bernoulli beam theory and Timoshenko beam theory. Aydogdu (2009) proposed a generalized nonlocal beam theory to study bending, buckling, and free vibration of nanobeams based on Eringen model and using different beam theories. Phadikar and Pradhan (2010) reported finite element formulations for nonlocal elastic Euler–Bernoulli beam and Kirchoff plate theory. Pradhan and Murmu (2010) investigated the flapwise bending–vibration characteristics of a rotating nanocantilever by using differential quadrature method (DQM). They noticed that small-scale effects play a significant role in the vibration response of a rotating nanocantilever. Civalek et al. (2010) presented a formulation of the equations of motion and bending of Euler–Bernoulli beam using the nonlocal elasticity theory for cantilever microtubules. The method of differential quadrature has been used for numerical modeling. Civalek and Demir (2011) developed a nonlocal beam model for the bending analysis of microtubules based on the Euler–Bernoulli beam theory. The size effect is taken into consideration using the Eringen's nonlocal elasticity theory.

With the development of the material technology, FGMs have been employed in MEMS/NEMS [Witvrouw and Mehta (2005); Lee et al. (2006)] behavior. Because of high sensitivity of MEMS/NEMS to external stimulations, understanding mechanical properties and vibration behavior of them are of significant importance to the design and manufacture of FG MEMS/NEMS. Thus, establishing an accurate model of FG nanobeams is a key issue for successful NEMS design. Niknam and Aghdam (2015) investigated the large amplitude free vibration of Euler-Bernoulli FG nanobeams resting on nonlinear elastic foundation based on the ignorance of the physical neutral axis position. The He's variational method was used as a semianalytical solution for the nonlinear governing equation. Asghari et al. (2010, 2011) studied the free vibration of the FG Euler-Bernoulli microbeams, which has been extended to consider a size-dependent Timoshenko beam based on the modified couple stress theory. The dynamic characteristics of FG beam with power law material graduation in the axial or the transversal directions was examined by Alshorbagy et al. (2011). Ke and Wang (2011) exploited the size effect on dynamic stability of functionally graded Timoshenko microbeams. The free vibration analysis of FG microbeams was presented by Ansari et al. (2011) based on the strain gradient Timoshenko beam theory. It was shown that the value of gradient index plays an important role in the vibrational response of the FG microbeams of lower slenderness ratios and by increasing the length to thickness ratio of the FG microbeam, the value of dimensionless natural frequency tends to decrease for all amounts of the gradient index. Employing modified couple stress theory the nonlinear free vibration of FG microbeams based on von Karman geometric nonlinearity was presented by Ke et al. (2012). It was revealed that both the linear and nonlinear frequencies increase significantly when the thickness of the FGM microbeam was comparable to the material length scale parameter. Eltaher et al. (2012) presented a finite element formulation for free vibration analysis of FG nanobeams based on nonlocal Euler beam theory. In another study, Eltaher et al. (2013a) presented finite element model for free vibration analysis of simply-supported FG nanobeams by using Euler-Bernoulli beam model based on neutral axis position. They also exploited the size-dependent static-buckling behavior of functionally graded nanobeams on the basis of the nonlocal continuum model [Eltaher et al. (2013b)]. Using nonlocal Timoshenko and Euler–Bernoulli beam theory, Simsek and Yurtcu (2013) investigated analytically bending and buckling of FG nanobeams by analytical method. All of above mentioned works on FG nanobeams are based on the assumptions that undeformed plane of nanobeam is placed at the mid-plane but due to the variation of material properties along the thickness in FG nanobeams, actually the undeformed plane coincides with the neutral plane rather than the mid-plane.

As one may note, the most cited references dealing with the modeling of micro/nanobeams are based on the assumptions that the material is homogeneous and a very limited literature is available for micro/nano-scale structures using FGM which are based on the assumptions that undeformed plane of nanobeams is placed at the mid-plane. It is found that most of the previous studies on vibration and buckling analysis of FG nanobeams have been conducted based on the ignorance of the physical neutral axis position and various boundary conditions effects. As a result, these studies cannot be utilized in order to thoroughly study the FG nanobeams under investigation. Therefore, there is strong scientific need to understand the vibration and buckling behavior of FG nanobeams in considering the effects of physical neutral axis position and different boundary conditions. Motivated by this fact, in this study, differential transformation method is applied in analyzing vibration and buckling characteristics of size-dependent FG nanobeams considering the right neutral axis position. The superiority of the DTM is its simplicity and good precision and dependence on Taylor series expansion while it takes less time to solve polynomial series. It is different from the traditional high order Taylor's series method, which requires symbolic computation of the necessary derivatives of the data functions. The Taylor series method computationally takes long time for large orders. With this method, it is possible to obtain highly accurate results or exact solutions for differential equations.

In this work free vibration and buckling analysis of FG nanobeams considering the position of neutral axis are studied. It is assumed that material properties of the beam vary continuously through the beam thickness according to power-law form. Nonlocal Euler–Bernoulli beam model and Eringen's nonlocal elasticity theory are

employed. Governing equations and boundary conditions for the free vibration and buckling of a nonlocal FG beam have been derived via Hamilton's principle. These equations are solved using DTM and numerical solutions are obtained. The detailed mathematical derivations are presented while the emphasis is placed on investigating the effect of several parameters such as size effects, constituent volume fractions, mode number, slenderness ratios, boundary conditions and small scale on vibration characteristics of FG nanobeams. Comparisons with the results from the existing literature are provided and good agreement between the results of this article and those available in literature validated the presented approach. Numerical results are presented to serve as benchmarks for the application and the design of nanoelectronic and nano-drive devices, nano-oscillators, and nanosensors, in which nanobeams act as basic elements.

2 Theory and formulation

2.1 Nonlocal power-law FG nanobeam equations based on physical neutral axis

One of the most favorable models for FGMs is the power-law model, in which material properties of FGMs are assumed to vary according to a power law about spatial coordinates. The coordinate system for FG nanobeam is shown in Figure 1. The FG nanobeam is assumed to be composed of ceramic and metal and effective material properties of the FG beam such as Young's modulus E_f , shear modulus G_f and mass density ρ_f are assumed to vary continuously in the thickness direction (*z*-axis direction) according to a power function of the volume fractions of the constituents while the Poisson's ratio is assumed to be constant in the thickness direction. According to the rule of mixture, the effective material properties, P_f , can be expressed as [Simsek and Yurtcu (2013)]:

$$P_f = P_c V_c + P_m V_m \tag{1}$$

where P_m , P_c , V_m and V_c are the material properties and the volume fractions of the metal and the ceramic constituents related by:

$$V_c + V_m = 1 \tag{2a}$$

The volume fraction of the ceramic constituent of the beam is assumed to be given by:

$$V_c = \left(\frac{z}{h} + \frac{1}{2}\right)^P \tag{2b}$$

Here p is the non-negative variable parameter (power-law exponent) which determines the material distribution through the thickness of the beam. Therefore, from

Eqs. (1)–(2), the effective material properties of the FG nanobeam can be expressed as follows:

$$P_f(z) = (P_c - P_m) \left(\frac{z}{h} + \frac{1}{2}\right)^p + P_m$$
(3)

According to this distribution, bottom surface (z = -h/2) of functionally graded beam is pure metal, whereas the top surface (z = h/2) is pure ceramics. Based on the physical neutral surface concept introduced by Zhang and Zhou (2008), the physical neutral surface of FGM beam is given by:

$$z_0 = \frac{\int_{-\frac{h}{2}}^{\frac{h}{2}} zE(z)dz}{\int_{-\frac{h}{2}}^{\frac{h}{2}} E(z)dz} = \frac{(E_c - E_m)hp}{2(2+p)(E_c + E_m p)}$$
(4)

It can be seen that the physical neutral surface and the geometric middle surface are the same in a homogeneous isotropic beam.

2.2 Kinematic relations

Under the physical neutral surface concept and the Euler–Bernoulli nanobeam model, the displacement field at any point of the beam can be written as

$$u_x(x,z,t) = u(x,t) - (z - z_0)\frac{\partial w(x,t)}{\partial x}$$
(5a)

$$u_z(x,z,t) = w(x,t)$$
(5b)

where t is time, u and w are displacement components of the mid-plane along x and z directions, respectively. By assuming the small deformations, the only nonzero strain of the Euler–Bernoulli beam theory is:

$$\boldsymbol{\varepsilon}_{\mathbf{X}\mathbf{X}} = \boldsymbol{\varepsilon}_{xx}^0 - (z - z_0)k^0, \quad \boldsymbol{\varepsilon}_{xx}^0 = \frac{\partial u(x,t)}{\partial x}, \quad k^0 = \frac{\partial^2 w(x,t)}{\partial x^2}$$
(6)

where ε_{xx}^0 and k^0 are the extensional strain and bending strain respectively. Based on Hamilton's principle, which states that the motion of an elastic structure during the time interval $t_1 < t < t_2$ is such that the time integral of the total dynamics potential is extremum, [Tauchert (1974)]:

$$\int_0^t \delta(U - T + W_{ext})dt = 0 \tag{7}$$

Figure 1: Typical functionally graded beam with Cartesian coordinates.

Here U is strain energy, T is kinetic energy and W_{ext} is work done by external forces. The virtual strain energy can be calculated as:

$$\delta U = \int_{V} \sigma_{ij} \delta \varepsilon_{ij} dV = \int_{V} (\sigma_{xx} \delta \varepsilon_{xx}) dV$$
(8)

Substituting Eq. (6) into Eq. (8) yields:

$$\delta U = \int_0^L (N(\delta \varepsilon_{xx}^0) - M(\delta k^0)) dx$$
(9)

In which N, M are the axial force and bending moment respectively. These stress resultants used in Eq. (9) are defined as:

$$N = \int_{A} \sigma_{xx} dA, M = \int_{A} \sigma_{xx} (z - z_0) dA$$
⁽¹⁰⁾

The kinetic energy for Euler-Bernoulli beam can be written as:

$$T = \frac{1}{2} \int_0^L \int_A \rho(z) \left(\left(\frac{\partial u_x}{\partial t} \right)^2 + \left(\frac{\partial u_z}{\partial t} \right)^2 \right) dA dx$$
(11)

Also the virtual kinetic energy is:

$$\delta T = \int_0^L \left[I_0 \left(\frac{\partial u}{\partial t} \frac{\partial \delta u}{\partial t} + \frac{\partial w}{\partial t} \frac{\partial \delta w}{\partial t} \right) - I_1 \left(\frac{\partial u}{\partial t} \frac{\partial^2 \delta w}{\partial t \partial x} + \frac{\partial \delta u}{\partial t} \frac{\partial^2 w}{\partial t \partial x} \right) + I_2 \frac{\partial^2 w}{\partial t \partial x} \frac{\partial^2 \delta w}{\partial t \partial x} \right] dx$$
(12)

where (I_0, I_1, I_2) are the mass moment of inertias, defined as follows:

$$(I_0, I_1, I_2) = \int_A \rho(z)_{(1, (z - z_0), (z - z_0)^2)} dA$$
(13)

