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A Semi-analytical Method for Vibrational and Buckling
Analysis of Functionally Graded Nanobeams Considering

the Physical Neutral Axis Position
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Abstract: In this paper, a semi-analytical method is presented for free vibration
and buckling analysis of functionally graded (FG) size-dependent nanobeams based
on the physical neutral axis position. It is the first time that a semi-analytical dif-
ferential transform method (DTM) solution is developed for the FG nanobeams
vibration and buckling analysis. Material properties of FG nanobeam are supposed
to vary continuously along the thickness according to the power-law form. The
physical neutral axis position for mentioned FG nanobeams is determined. The
small scale effect is taken into consideration based on nonlocal elasticity theory of
Eringen. The nonlocal equations of motion are derived through Hamilton’s princi-
ple and they are solved applying DTM. It is demonstrated that the DTM has high
precision and computational efficiency in the vibration analysis of FG nanobeams.
The good agreement between the results of this article and those available in liter-
ature validated the presented approach. The detailed mathematical derivations are
presented and numerical investigations are performed while the emphasis is placed
on investigating the effect of the several parameters such as neutral axis position,
small scale effects, the material distribution profile, mode number, thickness ratio
and boundary conditions on the normalized natural frequencies and dimensionless
buckling load of the FG nanobeams in detail. It is explicitly shown that the vibra-
tion and buckling behaviour of a FG nanobeams is significantly influenced by these
effects.
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1 Introduction

Functionally graded materials (FGMs) are composite materials with inhomoge-
neous micromechanical structure and are generally composed of two different parts
such as ceramic and metal in which the material properties changes smoothly be-
tween two surfaces. This kind of material as a novel generation of composites
of microscopical heterogeneity are achieved by controlling the volume fractions,
microstructure, porosity, etc. of the material constituents during manufacturing, re-
sulting in spatial gradient of macroscopic material properties of mechanical strength
and thermal conductivity [Ebrahimi & Rastgoo (2008a, b)]. As a result, in compar-
ison with traditional composites, FGMs possess various advantages, for instance,
ensuring smooth transition of stress distributions, minimization or elimination of
stress concentration, and increased bonding strength along the interface of two dis-
similar materials. Therefore, FGMs have received wide applications in modern
industries including aerospace, mechanical, electronics, optics, chemical, biomed-
ical, nuclear and civil engineering to name a few during the past two decades.
Motivated by these engineering applications, FGMs have also attracted intensive
research interests, which were mainly focused on their static, dynamic and vibra-
tion characteristics of FG structures [Ebrahimi et al. (2009a, b)].

Recently there has been growing interest for application of nonlocal continuum me-
chanics especially in the field of fracture mechanics, dislocation mechanics and mi-
cro/nano technologies. Structural elements such as beams, plates, and membranes
in micro or nanolength scale are commonly used as components in micro/nano
electromechanical systems (MEMS/NEMS). Therefore understanding the mechan-
ical and physical properties of nanostructures is necessary for its practical applica-
tions. At nanolength scales, size effects often become prominent, which cause an
increasing interest in the general area of nanotechnology. The classical continuum
mechanics is unable to account for the size effects. Therefore, we need to con-
sider the small length scales associated with nanostructures such as lattice spacing
between individual atoms, surface properties, grain size, etc. Nonlocal elasticity
theory introduced by Eringen accounts for the small-scale effects arising at the
nanoscale level. It has been extensively applied to analyze the bending, buckling,
vibration and wave propagation of beam-like elements in nanomechanical devices.
Unlike the constitutive equation in classical elasticity, Eringen’s nonlocal elasticity
theory states that the stress at a point in a body depends not only on the strain at
that point, but also on those at all points of the body. This observation is in accor-
dance with atomic theory of the lattice dynamics and experimental observation of
the phonon dispersion.

Nanoscale engineering materials have significant mechanical, electrical and ther-
mal performances that are superior to the conventional structural materials. They
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have attracted great interest in modern science and technology after the invention
of carbon nanotubes (CNTs) by Iijima (1991). For example, in micro/nano elec-
tromechanical systems; nanostructures have been used in many areas including
communications, machinery, information technology and biotechnology technolo-
gies. In recent years, nanobeams and CNTs hold a wide variety of potential ap-
plications [Zhang et al. (2004); Wang (2005); Wang and Varadan (2006)] such
as sensors, actuators, transistors, probes, and resonators in NEMSs. So far, three
main methods were provided to study the mechanical behaviors of nanostructures:
atomistic model [Baughman et al. (2002)], semi-continuum and continuum mod-
els [Wang and Cai (2006)]. However, both atomistic and semi-continuum models
are computationally expensive and are not suitable for analyzing large scale sys-
tems. In other words, since conducting experiments at the nanoscale is a daunting
task, and atomistic modeling is restricted to small-scale systems owing to com-
puter resource limitations, continuum mechanics offers an easy and useful tool for
the analysis of CNTs. Therefore, there are considerable efforts made to develop
and calibrate continuum structural models for CNTs analysis. Moreover due to the
inherent size effects, at nanoscale, the mechanical characteristics of nanostructures
are often significantly different from their behavior at macroscopic scale. Such ef-
fects are essential for nanoscale materials or structures and the influence on nano-
instruments is great [Maranganti and Sharma (2007)]. Consequently, the classical
continuum models need to be extended to consider the nanoscale effects and this
can be achieved through the nonlocal elasticity theory proposed by Eringen [Erin-
gen and Edelen (1972)] which considers the size-dependent effect. According to
this theory, the stress state at a reference point is considered as a function of strain
states of all points in the body. This nonlocal theory is proved to be in accor-
dance with atomic model of lattice dynamics and with experimental observations
on phonon dispersion [Eringen (1983)]. In nonlocal theory, the nonlocal nanoscale
in the constitutive equation could be considered simply as a material-dependent pa-
rameter. The ratio of internal characteristic scale (such as lattice parameter, C-C
bond length, granular distance, etc.) to external characteristic scale (such as crack
length, wave length, etc.) is defined within a nonlocal nanoscale parameter. If the
internal characteristic scale is much smaller than the external characteristic scale,
the nonlocal nanoscale parameter approaches zero and the classical continuum the-
ory is recovered.