The first variation of external forces of the beam can be written in the form:

$$\delta W_{ext} = \int_0^L \left(f \delta u + q \delta w + \bar{p} \frac{\partial w}{\partial x} \frac{\partial \delta w}{\partial x} \right) dx \tag{14}$$

where \bar{p} is the axial compressive force, f and q are the external axial and transverse loads distribution along length of beam, respectively. By substituting Eqs. (9), (12) and (14) into Eq. (7) and setting the coefficients of δu , δw and $\frac{\delta \partial w}{\partial x}$ to zero, the following Euler–Lagrange equation can be obtained:

$$\frac{\partial N}{\partial x} + f = I_0 \frac{\partial^2 u}{\partial t^2} - I_1 \frac{\partial^3 w}{\partial x \partial t^2}$$
(15a)

$$\frac{\partial^2 M}{\partial x^2} + q - \frac{\partial}{\partial x} (\bar{p} \frac{\partial w}{\partial x}) = I_0 \frac{\partial^2 w}{\partial t^2} + I_1 \frac{\partial^3 u}{\partial x \partial t^2} - I_2 \frac{\partial^4 w}{\partial x^2 \partial t^2}$$
(15b)

Under the following boundary conditions:

$$N = 0$$
 or $u = 0$ at $x = 0$ and $x = L$ (16a)

$$\frac{\partial M}{\partial x} - \bar{p}\frac{\partial w}{\partial x} - I_1\frac{\partial^2 u}{\partial t^2} + I_2\frac{\partial^3 w}{\partial x\partial t^2} = 0 \text{ or } w = 0 \text{ at } x = 0 \text{ and } x = L$$
(16b)

$$M = 0$$
 or $\frac{\partial w}{\partial x} = 0$ at $x = 0$ and $x = L$ (16c)

2.3 The nonlocal elasticity model for FG nanobeam

Based on Eringen nonlocal elasticity model [Eringen & Edelen (1972)], the stress at a reference point *x* in a body is considered as a function of strains of all points in the near region. This assumption is in agreement with experimental observations of atomic theory and lattice dynamics in phonon scattering in which for a homogeneous and isotropic elastic solid the nonlocal stress-tensor components σ_{ij} at any point *x* in the body can be expressed as:

$$\sigma_{ij}(x) = \int_{\Omega} \alpha(|x' - x|, \tau) t_{ij}(x') d\Omega(x')$$
(17)

where $t_{ij}(x')$ are the components of the classical local stress tensor at point *x* which are related to the components of the linear strain tensor ε_{kl} by the conventional constitutive relations for a Hookean material, i.e.

$$t_{ij} = C_{ijkl} \varepsilon_{kl} \tag{18}$$

The meaning of Eq. (17) is that the nonlocal stress at point *x* is the weighted average of the local stress of all points in the neighborhood of *x*, the size of which is related to the nonlocal kernel $\alpha(|x' - x|, \tau)$. Here |x' - x| is the Euclidean distance and τ is a constant given by:

$$\tau = \frac{e_0 a}{l} \tag{19}$$

which represents the ratio between a characteristic internal length, *a* (such as lattice parameter, C–C bond length and granular distance) and a characteristic external one, *l* (e.g. crack length, wavelength) through an adjusting constant, e_0 , dependent on each material. The magnitude of e_0 is determined experimentally or approximated by matching the dispersion curves of plane waves with those of atomic lattice dynamics. According to Eringen and Edelen (1972) for a class of physically admissible kernel $\alpha(|x' - x|, \tau)$ it is possible to represent the integral constitutive relations given by Eq. (17) in an equivalent differential form as:

$$(1 - (e_0 a)^2 \nabla^2) \sigma_{kl} = t_{kl} \tag{20}$$

where ∇^2 is the Laplacian operator. Thus, the scale length $e_0 a$ takes into account the size effect on the response of nanostructures. For an elastic material in the one dimensional case, the nonlocal constitutive relations may be simplified as:

$$\sigma(x) - (e_0 a)^2 \frac{\partial^2 \sigma(x)}{\partial x^2} = E \varepsilon(x)$$
(21)

where σ and ε are the nonlocal stress and strain, respectively. *E* is the Young's modulus. For Euler–Bernoulli nonlocal FG beam, Eq. (21) can be written as:

$$\sigma_{xx} - \mu \frac{\partial^2 \sigma_{xx}}{\partial x^2} = E(z)\varepsilon_{xx}$$
⁽²²⁾

where $(\mu = (e_0 a)^2)$. Integrating Eq. (22) over the beam's cross-section area, the force-strain and the moment-strain relations of the nonlocal Euler-Bernoulli beam theory can be obtained as follows:

$$N - \mu \frac{\partial^2 N}{\partial x^2} = A_{xx} \frac{\partial u}{\partial x} - B_{xx} \frac{\partial^2 w}{\partial x^2}$$
(23)

$$M - \mu \frac{\partial^2 M}{\partial x^2} = B_{xx} \frac{\partial u}{\partial x} - C_{xx} \frac{\partial^2 w}{\partial x^2}$$
(24)

In which the cross-sectional rigidities are defined as follows:

$$(A_{xx}, B_{xx}, C_{xx}) = \int_{A} E(z)(1, (z - z_0), (z - z_0)^2) dA$$
(25)

The explicit relation of the nonlocal normal force can be derived by substituting for the second derivative of N from Eq. (15a) into Eq. (23) as follows:

$$N = A_{xx}\frac{\partial u}{\partial x} - B_{xx}\frac{\partial^2 w}{\partial x^2} + \mu \left(I_0\frac{\partial^3 u}{\partial x\partial t^2} - I_1\frac{\partial^4 w}{\partial x^2\partial t^2} - \frac{\partial f}{\partial x}\right)$$
(26)

Also the explicit relation of the nonlocal bending moment can be derived by substituting for the second derivative of M from Eq. (15b) into Eq. (24) as follows:

$$M = B_{xx}\frac{\partial u}{\partial x} - C_{xx}\frac{\partial^2 w}{\partial x^2} + \mu \left(I_0\frac{\partial^2 w}{\partial t^2} + I_1\frac{\partial^3 u}{\partial x \partial t^2} - I_2\frac{\partial^4 w}{\partial x^2 \partial t^2} + \frac{\partial}{\partial x}(\bar{p}\frac{\partial w}{\partial x}) - q\right)$$
(27)

The nonlocal governing equations of Euler-Bernoulli FG nanobeam in terms of the displacement can be derived by substituting for *N* and *M* from Eqs. (26) and (27), respectively, into Eq. (15) as follows:

$$A_{XX}\frac{\partial^2 u}{\partial x^2} - B_{XX}\frac{\partial^3 w}{\partial x^3} + \mu \left(I_0 \frac{\partial^4 u}{\partial t^2 \partial x^2} - I_1 \frac{\partial^5 w}{\partial t^2 \partial x^3} - \frac{\partial^2 f}{\partial x^2} \right) - I_0 \frac{\partial^2 u}{\partial t^2} + I_1 \frac{\partial^3 w}{\partial t^2 \partial x} + f = 0$$
(28)

$$B_{XX}\frac{\partial^{3}u}{\partial x^{3}} - C_{XX}\frac{\partial^{4}w}{\partial x^{4}} - \bar{p}\frac{\partial^{2}w}{\partial x^{2}} + \mu(I_{0}\frac{\partial^{4}w}{\partial t^{2}\partial x^{2}} + I_{1}\frac{\partial^{5}u}{\partial t^{2}\partial x^{3}} - I_{2}\frac{\partial^{6}w}{\partial t^{2}\partial x^{4}} - \frac{\partial^{2}q}{\partial x^{2}} + \bar{p}\frac{\partial^{4}w}{\partial x^{4}}) - I_{0}\frac{\partial^{2}w}{\partial t^{2}} - I_{1}\frac{\partial^{3}u}{\partial t^{2}\partial x} + I_{2}\frac{\partial^{4}w}{\partial t^{2}\partial x^{2}} + q = 0$$
(29)

When the FG nanobeam vibrates with a natural frequency ω , it is possible to separate the time dependency by expressing the displacement parameters in the following form:

$$u(x,t) = u(x)e^{i\omega t}$$
(30)

$$w(x,t) = w(x)e^{i\omega t}$$
(31)

Substituting harmonic vibration modes, Eqs. (30) and (31), into Eqs. (28) and (29) leads to a time independent governing equation as follows:

$$A_{XX}\frac{\partial^2 u}{\partial x^2} - B_{XX}\frac{\partial^3 w}{\partial x^3} + \mu \left(-I_0\omega^2 \frac{\partial^2 u}{\partial x^2} + I_1\omega^2 \frac{\partial^3 w}{\partial x^3} - \frac{\partial^2 f}{\partial x^2} \right) + I_0\omega^2 u - I_1\omega^2 \frac{\partial w}{\partial x} + f = 0$$
(32)

$$B_{XX}\frac{\partial^{3}u}{\partial x^{3}} - C_{XX}\frac{\partial^{4}w}{\partial x^{4}} - \bar{p}\frac{\partial^{2}w}{\partial x^{2}} + \mu(-I_{0}\omega^{2}\frac{\partial^{2}w}{\partial x^{2}} - I_{1}\omega^{2}\frac{\partial^{3}u}{\partial x^{3}} + I_{2}\omega^{2}\frac{\partial^{4}w}{\partial x^{4}} - \frac{\partial^{2}q}{\partial x^{2}} + \bar{p}\frac{\partial^{4}w}{\partial x^{4}}) + I_{0}\omega^{2}w + I_{1}\omega^{2}\frac{\partial u}{\partial x} - I_{2}\omega^{2}\frac{\partial^{2}w}{\partial x^{2}} + q = 0$$
(33)

3 Implementation of differential transform method

Generally, it is rather difficult to derive an analytical solution for Eqs. (32) and (33) due to the nature of non-homogeneity. In this circumstance, the DTM is employed to translate the governing equations into a set of ordinary equations. First, the procedure of differential transform method is briefly reviewed. The differential transforms method provides an analytical solution procedure in the form of polynomials to solve ordinary and partial differential equations. In this method, differential transformation of *k*th derivative function y(x) and differential inverse transformation of Y(k) are respectively defined as follows [Abdel-Halim Hassan (2002)]:

$$Y(k) = \frac{1}{k!} \left[\frac{d^k}{dx^k} y(x) \right]_{x=0}$$
(34)

$$y(x) = \sum_{0}^{\infty} x^{k} Y(k)$$
(35)

In which y(x) is the original function and Y(k) is the transformed function. Consequently from equations (34, 35) we obtain:

$$y(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \left[\frac{d^k}{dx^k} y(x) \right]_{x=0}$$
(36)

Equation (36) reveals that the concept of the differential transformation is derived from Taylor's series expansion. In real applications the function y(x) in equation (36) can be written in a finite form as:

$$y(x) = \sum_{k=0}^{N} x^{k} Y(k)$$
 (37)

In this calculations $y(x) = \sum_{n=1}^{\infty} x^k Y(k)$ is small enough to be neglected, and N is determined by the convergence of the eigenvalues. From the definitions of DTM in Equations (34)-(36), the fundamental theorems of differential transforms method can be performed that are listed in Table 1 while Table 2 presents the differential transformation of conventional boundary conditions. According to the basic transformation operations introduced in Table 1, the transformed form of the governing equations (32) and (33) around $x_0 = 0$ may be obtained as:

$$A_{XX}(k+1)(k+2)U[k+2] - B_{XX}(k+1)(k+2)(k+3)W[k+3] - I_0\omega^2(-U[k] + \mu(k+1)(k+2)U[k+2]) - I_1\omega^2(-\mu(k+1)(k+2)(k+3)W[k+3] + (k+1)W[k+1]) = 0$$
(38)

$$B_{XX}(k+1)(k+2)(k+3)U[k+3] - C_{XX}(k+1)(k+2)(k+3)(k+4)W[k+4] - \bar{p}(k+1)(k+2)w[k+2] - I_0\omega^2(-W[k] + \mu(k+1)(k+2)W[k+2]) - I_1\omega^2(-(k+1)U[k+1] + \mu(k+1)(k+2)(k+3)U[k+3]) - I_2\omega^2(-\mu(k+1)(k+2)(k+3)(k+4)W[k+4] + (k+1)(k+2)W[k+2]) + \mu\bar{p}(k+1)(k+2)(k+3)(k+4)w[k+4] = 0$$
(39)

where U[k] and W[k] are the transformed functions of u, w, respectively.

Table 1: Some of the transformation rules of the one-dimensional DTM [Chen and Ju (2004)].

Original function	Transformed function
$y(x) = \lambda \varphi(x)$	$Y(k) = \lambda \Phi(k)$
$y(x) = \varphi(x) \pm \theta(x)$	$Y(k) = \Phi(k) \pm \Theta(k)$
$y(x) = \frac{d\varphi}{dx}$	$Y(k) = (k+1)\Phi(k+1)$
$y(x) = \frac{d^2\varphi}{dx^2}$	$Y(k) = (k+1)(k+2)\Phi(k+1)$
$y(x) = \boldsymbol{\varphi}(x)\boldsymbol{\theta}(x)$	$Y(k) = \sum_{l=0}^{k} \Phi(l) \Theta(k-1)$
$y(x) = x^m$	$Y(k) = \delta(k-m) = \begin{cases} 1 & k=m \\ 0 & k \neq 0 \end{cases}$

Table 2: Transformed boundary conditions (B.C.) based on DTM [Chen and Ju (2004)].

	X=0		X=1
Original BC	Transformed BC	Original BC	Transformed BC
f(0)=0	F[0]=0	f(1)=0	$\sum_{k=0}^{\infty} F\left[k\right] = 0$
$\frac{df}{dx}(0) = 0$	F[1]=0	$\frac{df}{dx}(1) = 0$	$\sum_{k=0}^{\infty} kF[k] = 0$
$\frac{d^2f}{dx^2}(0) = 0$	F[2]=0	$\frac{d^2f}{dx^2}(1) = 0$	$\sum_{k=0}^{\infty} k(k-1)F[k] = 0$
$\frac{d^3f}{dx^3}(0) = 0$	F[3]=0	$\frac{d^3f}{dx^3}(1) = 0$	$\sum_{k=0}^{\infty} k(k-1)(k-2)F[k] = 0$

Additionally, the differential transform method is applied to various boundary conditions by using the theorems introduced in Table 2 and the following transformed boundary conditions are obtained.

• Simply supported–Simply supported:

$$W[0] = 0, \ W[2] = 0, \ U[0] = 0$$

$$\sum_{k=0}^{\infty} W[k] = 0, \\ \sum_{k=0}^{\infty} k(k-1)W[k] = 0, \\ \sum_{k=0}^{\infty} kU[k] = 0$$
(40a)

• Clamped–Clamped:

$$W[0] = 0, \ W[1] = 0, \ U[0] = 0$$

$$\sum_{k=0}^{\infty} W[k] = 0, \ \sum_{k=0}^{\infty} kW[k] = 0, \ \sum_{k=0}^{\infty} U[k] = 0$$
(40b)

• Clamped–Simply supported:

W[0] = 0, W[1] = 0, U[0] = 0

$$\sum_{k=0}^{\infty} W[k] = 0, \sum_{k=0}^{\infty} k(k-1)W[k] = 0, \sum_{k=0}^{\infty} kU[k] = 0$$
(40c)

• Clamped-Free:

W[0] = 0, W[1] = 0, U[0] = 0

$$\sum_{k=0}^{\infty} k(k-1)W[k] = 0, \sum_{k=0}^{\infty} k(k-1)(k-2)W[k] = 0, \sum_{k=0}^{\infty} kU[k] = 0$$
(40d)

By using Eqs. (38) and (39) together with the transformed boundary conditions one arrives at the following eigenvalue problem:

$$\begin{bmatrix} M_{11}(\omega) & M_{12}(\omega) & M_{13}(\omega) \\ M_{21}(\omega) & M_{22}(\omega) & M_{23}(\omega) \\ M_{31}(\omega) & M_{32}(\omega) & M_{33}(\omega) \end{bmatrix} [C] = 0$$
(41a)

where [C] correspond to the missing boundary conditions at x = 0 and $M_{ij}(\omega)$ are polynomials in terms of ω . For the non-trivial solutions of Eq. (41a), it is necessary that the determinant of the coefficient matrix is equal to zero:

$$\begin{array}{c|cccc} M_{11}(\omega) & M_{12}(\omega) & M_{13}(\omega) \\ M_{21}(\omega) & M_{22}(\omega) & M_{23}(\omega) \\ M_{31}(\omega) & M_{32}(\omega) & M_{33}(\omega) \end{array} = 0$$
(41b)

Solution of Eq. (41b) is simply a polynomial root finding problem. In the present study, the Newton–Raphson method is used to solve the governing equation of the non-dimensional natural frequencies. Solving equation (41b), the ith estimated eigenvalue for nth iteration ($\omega = \omega_i^{(n)}$) may be obtained and the total number of iterations is related to the accuracy of calculations which can be determined by the following equation:

$$\left|\boldsymbol{\omega}_{i}^{(n)} - \boldsymbol{\omega}_{i}^{(n-1)}\right| < \varepsilon \tag{42}$$

In this study ε =0.0001 considered in procedure of finding eigenvalues which results in 4 digit precision in estimated eigenvalues. Further a Matlab program has been developed according to DTM rule stated above, in order to find eigenvalues. As mentioned before, DT method implies an iterative procedure to obtain the high-order Taylor series solution of differential equations. The Taylor series method requires a long computational time for large orders, whereas one advantage of employing DTM in solving differential equations is a fast convergence rate and a small calculation error.

4 Numerical results and discussions

Through this section, a numerical testing of the procedure as well as parametric studies are performed in order to establish the validity and usefulness of the DTM approach. The effect of neutral axis position on the natural frequencies and buckling load of FG size-dependent nanobeam is presented. The functionally graded nanobeam is composed of steel and alumina where its properties are given in Table 3. The bottom surface of the beam is pure steel, whereas the top surface is pure alumina. The beam geometry has the following dimensions: L(length) = 10,000 nm, b(width) = 1000 nm and h (thickness) = 100 nm.

4.1 Convergence and correctness study of the solution method

In order to show that differential transform method is an effective and reliable tool for examining the vibration and buckling characteristics of nanobeams, a FG nanobeam composed of a ceramic–metal pair of materials (steel and alumina) is considered. Relation described in equation (43) is performed in order to calculate the non-dimensional natural frequencies.

$$\bar{\omega} = \omega L^2 \sqrt{\rho_c A / E I_c} \tag{43}$$

where $I = bh^3/12$ is the moment of inertia of the cross section of the beam. Table 4 tabulates the convergence of DT method for the first four frequencies of FG

nanobeams with various gradient indexes. It is found that in DT method after a certain number of iterations eigenvalues converged to a value with good precision, so the number of iterations is important in DT method convergence. According to Table 4 the first natural frequency converged after 19 iterations (k) with 4 digit precision while the 2nd , 3rd and 4th frequencies converged after 29, 39 and 47 iterations respectively.

property	unit	Steel	Alumina(Al ₂ O ₃)
Е	GPa	210	390
ρ	Kg/m ³	7800	3960

Table 3: Material properties of the FGM constituents [Asghari et al. (2011)].

Table 4: Convergence study for the first four natural frequencies of simply supported FG nanobeam $(L/h = 20, \mu = 3 * 10^{-12})$.

k		p	= 0			p	= 5	
κ	$\bar{\omega}_1$	$\bar{\omega}_2$	$\bar{\omega}_3$	$\bar{\omega}_4$	$\bar{\omega}_1$	$\bar{\omega}_2$	$\bar{\omega}_3$	$\bar{\omega}_4$
11	8.6787	-	-	-	5.2260	-	-	-
13	8.6591	-	-	-	5.2142	-	-	-
15	8.6604	25.1913	-	-	5.2150	15.1696	-	-
17	8.6603	27.0573	-	-	5.2149	16.2933	-	-
19	8.6603	26.5590	-	-	5.2149	15.9932	-	-
21	8.6603	26.6066	-	-	5.2149	16.0219	-	-
23	8.6603	26.6020	-	-	5.2149	16.0191	-	-
25	8.6603	26.6024	45.4881	-	5.2149	16.0193	27.3927	-
27	8.6603	26.6023	46.0575	-	5.2149	16.0193	27.7356	-
29	8.6603	26.6023	45.9679	-	5.2149	16.0193	27.6816	-
31	8.6603	26.6023	45.9773	-	5.2149	16.0193	27.6873	-
33	8.6603	26.6023	45.9764	-	5.2149	16.0193	27.6868	-
35	8.6603	26.6023	45.9765	64.7491	5.2149	16.0193	27.6868	38.9931
37	8.6603	26.6023	45.9765	64.8836	5.2149	16.0193	27.6868	39.0741
39	8.6603	26.6023	45.9765	64.8667	5.2149	16.0193	27.6868	39.0640
41	8.6603	26.6023	45.9765	64.8685	5.2149	16.0193	27.6868	39.0650
43	8.6603	26.6023	45.9765	64.8683	5.2149	16.0193	27.6868	39.0649
45	8.6603	26.6023	45.9765	64.8684	5.2149	16.0193	27.6868	39.0649
47	8.6603	26.6023	45.9765	64.8684	5.2149	16.0193	27.6868	39.0649

After looking into the satisfactory results for the convergence of frequencies, one may compare the nondimensional frequencies of FG nanobeam associated with dif-

ferent boundary conditions, nonlocal parameter, slenderness ratios and constituent volume fraction exponents. To demonstrate the correctness of present study the results for FG nanobeam are compared with the results of FG nanobeams available in the literature. Table 5 compares the semi-analytical results of the present study obtained based on physical neutral axis position (NA) and the results for the simply supported-simply supported (S-S) FG nanobeam with various nonlocal parameter and constituent volume fraction exponents presented by Eltaher et al. (2012) which has been obtained by using finite element method. One may clearly notice here that the fundamental frequency parameters obtained in the present investigation are in approximately close enough to the results provided in these literatures and thus validates the proposed method of solution.

4.2 Vibration analysis

After validating the approaches, in this section some parametric studies are conducted in order to examine the influences of various FG nanobeam parameters such as constituent volume fractions, nonlocal parameters, slenderness ratios and boundary conditions on the natural frequencies of the size-dependent FG nanobeam model based on neutral axis position (NA) and central axis position (CA). Here after, to better extract the influence of the neutral axis position on the vibrational behavior of the FG nanobeams, the normalized form of the nonlinear natural frequencies as specified in Eq. (43), are presented in the numerical results.

The effect of neutral axis position on first four nondimensional frequencies of FG nanobeam with various nonlocal parameters and constituent volume fractions is presented in Tables 5-8. In these tables the first four nondimensional frequencies of FG nanobeam for different boundary conditions such as simply supported- simply supported (S-S), clamped-clamped (C-C), clamped-simply supported(C-S) and clamped-free(C-F) are tabulated based on neutral axis position and midplane position calculations. The nonlocal parameter μ ranges from 0 to 4 and the material distribution parameter p ranges from 0 to 10. When these two parameters vanish ($\mu = 0, p = 0$), the classical isotropic beam theory is rendered. Fixing the nonlocal parameter μ and varying the material distribution parameter p results in a significant change in the natural frequencies.

As it can be seen from Table 5, for a simply supported FG nanobeam by increasing the nonlocal parameter from 0 to 4 at a constant material graduation parameter, the first natural frequency decreases about 15%. Whereas, by increasing the nonlocal parameter the difference between the natural frequencies obtained based on central axis and neutral axis decreases. It can be noticed from Table 5 that, the neutral axis position has a significant effect on the natural frequencies of simply supported FG nanobeam.

			4				ω				2				-				0				μ	:	
i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1				w_i)	
57.4431	41.2486	24.4818	8.3483	64.8684	45.9765	26.6023	8.6603	76.1964	52.8213	29.3905	9.0102	96.7506	64.0515	33.2911	9.4062	155.3780	88.0158	39.3171	9.8594		study)	(Present	NA	=d	
57.6950	41.4142	24.5596	8.3607	65.2317	46.2062	26.7022	8.6741	76.7870	53.1705	29.5254	9.0257	97.9683	64.6769	33.4875	9.4238	160.5776	89.6599	39.6419	9.8797	(2012)]	et al.	[Eltaher	CA	=0	
40.6586	29.2150	17.3480	5.9174	45.9143	32.5637	18.8506	6.1385	53.9323	37.4117	20.8263	6.3865	68.4808	45.3656	23.5902	6.6672	109.9780	62.3387	27.8603	6.9885		study)	(Present	NA	q	
40.8757	29.3913	17.4063	6.0001	46.2132	32.7918	18.9245	6.2251	54.3949	37.7336	20.9248	6.4774	69.3845	45.8980	23.7318	6.7631	113.5435	63.6216	28.0910	7.0904	(2012)]	et al.	[Eltaher	CA	<u>"</u>	
34.5933	24.8397	14.7424	5.0271	39.0649	27.6868	16.0193	5.2149	45.8869	31.8088	17.6983	5.4256	58.2650	38.5715	20.0471	5.6641	93.5718	53.0027	23.6759	5.9370		study)	(Present	NA	p :	
34.7518	24.9665	14.7874	5.0797	39.2870	27.8534	16.0766	5.2702	46.2370	32.0479	17.7750	5.4837	58.9628	38.9745	20.1580	5.7256	96.3766	53.9949	23.8575	6.0025	(2012)]	et al.	[Eltaher	CA	5	
33.0565	23.7324	14.0836	4.8020	37.3294	26.4526	15.3034	4.9815	43.8483	30.3908	16.9074	5.1828	55.6765	36.8520	19.1512	5.4106	89.4148	50.6399	22.6178	5.6713		study)	(Present	NA	= d	
33.2001	23.8367	14.1263	4.8286	37.5340	26.5933	15.3581	5.0096	44.1764	30.5987	16.9810	5.2126	56.3432	37.2138	19.2580	5.4425	92.1857	51.5621	22.7937	5.7058	(2012)]	et al.	[Eltaher	CA	=10	

Table 5: Effect of neutral axis position on nondimensional frequencies at different nonlocality and material exponent for S-S FG nanobeam (L/h=20).

Ņ	
Ċ	
or	
lt f	
Jer	
[O	
exl	
al	
eri	
lat	
ln	
anc	
N.	
alit	
ö	
'n	
no	
'nt	
ere	
ΪĤ	
ťd	
sa	
cie	
en	
dn	
fre	
al	
on	
nsi	
nei	
dir	
on	
Ũ	
O	
on	
siti	
ő	
is j	
ах	
al	6
utı	1
ne	4
of	Ð
ščt	ш
ĴΠ	eai
Щ ••	ob
e 6	an
ble	u 5
Ia	Ĕ

:	Ķ	: <i>d</i>	0=	= d	=1	: d	=5	= d	=10
Ħ	.i 3	NA	CA	NA	CA	NA	CA	NA	CA
		(Present	[Eltaher	(Present	[Eltaher	(Present	[Eltaher	(Present	[Eltaher
		study)	et al.	study)	et al.	study)	et al.	study)	et al.
			(2012)]		(2012)]		(2012)]		(2012)]
0	i = 1	22.3447	22.3447	15.8378	15.8390	13.4552	13.4560	12.8531	12.8534
	i = 2	61.3790	61.3790	43.4907	43.5037	36.9612	36.9685	35.3100	35.3130
	i = 3	119.6770	119.6770	84.7549	84.8084	72.0691	72.0989	68.8579	68.8704
	i = 4	196.3800	196.3800	138.9810	139.1310	118.2650	118.3480	113.0140	113.0490
1	i = 1	21.0751	21.0751	14.9374	14.9390	12.6908	12.6916	12.1229	12.1233
	i = 2	50.6790	50.6790	35.9050	35.9184	30.5181	30.5255	29.1555	29.1586
	i = 3	84.6381	84.6381	59.9269	59.9738	50.9696	50.9958	48.7014	48.7123
	i = 4	118.7760	118.7760	84.0302	84.1403	71.5311	71.5927	68.3613	68.3871
7	i = 1	19.9954	19.9954	14.1718	14.1735	12.0406	12.0415	11.5019	11.5023
	i = 2	44.1033	44.1033	31.2445	31.2573	26.5584	26.5656	25.3730	25.3760
	i = 3	69.1826	69.1826	48.9801	49.0209	41.6624	41.6852	39.8091	39.8186
	i = 4	93.0451	93.0451	65.8209	65.9108	56.0354	56.0857	53.5534	53.5744
ε	i = 1	19.0632	19.0632	13.5108	13.5126	11.4793	11.4803	10.9658	10.9662
	i = 2	39.5510	39.5510	28.0185	28.0306	23.8171	23.8239	22.7542	22.7570
	i = 3	60.0041	60.0041	42.4801	42.5166	36.1351	36.1555	34.5280	34.5365
	i = 4	79.0766	79.0766	55.9372	56.0151	47.6232	47.6668	45.5142	45.5325
4	i = 1	18.2482	18.2482	12.9330	12.9348	10.9885	10.9895	10.4970	10.4974
	i = 2	36.1633	36.1633	25.6181	25.6295	21.7771	21.7835	20.8054	20.8080
	i = 3	53.7537	53.7537	38.0541	38.0875	32.3711	32.3898	30.9316	30.9394
	i = 4	69.9787	69.9787	49.5002	49.5700	42.1441	42.1831	40.2780	40.2943

			4				3				2				1				0				μ	:
i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1	i = 4	i = 3	i = 2	i = 1				w_i	81
63.6714	47.3463	30.1723	12.7267	71.9060	52.8175	32.8727	13.2651	84.5127	60.7934	36.4674	13.8770	107.5730	74.0509	41.5895	14.5803	175.2840	103.2410	49.7431	15.3997		study)	(Present	NA	<i>b</i> :
63.6714	47.3463	30.1723	12.7267	71.9060	52.8175	32.8727	13.2651	84.5127	60.7934	36.4674	13.8770	107.5730	74.0509	41.5895	14.5803	175.2840	103.2410	49.7431	15.3997	(2012)]	et al.	[Eltaher	CA	=0
45.0537	33.5266	21.3775	9.0203	50.8811	37.4014	23.2911	9.4020	59.8029	43.0502	25.8384	9.8358	76.1238	52.4401	29.4682	10.3344	124.0590	73.1188	35.2470	10.9153		study)	(Present	NA	d b
45.1074	33.5504	21.3848	9.0212	50.9413	37.4276	23.2988	9.4029	59.8728	43.0798	25.8467	9.8366	76.2109	52.4750	29.4773	10.3352	124.1880	73.1628	35.2568	10.9162	(2012)]	et al.	[Eltaher	CA	<u></u>
38.3448	28.5121	18.1692	7.6635	43.3039	31.8068	19.7954	7.9878	50.8959	36.6099	21.9600	8.3562	64.7833	44.5935	25.0444	8.7797	105.5600	62.1716	29.9542	9.2732		study)	(Present	NA	p
38.3748	28.5253	18.1733	7.6640	43.3375	31.8215	19.7997	7.9883	50.9350	36.6265	21.9646	8.3567	64.8319	44.6130	25.0494	8.7802	105.6320	62.1961	29.9597	9.2736	(2012)]	et al.	[Eltaher	CA	5=
36.6440	27.2425	17.3578	7.3206	41.3829	30.3904	18.9112	7.6303	48.6380	34.9795	20.9791	7.9823	61.9086	42.6071	23.9256	8.3868	100.8720	59.4008	28.6158	8.8582		study)	(Present	NA	= <i>d</i>
36.6565	27.2480	17.3595	7.3208	41.3970	30.3965	18.9131	7.6305	48.6543	34.9864	20.9811	7.9825	61.9289	42.6153	23.9277	8.3870	100.9020	59.4110	28.6181	8.8584	(2012)]	et al.	[Eltaher	CA	=10

	_
E	Ta
'n	ble
an	-
9	Ш
eai	ffe
В	čţ
F	of
h	ne
Ш.	ut
ğ	ral
•	æ
	ci s
	pc
	Sit
	<u>io</u>
	nc
	ň
	IOU
	ndi
	B
	en
	sio
	na
	l fi
	ſeg
	lne
	nc
	ies
	at
	<u>6</u>
	ffe
	re
	nt
	no
	nlc
	ŏča
	lit
	Уa
	nd
	B
	ate
	ÌĽ
	3] e
	dxe
	10(
	len
	ıt f
	<u>or</u>
	ņ
	Ś

Ц	
Ċ	
or	
nt f	
neı	
ō.	
exl	
al	
eri	
lati	
Цц	
nnö	
S S	
lit	
SCa	
nlc	
no	
nt	
cre	
ffe	
;	
s at	
ies	
nc	
lue	
Бэ	
1fi	
na	
sio	
ent	
Ē.	
ibu	
IOU	
u u	
n C	
tio	
)Si	
ď	
xis	
la	
tra]	50
eni	ÌÌ
fn	ч/
t oi	5
eci	Ш
ΞĒ	Эea
<u>~</u> 1	Jot
ŝ	ıaı
ldI	5
Ľ	Ĕ

t [Eltaher et al. (2012)] 2.1174 13.2509	her I. 22)] 336 336		E 2 68 33 17 2 8	(Presture)	(Pressure stud stud 35.37 35.37 35.37 12.03 11.87 11.87 29.20 29.20 48.66	(Prese study study 2.022 35.32 68.85 68.85 68.85 2.031 11.87 2.031 2.031 2.031 2.04((Preset study study 2.022 2.022 35.324 68.857 68.857 2.031 11.875 29.202 29.202 20.040 11.200	(Preser study) study) study) 2.022 12.657 35.324 68.857 68.857 11.875 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.202 29.206 11.200 11.200 25.468	(Presensitive) study) study) study) study) 2.0225 2.0225 2.0225 2.0225 2.0225 2.0225 2.0225 35.324; 68.857(68.857(29.202; 29.202; 29.202; 29.202; 29.706; 29.766; 39.755; 39.755;	(Presenstudy) study) study) study) study) study) 2.0225 12.6572 35.3245 68.857(68.857(11.875 29.2022 29.2024 11.2006 25.468 39.7555 29.7555	(Present study) study) study) study) 2.0225 2.0225 35.3245 35.3245 68.8570 68.8570 68.8570 20313 11.8752 29.2024 48.6858 20403 11.2006 25.4681 39.7555 20495 10.6102	(Present study) study) study) study) 2.0225 2.0225 35.3245 68.8570 68.8570 68.8570 5.3245 68.8570 5.0313 11.8752 29.2024 48.6858 20.403 11.2006 25.4681 39.75555 20.0495 10.6102 22.9089	(Present study) study) study) study) 2.0225 2.0225 12.6572 35.3245 68.8570 68.8570 68.8570 20313 11.8752 29.2024 11.8755 29.4681 39.7555 20495 10.6102 22.9089 34.4162	(Present study) study) study) study) 2.0225 2.0225 2.0225 35.3245 68.8570 68.8570 2.0313 11.8752 2.0313 11.8752 2.0313 11.8752 2.0313 11.8752 2.0313 2.0403 11.2006 25.4681 39.7555 20.0495 10.6102 22.0589 34.4162 2.0589	(Present study) study) study) study) 2.0225 12.6572 35.3245 68.8570 5.35.3245 68.8570 2.0313 11.8752 29.2024 48.6858 2.0403 11.2006 25.4681 39.7555 20495 10.6102 22.9089 34.4162 2.0589 10.0871	(Present study) study) 2.0225 12.6572 35.3245 68.8570 5.0313 11.8752 29.2024 48.6858 2.0403 11.2006 29.2024 11.8752 29.2024 33.7555 2.0403 11.2006 25.4681 39.7555 2.0495 10.6102 22.9089 34.4162 22.0589 34.4162 22.0589 22.05800 22.05800 22.05800 22.05800 22.05800 22.0580000000000000000000000000000000000
	et a 201: 3.25 6.98	et al. 2012)] 21174 3.2509 6.9836 2.0979 2.1265	et al. s et al. s 2012)] 3.2509 11 5.0836 33 2.0979 68 2.0979 68 2.1265 2 2.4323 11	et al. stu 2012)] 2012)] 3.2509 12.0 6.9836 35.2 6.9836 35.2 2.0979 68.8 2.1265 2.0 0.5746 29.2	et al. stud 2012)] 2012)] 3.2509 12.65 6.9836 35.35 6.9836 35.35 2.0979 68.85 2.0379 68.85 2.0379 68.85 2.0379 68.85 0.5746 29.20 0.5746 29.20 0.9795 48.65	et al. study 2012)] 2012)] 3.2509 12.65 6.9836 35.32 6.9836 35.32 2.0979 68.85 2.0979 68.85 2.0979 68.85 2.031 2.4323 11.87 0.5746 29.20 0.9795 48.68	et al. study 2012)] 2012)] 3.2509 12.657 6.9836 35.324 6.9836 35.324 2.0979 68.857 2.0979 68.857 2.031 2.4323 11.875 0.5746 29.202 0.9795 48.685 0.9795 2.040 1.7261 11.200	et al. study) 2012)] study) 2012)] 2.0225 3.2509 12.657 5.3536 35.324 6.9836 35.324 6.9836 35.324 2.0979 68.857 2.1265 2.0315 2.1265 2.0315 2.1359 11.875 0.5746 29.202 0.9795 48.685 2.1359 2.0405 1.7261 11.200 1.7261 11.200	et al. study) 2012)] 2012)] 2012)] 20225 3.2509 12.657 5.9836 35.324; 6.9836 35.324; 2.0979 68.857(2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1359 2.0313 0.9795 48.685; 0.9795 2.0403 1.7261 11.200 1.7261 11.200 1.6290 39.755	et al. study) 2012)] 2012)] 2.012)] 2.0225 5.9836 35.3245 6.9836 35.3245 2.0979 68.857 2.0979 68.857 2.0313 2.4323 11.875 0.5746 29.2022 0.9795 48.685 0.9795 48.685 0.9795 48.685 0.9795 2.0403 1.7261 11.200 6.6652 25.468	et al. study) 2012)] study) 2012)] 2.0225 3.2509 12.6572 6.9836 35.3245 5.0979 68.8570 2.0979 68.8570 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1359 11.8752 0.9795 48.6858 0.9795 29.2024 0.9795 20.403 1.12006 66.652 2.1359 2.0403 1.1506 39.7555 2.1456 2.0495 1.16290 39.7555 2.1456 2.0495	et al. study) 2012)] study) 2012)] 2.0225 3.2509 12.6572 6.9836 35.3245 5.0979 68.8570 2.0979 68.8570 2.1265 2.0313 2.4323 11.8752 0.5746 29.2024 0.9795 48.6858 0.9795 48.6858 0.9795 2.0403 1.7261 11.2006 6.6652 2.0403 1.6290 39.7555 2.1456 2.0495	et al. study) 2012)] study) 2012)] 2.0225 3.2509 12.6572 6.9836 35.3245 2.0979 68.8570 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1359 2.0403 1.1.8752 2.0403 1.1.261 11.2006 6.6652 2.0403 1.1261 11.2006 6.6652 2.0403 1.16290 39.7555 1.1680 10.6102 3.9858 22.0989 6.0384 34.4162	et al. study) 2012)] study) 2012)] 2.0225 3.2509 12.6572 6.9836 35.3245 2.0979 68.8570 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1359 2.4323 0.9795 48.6858 0.9795 48.6858 1.1261 11.2006 6.6652 25.4681 1.5290 39.7555 1.6290 39.7555 3.9858 2.0495 1.1080 10.6102 3.9858 22.9089 6.0384 34.4162 2.1554 2.0589	et al. study) 2012)] 20225 2012)] 2.0225 3.2509 12.6572 6.9836 35.3245 2.0979 68.8570 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1265 2.0313 2.1359 2.0313 0.9795 48.6858 0.9795 48.6858 0.9795 29.2024 0.9795 29.2034 0.9795 29.2034 0.9795 29.2034 0.9795 21.1.8752 21359 2.0403 1.7261 11.2006 6.6652 25.4681 1.6290 39.7555 2.1456 2.0495 1.1080 10.6102 3.9858 22.9089 6.0384 34.4162 2.1554 2.0589 0.5605 10.0871	et al. study) 2012)] 2012)2 2012)] 20225 3.2509 12.6572 6.9836 35.3245 2.0979 68.8570 2.1265 2.0313 2.1265 2.0313 2.4323 11.8752 0.9795 48.6858 0.9795 48.6858 0.9795 29.2024 0.9795 29.20343 1.1.2006 6.6652 2.1359 2.0403 1.1.2005 39.7555 2.1456 2.0403 1.66652 25.4681 1.6000 39.7555 2.1456 2.0403 1.6030 39.7555 2.1456 2.0403 1.6603 39.7555 2.1456 2.0403 2.1554 2.0589 0.5605 10.0871 2.0156 21.0270
	2011 2.11 3.25 6.98	2012)] 2.1174 3.2509 6.9836 2.0979 2.1265	2012)] 2.1174 2.1174 2.2.1269 2.1265 2.1265 2.1265 2.1265	2012)] 2012)] 2.1174 2.0 3.2509 12.6 6.9836 35.5 2.0979 68.8 2.1265 2.0 2.1265 2.0 2.1323 11.3 0.5746 29.5	2012)] 2012)] 2.1174 2.02 3.2509 12.62 6.9836 35.33 6.9836 35.33 2.0979 68.85 2.1265 2.03 2.1323 11.83 0.5746 29.20 0.5746 29.20	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	2.11 [′] 13.25 36.98	2.1174 13.2509 36.9836 72.0979 2.1265	2.1174 2 13.2509 1 36.9836 3 72.0979 6 2.1265 2 12.4323 1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
501	501 13.25 764 36.98 681 72.06	501 13.250 764 36.983 681 72.097 265 2.126	501 13.250 764 36.983 681 72.097 655 2.126 314 12.433	501 13.250 764 36.983 681 72.097 682 2.126 314 12.432 672 30.574	501 13.250 764 36.983 681 72.097 65 2.126 314 12.432 672 30.574 533 50.975	501 13.250 764 36.983 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 553 50.975 553 2.135	501 13.250 764 36.983 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 559 2.135 559 2.135 552 11.726	501 13.250 764 36.983 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 559 2.135 550 2.135 550 11.726 580 26.665	501 13.250 764 36.983 681 72.097 665 2.126 314 12.432 672 30.574 553 50.975 553 50.975 550 2.135 550 2.135 560 2.135 573 50.975 560 2.135 572 11.726 580 26.665 563 41.625	501 13.250 764 36.983 681 72.097 665 2.126 314 12.432 672 30.574 553 50.975 553 50.975 553 50.975 553 50.975 553 2.135 560 2.135 573 50.975 553 50.975 553 2.135 560 2.135 572 11.726 580 26.665 063 41.625 565 2.145	501 13.250 764 36.983 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 559 2.135 559 2.135 559 2.135 559 2.135 550 26.665 063 41.625 053 41.625 051 11.105 051 11.105	501 13.250 764 36.983 681 72.097 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 559 2.135 559 2.135 559 2.135 560 2.135 573 50.975 560 2.135 572 11.726 580 26.665 566 2.145 570 21.45 790 23.985	501 13.250 764 36.983 681 72.097 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 559 2.135 559 2.135 559 2.135 559 2.135 559 2.135 559 2.135 559 2.135 550 2.135 550 2.135 550 2.135 550 2.135 550 2.135 5665 30.5145 5665 30.5145 570 23.985 571 23.985 570 23.985 570 23.985 5035 30.5145	501 13.250 764 36.983 681 72.097 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 559 2.135 559 2.135 559 2.135 550 2.135 550 2.135 550 2.135 550 2.135 560 2.135 572 11.726 580 26.665 063 41.625 071 11.105 790 23.985 181 36.038 554 2.155	501 13.250 764 36.983 681 72.097 681 72.097 665 2.126 314 12.432 672 30.574 533 50.975 553 50.975 553 50.975 553 50.975 550 2.135 550 2.135 550 2.135 560 2.135 572 11.726 580 26.665 063 41.629 071 11.108 071 11.108 574 2.145 554 2.145 554 2.155 555 10.560	501 13.250 764 36.983 681 72.097 681 72.097 665 2.1266 314 12.432 672 30.574 533 50.975 559 2.135 559 2.145 063 41.625 063 41.625 071 11.108 071 11.108 071 11.108 071 11.108 790 23.985 554 2.1455 555 10.566 555 10.566 591 22.056 591 22.015
	36.9764 77.0681	36.9764 72.0681 2.1265	36.9764 72.0681 2.1265 12.4314	36.9764 72.0681 2.1265 12.4314 30.5672	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 2.1359	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 2.1359 11.7252	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 2.1359 11.7252 26.6580	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063 2.1456	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063 2.1456 11.1071	36.9764 72.0681 72.0681 12.4314 30.5672 50.9533 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063 2.1456 11.1071 23.9790	36.9764 72.0681 72.0681 12.4314 30.5672 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063 2.1456 11.1071 23.9790 36.0181	36.9764 72.0681 72.0681 12.4314 30.5672 50.9533 2.1359 11.7252 26.6580 41.6063 26.6580 41.6063 21.456 11.1071 2.1456 11.1071 23.9790 23.9790 23.0181	36.9764 72.0681 2.1265 12.4314 30.5672 50.9533 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063 2.1456 11.1071 23.9790 36.0181 2.1554 10.5595	36.9764 72.0681 72.0681 12.4314 30.5672 50.9533 50.9533 50.9533 2.1359 11.7252 26.6580 41.6063 2.1456 11.1071 2.1456 11.1071 2.1456 11.1071 2.1554 2.1554 10.5595 22.1559
	2 2 2 2 2	4 36 4 36 36 36 36 36 36 36 36 36 36 36 36 36	6 4 3 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 0 0 30 2 0 12 3 12 3 12 3 12 3 12 3 12 3 12 3 12 3	5 4 4 3 6 5 6 1 2 3 5 3 3 3 3 3	5 6 3 6 1 2 3 7 2 3 3 7 3 3 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36 6 36 36 36 37 37 37 37 36 </td <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>2 2 2 3 2 2 5 5 3 2 2 5 5 3 2 2 5 5 3 2 2 1 1 2 2 3 4 1 1 2 2 2 2 3</td> <td>0 0</td> <td>2 2 2 2 2 3 3 4 2 2 2 2 2 3 3 5 3 3 5 1 2 3 3 6 1 2 5 1 2 2 3 7 3 3 5 1 2 2 3</td> <td>74 70 <</td> <td>5 7 2 2 2 3 5 7 2 5 5 3 1 5 7 2 2 5 3 1 5 7 2 2 5 3 1 5 7 2 3 2 3 1 5 7 2 2 3 1 2 5 7 2 3 2 3 1</td>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2 2 3 2 2 5 5 3 2 2 5 5 3 2 2 5 5 3 2 2 1 1 2 2 3 4 1 1 2 2 2 2 3	0 0	2 2 2 2 2 3 3 4 2 2 2 2 2 3 3 5 3 3 5 1 2 3 3 6 1 2 5 1 2 2 3 7 3 3 5 1 2 2 3	74 70 <	5 7 2 2 2 3 5 7 2 5 5 3 1 5 7 2 2 5 3 1 5 7 2 2 5 3 1 5 7 2 3 2 3 1 5 7 2 2 3 1 2 5 7 2 3 2 3 1
4447	81 8073	84.8073 2.5034	84.8073 2.5034 14.6336	84.8073 2.5034 14.6336 35.9762	84.8073 2.5034 14.6336 35.9762 59.9546	84.8073 2.5034 14.6336 35.9762 59.9546 2.5145	84.8073 2.5034 14.6336 35.9762 59.9546 2.5145 13.8021	84.8073 2.5034 14.6336 35.9762 59.9546 2.5145 13.8021 31.3746	84.8073 2.5034 14.6336 35.9762 59.9546 2.5145 13.8021 31.3746 48.9548	$\begin{array}{c} 84.8073 \\ 2.5034 \\ 14.6336 \\ 35.9762 \\ 59.9546 \\ 59.9546 \\ 2.5145 \\ 13.8021 \\ 13.8021 \\ 31.3746 \\ 48.9548 \\ 2.5258 \end{array}$	84.8073 2.5034 14.6336 35.9762 59.9546 59.9546 13.8021 31.3746 48.9548 2.5258 2.5258 13.0744	84.8073 2.5034 14.6336 35.9762 59.9546 2.5145 13.8021 31.3746 48.9548 2.5258 2.5258 13.0744 13.0744	$\begin{array}{c} 84.8073 \\ 2.5034 \\ 14.6336 \\ 35.9762 \\ 59.9546 \\ 2.5145 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 2.5258 \\ 2.5258 \\ 2.5258 \\ 13.0744 \\ 13.0774 \\ 13.0744 \\ 13.0$	$\begin{array}{c} 84.8073 \\ 84.8073 \\ 14.6336 \\ 35.9762 \\ 59.9546 \\ 2.5145 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 2.5374 \\ 2.5374 \end{array}$	$\begin{array}{c} 84.8073 \\ 2.5034 \\ 14.6336 \\ 35.9762 \\ 59.9546 \\ 59.9546 \\ 59.9546 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.0744 \\ 13.0744 \\ 13.0744 \\ 13.0744 \\ 12.5274 \\ 12.4297 \end{array}$	$\begin{array}{c} 84.8073 \\ 2.5034 \\ 14.6336 \\ 35.9762 \\ 59.9546 \\ 59.9546 \\ 59.9546 \\ 13.8021 \\ 13.8021 \\ 13.8021 \\ 13.0744 \\ 13.0744 \\ 13.0744 \\ 13.0744 \\ 13.0744 \\ 12.5376 \\ 25.525 \\ 25.9025 \\ 25.9025 \\ 25.9025 \\ \end{array}$
.5087 43.		5034 2.5					/53/ 84. 5034 2.5 .6320 14. .9077 59. .5145 2.5 .5145 2.5 .8004 13.	/53/ 84. 5034 2.5 .6320 14. .6328 35. .9077 59. .5145 2.5 .8004 13. .3618 31.					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
43.508	04.1.0	2.5032	2.503/ 14.632	2.503/ 14.632 35.962	2.503/ 14.632 35.962 59.907	2.503- 14.632 35.962 59.907 2.5145	2.503- 14.632 35.962 59.907 59.907 2.5145 13.800	2.503- 14.632 35.962 59.907 59.907 59.907 13.800 31.361	2.503- 2.503- 35.962 59.907 59.907 59.907 59.907 13.800 13.800 31.361 48.914	2.503- 2.503- 2.5962 59.907 59.907 59.907 2.514; 13.800 13.800 13.800 13.801 48.914 48.914	2.5034 2.5034 35.962 59.907 59.907 59.907 59.907 13.800 13.800 13.800 13.801 48.914 48.914 13.072	2.503- 2.503- 2.514(2.503- 2.503- 35.962 59.907 59.907 59.907 59.907 31.361 31.361 48.914 48.914 48.914 48.914 48.914 2.5255 13.072 13.072 28.209	2.503- 2.503- 35.962 59.907 59.907 59.907 59.907 13.800 13.800 13.800 13.800 13.800 13.800 13.800 2.5255 13.072 13.072 2.5255 2.55577 2.55577 2.55577 2.555777 2.5557777777777	2.503- 2.503- 35.962 59.907 59.907 59.907 13.800 13.800 13.800 13.801 48.914 48.914 48.914 48.914 48.914 48.914 48.914 2.5237 28.209 28.209 28.209 28.209 28.209	2.503- 2.503- 35.962 59.907 59.907 59.907 59.907 2.5142 48.914 48.914 48.914 48.914 48.914 48.914 48.914 48.914 48.914 2.5255 28.209 28.209 28.209 28.209 22.537/2 22
61.4043 110.6750		3.5315	3.5315 20.6443	3.5315 3.5315 20.6443 50.7605	3.5315 3.5315 20.6443 50.7605 84.6110	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 44.2688	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 44.2688 69.0894	3.5631 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 44.2688 69.0894 3.5631	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 44.2688 69.0894 3.5631 18.4450	3.5315 3.5315 50.7605 84.6110 3.5471 19.4715 19.4715 69.0894 69.0894 3.5631 18.4450 3.9.8198	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 19.4715 69.0894 3.5631 18.4450 3.5631 18.4450 39.8198 59.8098	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 44.2688 69.0894 3.5631 18.4450 33.5631 33.5638 59.8098 59.8098 59.8098	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 19.4715 19.4715 19.4715 19.4715 19.4715 19.4715 19.4715 3.5631 19.4420 3.5631 18.4450 3.5638 59.8098 59.8098 3.5795	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471 19.4715 44.2688 69.0894 3.5631 18.4450 39.8198 59.8098 3.5795 17.5356 36.5486
01.4043 19.6750	12.U/JU	3.5315	3.5315 20.6443	3.5315 20.6443 50.7605	3.5315 3.5315 20.6443 50.7605 84.6110	3.5315 3.5315 20.6443 50.7605 84.6110 3.5471	3.5315 3.5315 20.6443 50.7605 50.7605 34.6110 3.5471 19.4715	3.5315 3.5315 20.6443 50.6443 50.7605 34.6110 3.5471 3.5471 19.4715 14.2688	3.5315 3.5315 20.6443 50.7605 50.7605 34.6110 3.5471 19.4715 19.4715 14.2688 50.0894 59.0894	3.5315 3.5315 20.6443 20.6443 50.7605 34.6110 3.5471 10.4715 19.4715 44.2688 59.0894 59.0894 3.5631 3.5631	3.5315 3.5315 20.6443 50.7605 34.6110 3.5471 19.4715 19.4715 19.4715 19.4715 13.5631 3.5631 18.4450	3.5315 3.5315 20.6443 50.7605 34.6110 3.5471 19.4715 19.4715 44.2688 59.0894 3.5631 18.4450 39.8198	3.5315 3.5315 20.6443 50.7605 50.7605 34.6110 3.5471 19.4715 19.4715 59.0894 3.5631 18.4450 39.8198 59.8098	3.5315 3.5315 20.6443 20.6443 50.7605 34.6110 3.5471 10.4715 19.4715 19.4715 3.5631 3.5631 3.5631 18.4450 39.8198 35795	3.5315 3.5315 20.6443 20.6443 50.7605 34.6110 3.5471 19.4715 19.4715 14.2688 59.0894 3.5631 3.5631 18.4450 39.8198 59.8098 59.8098 3.5795 17.5356 17.5356	3.5315 3.5315 20.6443 20.6443 50.7605 34.6110 3.5471 3.5471 19.4715 19.4715 14.2688 35.501 33.5631 18.4450 39.8198 35.5795 3.5795 3.5795 36.5486 36.5486
2 - 0		+ +			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 3 2 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
l = l		i = 1		$\begin{array}{c c} i \\ i $		$\begin{array}{c c} \mathbf{i} \\ $							$\begin{array}{c} i = 1 \\ i = 1 \\$	$\begin{array}{c c} \vdots \\ \vdots $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

For the case in hand, changing the material parameter p from 0 to 10 results in decreasing the natural frequencies, as can be seen in Tables 5-8. It should be noted that as the nonlocal parameter increases, the first natural frequency increases, which highlights the significance of the nonlocal effect. One may clearly notice here that, the calculated frequencies based on central axis position are overestimated compared to those obtained based on neutral axis position.

It is also observed that, by increasing the nonlocal parameter from 0 to 4, the first nondimensional frequency decreases about 15% at a constant material distribution for S-S, C-C and C-S boundary conditions while the trend for the 2nd, 3rd and the 4th nondimensional frequencies are decreasing about 38%, 54% and 64% respectively. On the other hand, for the C-F boundary condition the first natural frequency increases about 1.8% and the 2nd, 3rd and the 4th nondimensional frequencies decreases about 21%, 40% and 55% respectively, at a fixed material distribution. In this study, increasing the material distribution parameter at a constant nonlocal parameter causes the decreasing in all frequencies, due to increasing the ceramics phase constituent, and hence, stiffness of the beam. By changing the material distribution parameter from 0 to 10, the first four frequencies reduced about 40-45%. This result indicates that, the effect of material graduation index strengthen the nanobeam by increasing the ceramics constituent phase. This trend is observable in other edge conditions of C-C, C-S and C-F. Lastly the effect of nonlocal parameter and material distribution on the nondimensional frequency of FG nanobeam with various edge conditions are presented in Tables 6-8. For a C-C nanobeam, as the nonlocal parameter changes from 0 to 4, the first natural frequency decreases about 18%, as can be noted from the Table 6.

The effect of nonlocal and material distribution parameter on the frequencies of C-S FG nanobeam is illustrated in Table 7. It is observed that, by increasing the nonlocal parameter from 0 to 4, the first natural frequency decreases about 17% at a fixed material graduation parameter.

The nondimensional frequencies of the C-F FG nanobeam, versus the nonlocal and material distribution parameters, are tabulated in Table 8. It is observed that, by increasing the nonlocal parameter from 0 to 4, the first natural frequency increases about 1.8% at a constant material distribution parameter. It can be noticed that, the neutral axis position has negligible effect on the first natural frequency of C-F FG nanobeam. For all boundary conditions, the results show a decreasing about 42% in first four natural frequencies of FG nanobeams at a fixed nonlocal parameter, where the material distribution parameter changes from 0 to 10.

Figure 2 demonstrate the variation of nondimensional fundamental frequency with changing the material graduation parameter for various nonlocal parameters of FG nanobeam with different boundary conditions. As presented in this figure, for all

Figure 2: Variation of the first dimensionless frequency of FG nanobeam with material graduation for various boundary conditions (L/h=100).

boundary conditions by increasing material graduation parameter, the first dimensionless frequency decreases. It is also observed that, in the case of C-F edge condition, increasing material graduation parameter at constant nonlocal parameter of $\mu = 0$ has non-sensitive effect on frequency parameter.

4.3 Buckling analysis

For the purpose of verification, the present model is used to find the buckling load for a S-S FG nanobeam modeled based on neutral axis position where the nonlocal effect is taken into consideration. The obtained results by DTM are compared with the results available in literature. To the author's best knowledge no study reported on the buckling analysis of FG nanobeams based on neutral axis position yet. This comparison is presented in Table 9 for the length-to-thickness ratio of 100 while varying the nonlocal parameter μ from 0 to 4. As can be seen from Table 9, the obtained results are in a good agreement with those of Reddy (2007) which has been obtained by analytical method. The buckling load is non-dimensionalized as follows:

$$\lambda = \frac{\bar{P}_{cr} L^2}{EI} \tag{44}$$

beam $(L/h=10)$)0).		
	μ	Analytical	DTM
		[Reddy (2007)]	(Present study)
	0	9.8696	9.8696044
	0.5	9.4055	9.4054633

8.9830162

8.5968863

8.2425836

7.9163286

7.6149176

7.3356170

7.0760799

8.9830

8.5969

8.2426

7.9163

7.6149

7.3356

7.0761

1

1.5

2

2.5

3

3.5

4

Table 9: Comparison of the nondimensional buckling load for a simply supported	ed
nanobeam $(L/h=100)$.	
u Analytical DTM	

For all edge conditions, the nondimensional buckling load is presented considering
the physical neutral axis position in Tables 10-12 as the nonlocal parameter μ varies
from 0 to 5 and the material distribution parameter <i>p</i> ranges from 0 to 5.

	<i>p</i> =0		<i>p</i> =0.2			<i>p</i> =0.5		
μ	NA	CA	NA	CA		NA	CA	
	(Present	[Eltaher et	(Present	[Eltaher et		(Present	[Eltaher et	
	study)	al. (2013b)]	study)	al. (2013b)]		study)	al. (2013b)]	
0	9.8696	9.8620	11.4907	11.6594		12.7110	12.9460	
1	8.9830	8.9843	10.4585	10.2614		11.5691	11.6760	
2	8.2425	8.2431	9.5964	9.7741		10.6156	10.6585	
3	7.6149	7.6149	8.8657	9.3545		9.8071	9.8093	
4	7.0760	7.0765	8.2383	8.3176		9.1132	9.0585	
5	6.6084	6.6085	7.6939	7.7393		8.5109	8.7364	
	<i>p</i> =1		<i>p</i> =2			<i>p</i> =5		
		<i>p</i> =1		p=2			<i>p</i> =5	
μ	NA	<i>p</i> =1 CA	 NA	p = 2CA		NA	p = 5CA	
μ	NA (Present	p =1 CA [Eltaher et	 NA (Present	$\frac{p=2}{CA}$ [Eltaher et]		NA (Present	$\frac{p = 5}{CA}$ [Eltaher et]	
μ	NA (Present study)	p =1 CA [Eltaher et al. (2013b)]	NA (Present study)	p =2 CA [Eltaher et al. (2013b)]		NA (Present study)	<i>p</i> =5 CA [Eltaher et al. (2013b)]	
μ 0	NA (Present study) 13.6765	p =1 CA [Eltaher et al. (2013b)] 14.0775	 NA (Present study) 14.5609	p =2 CA [Eltaher et al. (2013b)] 14.8474		NA (Present study) 15.7324	p =5 CA [Eltaher et al. (2013b)] 15.7748	
μ 0 1	NA (Present study) 13.6765 12.4479	p =1 CA [Eltaher et al. (2013b)] 14.0775 12.4581	 NA (Present study) 14.5609 13.2529	p =2 CA [Eltaher et al. (2013b)] 14.8474 13.1254		NA (Present study) 15.7324 14.3191	p =5 CA [Eltaher et al. (2013b)] 15.7748 13.5711	
μ 0 1 2	NA (Present study) 13.6765 12.4479 11.4219	p =1 CA [Eltaher et al. (2013b)] 14.0775 12.4581 12.0652	 NA (Present study) 14.5609 13.2529 12.1605	p =2 CA [Eltaher et al. (2013b)] 14.8474 13.1254 12.4757		NA (Present study) 15.7324 14.3191 13.1389	p =5 CA [Eltaher et al. (2013b)] 15.7748 13.5711 13.2140	
μ 0 1 2 3	NA (Present study) 13.6765 12.4479 11.4219 10.5521	p =1 CA [Eltaher et al. (2013b)] 14.0775 12.4581 12.0652 10.9776	NA (Present study) 14.5609 13.2529 12.1605 11.2345	p =2 CA [Eltaher et al. (2013b)] 14.8474 13.1254 12.4757 11.7415		NA (Present study) 15.7324 14.3191 13.1389 12.1384	p =5 CA [Eltaher et al. (2013b)] 15.7748 13.5711 13.2140 12.2786	
μ 0 1 2 3 4	NA (Present study) 13.6765 12.4479 11.4219 10.5521 9.8054	p =1 CA [Eltaher et al. (2013b)] 14.0775 12.4581 12.0652 10.9776 9.9816	 NA (Present study) 14.5609 13.2529 12.1605 11.2345 10.4395	p = 2 CA [Eltaher et al. (2013b)] 14.8474 13.1254 12.4757 11.7415 10.4649		NA (Present study) 15.7324 14.3191 13.1389 12.1384 11.2794	p =5 CA [Eltaher et al. (2013b)] 15.7748 13.5711 13.2140 12.2786 11.5231	

Table 10: Effect of neutral axis position on nondimensional buckling load of S-S FG nanobeams with different nonlocality and material exponents (L/h=100).

By changing the material distribution parameter p, a significant change in the buckling load is observed at a fixed nonlocal parameter. For the case in hand, changing the material parameter p from 0 to 5 results in an increase in the buckling load of about 60%, as can be seen from Tables 10-12. It is also concluded that as the nonlocal parameter increases, the buckling load decreases, which highlight the significance of the nonlocal effect.

Effect of neutral axis position on nondimensional buckling load for all boundary conditions of FG nanobeam is significant. It can be noticed from Tables 10-12 that the calculated buckling load based on central axis position is underestimated compared to one obtained based on neutral axis position.

For a FG nanobeam with S-S edge condition, as the nonlocal parameter increases from 0 to 5, the buckling load decreases about 50%, as presented in Table 10. In addition, by increasing the material distribution parameter form 0 to 5, the buckling load increases about 60%. The nondimensional buckling load of the C-C FG nanobeam, versus the nonlocal and material distribution parameters, is tabulated in Table 11. It is observed that, by increasing the nonlocal parameter from 0 to 5, the

	<i>p</i> =0		<i>p</i> =0.2			<i>p</i> =0.5		
μ	NA	CA	NA	CA		NA	CA	
	(Present	[Eltaher et	(Present	[Eltaher et		(Present	[Eltaher et	
	study)	al. (2013b)]	study)	al. (2013b)]		study)	al. (2013b)]	
0	39.4784	39.4999	45.9630	45.4462		50.8439	51.4620	
1	28.3043	30.6731	32.9535	35.0730		36.4529	38.7988	
2	22.0603	24.2329	25.6838	27.7791		28.4113	30.7304	
3	18.0733	19.8038	21.0419	22.7661		23.2764	25.1852	
4	15.3068	16.6666	17.8211	19.2009		19.7135	21.2417	
5	13.2749	14.3566	15.4554	16.5660		17.0966	18.3258	
	<i>p</i> =1		 <i>p</i> =2			<i>p</i> =5		
		<i>p</i> =1		p=2		i i i i i i i i i i i i i i i i i i i	<i>p</i> =5	
μ	NA	<i>p</i> =1 CA	 NA	p = 2CA		NA	p = 5CA	
μ	NA (Present	p =1 CA [Eltaher et	 NA (Present	$\frac{p=2}{CA}$ [Eltaher et]		NA (Present	$\frac{p = 5}{CA}$ [Eltaher et]	
μ	NA (Present study)	p =1 CA [Eltaher et al. (2013b)]	NA (Present study)	p =2 CA [Eltaher et al. (2013b)]		NA (Present study)	<i>p</i> =5 CA [Eltaher et al. (2013b)]	
μ 0	NA (Present study) 54.7058	P =1 CA [Eltaher et al. (2013b)] 55.2474	NA (Present study) 58.2435	p =2 CA [Eltaher et al. (2013b)] 55.9902		NA (Present study) 62.9295	p =5 CA [Eltaher et al. (2013b)] 63.4032	
μ 0 1	NA (Present study) 54.7058 39.2217	p =1 CA [Eltaher et al. (2013b)] 55.2474 41.7464	NA (Present study) 58.2435 41.7581	p =2 CA [Eltaher et al. (2013b)] 55.9902 44.4451		NA (Present study) 62.9295 45.1177	p =5 CA [Eltaher et al. (2013b)] 63.4032 48.0202	
μ 0 1 2	NA (Present study) 54.7058 39.2217 30.5693	p =1 CA [Eltaher et al. (2013b)] 55.2474 41.7464 33.0649	NA (Present study) 58.2435 41.7581 32.5461	p =2 CA [Eltaher et al. (2013b)] 55.9902 44.4451 35.2028		NA (Present study) 62.9295 45.1177 35.1646	p =5 CA [Eltaher et al. (2013b)] 63.4032 48.0202 38.0331	
μ 0 1 2 3	NA (Present study) 54.7058 39.2217 30.5693 25.0444	p =1 CA [Eltaher et al. (2013b)] 55.2474 41.7464 33.0649 27.0988	NA (Present study) 58.2435 41.7581 32.5461 26.6640	p = 2 CA [Eltaher et al. (2013b)] 55.9902 44.4451 35.2028 28.8504		NA (Present study) 62.9295 45.1177 35.1646 28.8092	p =5 CA [Eltaher et al. (2013b)] 63.4032 48.0202 38.0331 31.1701	
μ 0 1 2 3 4	NA (Present study) 54.7058 39.2217 30.5693 25.0444 21.2109	p =1 CA [Eltaher et al. (2013b)] 55.2474 41.7464 33.0649 27.0988 22.8558	NA (Present study) 58.2435 41.7581 32.5461 26.6640 22.5826	p =2 CA [Eltaher et al. (2013b)] 55.9902 44.4451 35.2028 28.8504 24.3331		NA (Present study) 62.9295 45.1177 35.1646 28.8092 24.3995	p =5 CA [Eltaher et al. (2013b)] 63.4032 48.0202 38.0331 31.1701 26.2887	

Table 11: Effect of neutral axis position on nondimensional buckling load of C-C FG nanobeams with different nonlocality and material exponents (L/h=100).

buckling load decreases about 66% at a constant material distribution parameter p. By changing the material distribution parameter form 0 to 5, the buckling load is increased by about 60%. Moreover the effect of nonlocality and material distribution on the buckling load of FG nanobeam with C-S edge condition is illustrated in Table 12. It is observed that, by increasing the nonlocal parameter from 0 to 5, the buckling load decreases about 50% at a fixed material graduation parameter. Whereas, by changing the material distribution parameter from 0 to 5, the variation of the buckling load is similar to those of S-S and the C-C FG nanobeams. Figure 3 presents the nondimensional buckling load for a FG nanobeam with varying material distribution parameter for various nonlocal parameters and different edge conditions. This observation is found to be similar for different values of nonlocal parameters μ =1, 2, 3, 4 and 5 as shown in Figure 3. Conclusions drawn from Tables 10-12 can be easily noted from these figures.

Figure 3: Variation of the nondimensional buckling load with material graduation for different boundary condition (L/h=100).

	<i>p</i> =0		<i>p</i> =0.2			<i>p</i> =0.5		
μ	NA	CA	NA	CA		NA	CA	
	(Present	[Eltaher et	(Present	[Eltaher et		(Present	[Eltaher et	
	study)	al. (2013b)]	study)	al. (2013b)]		study)	al. (2013b)]	
0	20.1907	20.1958	23.5072	23.8797		26.0035	26.2847	
1	16.7989	16.8744	19.5582	19.2855		21.6352	22.0704	
2	14.3828	14.4880	16.7452	16.4072		18.5234	19.0595	
3	12.5742	12.6883	14.6396	14.8992		16.1942	16.1701	
4	11.1697	11.2792	13.0044	13.0443		14.3854	14.5569	
5	10.0475	10.1515	11.6978	11.7682		12.9400	13.0258	
	<i>p</i> =1		<i>p</i> =2			<i>p</i> =5		
μ	NA	CA	NA	CA		NA	CA	
	(Present	[Eltaher et	(Present	[Eltaher et		(Present	[Eltaher et	
	study)	al. (2013b)]	study)	al. (2013b)]		study)	al. (2013b)]	
0	27.9786	28.1763	29.7879	30.0269		32.1845	32.8452	
1	23.2785	23.4290	24.7838	24.3045		26.7778	27.1898	
2	19.9304	20.2627	21.2192	21.8358		22.9265	21.9874	
3	17.4243	17.0362	18.5511	18.8833		20.0436	20.4901	
4	15.4781	15.8088	16.4790	16.6923		17.8048	17.6784	

Table 12: Effect of neutral axis position on nondimensional buckling load of C-S FG nanobeams with different nonlocality and material exponents (L/h=100).

5 Conclusions

In this paper, free vibration and buckling analysis of functionally graded sizedependent nanobeams modeled based on physical neutral axis position is investigated within the framework of a semi-analytical technique called the differential transform method. The material properties of FG nanobeams vary continuously in the thickness direction according to the power-law form. Nonlocal elasticity equations of Eringen are applied in the formulations to achieve the vibration and buckling characteristics of FG nanobeam through Hamilton's principle. The good agreement between the results of this article and those available in literature validated the presented approach. Several important aspects such as material volume fraction index, nonlocal parameter, mode number and as well as various edge conditions which have impacts on natural frequencies of FG nanobeams are investigated and discussed in detail. Numerical results reveal that the neutral axis position play an important role on the vibration and buckling behavior of a FG nanobeam and the calculated frequencies based on geometrical central axis position is overestimated. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

References

Alshorbagy, A. E.; Eltaher, M. A.; Mahmoud, F. F. (2011): Free vibration characteristics of a functionally graded beam by finite element method. *Applied Mathematical Modelling*, vol. 35, pp. 412–425.

Ansari, R.; Gholami, R.; Sahmani, S. (2011): Free vibration analysis of sizedependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. *Composite Structures*, vol. 94, pp. 221–8.

Asghari, M.; Ahmadian, M. T.; Kahrobaiyan, M. H.; Rahaeifard, M. (2010): On the size-dependent behavior of functionally graded micro-beams. *Materials and Design*, vol. 31, pp. 2324–2329.

Asghari, M.; Rahaeifard, M.; Kahrobaiyan, M. H.; Ahmadian, M. T. (2011): The modified couple stress functionally graded Timoshenko beam formulation. *Materials and Design*, vol. 32, pp. 1435–1443.

Aydogdu, M. (2009): A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. *Physica E: Low-dimensional Systems and Nanos-tructures*, vol. 41, no. 9, pp. 1651-1655.

Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. (2002): Carbon nanotubes– the route toward applications. *Science*, vol. 297, no. 5582, pp. 787-792.

Chen, C. O. K.; Ju, S. P. (2004): Application of differential transformation to transient advective–dispersive transport equation. *Applied Mathematics and Computation*, vol. 155, no. 1, pp. 25-38.

Civalek, O.; Demir, C.; Akgoz, B. (2010): Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model. *Mathematical and Computational Applications*, vol. 15, no. 2, pp. 289–298.

Civalek, Ö.; & Demir, Ç. (2011): Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. *Applied Mathematical Modelling*, vol. 35, no. 5, pp. 2053-2067.

Ebrahimi, F.; Rastgoo, A.(2008a): Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers. *Smart Materials and Structures*, vol. 17, no. 1, 015044.

Ebrahimi, F.; Rastgoo, A. (2008b): An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. *Thin-Walled Structures*, vol. 46, no. 12, pp. 1402-1408.

Ebrahimi, F.; Rastgoo, A.; Atai, A. A. (2009a): A theoretical analysis of smart moderately thick shear deformable annular functionally graded plate. *European*

Journal of Mechanics-A/Solids, vol. 28, no. 5, pp. 962-973.

Ebrahimi, F.; Naei, M. H.; Rastgoo, A. (2009): Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation. *Journal of mechanical science and technology*, vol. 23, no. 8, pp. 2107-2124.

Eltaher, M. A.; Emam, S. A.; Mahmoud, F. F. (2012): Free vibration analysis of functionally graded size-dependent nanobeams. *Applied Mathematics and Computation*, vol. 218, no. 14, pp. 7406-7420.

Eltaher, M. A.; Alshorbagy, A. E.; Mahmoud, F. F. (2013a): Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. *Composite Structures*, vol. 99, pp. 193-201.

Eltaher, M. A.; Emam, S. A.; Mahmoud, F. F. (2013b): Static and stability analysis of nonlocal functionally graded nanobeams. *Composite Structures*, vol. 96, pp. 82–88.

Eringen, A. C.; Edelen, D. G. B. (1972): Nonlocal elasticity. *International Journal of Engineering Sciences*, vol. 10, no. 3, pp. 233–48.

Eringen, A. C. (1972b): Nonlocal polar elastic continua. *International Journal of Engineering Sciences*, vol. 10, no. 1, pp. 1-16.

Eringen, A. C. (1983): On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. *Journal of Applied Physics*, vol. 54, no. 9, pp. 4703-4710.

Hassan, I. A. H. (2002): On solving some eigenvalue problems by using a differential transformation. *Applied Mathematics and Computation*, vol. 127, no. 1, pp. 1-22.

Iijima, S. (1991): Helical microtubules of graphitic carbon. *Nature*, vol. 354, no. 6348, pp. 56-58.

Ke, L. L.; Wang, Y. S. (2011): Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory. *Composite Structures*, vol. 93, pp. 342–350.

Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S. (2012): Nonlinear free vibration of size dependent functionally graded microbeams. *International Journal of Engineering Sciences*, vol. 50, pp. 256–67.

Lee, Z.; Ophus, C.; Fischer, L. M.; Nelson-Fitzpatrick, N.; Westra, K. L.; Evoy, S. et al. (2006): Metallic NEMS components fabricated from nanocomposite Al–Mo films. *Nanotechnology*, vol. 17, no. 12, pp. 3063–70.

Maranganti, R.; Sharma, P. (2007): Length scales at which classical elasticity breaks down for various materials. *Physical review letters*, vol. 98, no. 19, 195504.

Niknam, H.; Aghdam, M. M. (2015): A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. *Composite Structures*, vol. 119, pp. 452-462.

Peddieson, J.; Buchanan, G. R.; McNitt, R. P. (2003): Application of nonlocal continuum models to nanotechnology. *International Journal of Engineering Science*, vol. 41, no. 3, pp. 305-312.

Phadikar, J. K.; Pradhan, S. C. (2010): Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. *Computational Materials Science*, vol. 49, no. 3, pp. 492-499.

Pradhan, S. C.; Murmu, T. (2010): Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. *Physica E: Low-dimensional Systems and Nanostructures*, vol. 42, no. 7, pp. 1944-1949.

Reddy, J. N. (2007): Nonlocal theories for bending, buckling and vibration of beams. *International Journal of Engineering Science*, vol. 45, no. 2, pp. 288-307.

Simsek, M.; Yurtcu, H. H. (2013): Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. *Compos. Struct.*, vol. 97, pp. 378–386.

Tauchert, T. R. (1974): Energy principles in structural mechanics. Library of Congress Cataloging in Publication Data.

Wang, X.; Cai, H. (2006): Effects of initial stress on non-coaxial resonance of multi-wall carbon nanotubes. *Acta materialia*, vol. 54, no. 8, pp. 2067-2074.

Wang, Q. (2005): Wave propagation in carbon nanotubes via nonlocal continuum mechanics. *Journal of Applied Physics*, vol. 98, no. 12, 124301.

Wang, Q.; Varadan, V. K. (2006): Vibration of carbon nanotubes studied using nonlocal continuum mechanics. *Smart materials and structures*, vol. 15, no. 2, pp. 659.

Wang, Q.; Liew, K. M. (2007): Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures. *Physics Letters A*, vol. 363, no. 3, pp. 236-242.

Witvrouw, A.; Mehta, A. (2005): The use of functionally graded poly-SiGe layers for MEMS applications. *Funct Graded Mater*, vol. 492, pp. 255-260.

Zhang, Y. Q.; Liu, G. R.; Wang, J. S. (2004): Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. *Physical review B*, vol. 70, no. 20, 205430.

Zhang, D. G.; Zhou, Y. H. (2008): A theoretical analysis of FGM thin plates based on physical neutral surface. *Computational Materials Science*, vol. 44, no. 2, pp. 716-720.