The application of nonlocal elasticity theory, in micro and nanomaterials has re-
ceived a considerable attention within the nanotechnology community. Peddieson
et al. (2003) proposed a version of nonlocal elasticity theory which is employed
to develop a nonlocal Euler-Bernoulli beam model. Wang and Liew (2007) carried
out the static analysis of micro- and nano-structures based on nonlocal continuum
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mechanics using Euler-Bernoulli beam theory and Timoshenko beam theory. Ay-
dogdu (2009) proposed a generalized nonlocal beam theory to study bending, buck-
ling, and free vibration of nanobeams based on Eringen model and using different
beam theories. Phadikar and Pradhan (2010) reported finite element formulations
for nonlocal elastic Euler–Bernoulli beam and Kirchoff plate theory. Pradhan and
Murmu (2010) investigated the flapwise bending–vibration characteristics of a ro-
tating nanocantilever by using differential quadrature method (DQM). They noticed
that small-scale effects play a significant role in the vibration response of a rotating
nanocantilever. Civalek et al. (2010) presented a formulation of the equations of
motion and bending of Euler–Bernoulli beam using the nonlocal elasticity theory
for cantilever microtubules. The method of differential quadrature has been used
for numerical modeling. Civalek and Demir (2011) developed a nonlocal beam
model for the bending analysis of microtubules based on the Euler–Bernoulli beam
theory. The size effect is taken into consideration using the Eringen’s nonlocal
elasticity theory.

With the development of the material technology, FGMs have been employed in
MEMS/NEMS [Witvrouw and Mehta (2005); Lee et al. (2006)] behavior. Because
of high sensitivity of MEMS/NEMS to external stimulations, understanding me-
chanical properties and vibration behavior of them are of significant importance to
the design and manufacture of FG MEMS/NEMS. Thus, establishing an accurate
model of FG nanobeams is a key issue for successful NEMS design. Niknam and
Aghdam (2015) investigated the large amplitude free vibration of Euler-Bernoulli
FG nanobeams resting on nonlinear elastic foundation based on the ignorance of
the physical neutral axis position. The He’s variational method was used as a semi-
analytical solution for the nonlinear governing equation. Asghari et al. (2010,
2011) studied the free vibration of the FG Euler–Bernoulli microbeams, which has
been extended to consider a size-dependent Timoshenko beam based on the mod-
ified couple stress theory. The dynamic characteristics of FG beam with power
law material graduation in the axial or the transversal directions was examined
by Alshorbagy et al. (2011). Ke and Wang (2011) exploited the size effect on
dynamic stability of functionally graded Timoshenko microbeams. The free vi-
bration analysis of FG microbeams was presented by Ansari et al. (2011) based
on the strain gradient Timoshenko beam theory. It was shown that the value of
gradient index plays an important role in the vibrational response of the FG mi-
crobeams of lower slenderness ratios and by increasing the length to thickness ratio
of the FG microbeam, the value of dimensionless natural frequency tends to de-
crease for all amounts of the gradient index. Employing modified couple stress
theory the nonlinear free vibration of FG microbeams based on von Karman geo-
metric nonlinearity was presented by Ke et al. (2012). It was revealed that both the
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linear and nonlinear frequencies increase significantly when the thickness of the
FGM microbeam was comparable to the material length scale parameter. Eltaher
et al. (2012) presented a finite element formulation for free vibration analysis of
FG nanobeams based on nonlocal Euler beam theory. In another study, Eltaher et
al. (2013a) presented finite element model for free vibration analysis of simply-
supported FG nanobeams by using Euler-Bernoulli beam model based on neutral
axis position. They also exploited the size-dependent static-buckling behavior of
functionally graded nanobeams on the basis of the nonlocal continuum model [Elta-
her et al. (2013b)]. Using nonlocal Timoshenko and Euler–Bernoulli beam theory,
Simsek and Yurtcu (2013) investigated analytically bending and buckling of FG
nanobeams by analytical method. All of above mentioned works on FG nanobeams
are based on the assumptions that undeformed plane of nanobeam is placed at the
mid-plane but due to the variation of material properties along the thickness in FG
nanobeams, actually the undeformed plane coincides with the neutral plane rather
than the mid-plane.

As one may note, the most cited references dealing with the modeling of micro/nano-
beams are based on the assumptions that the material is homogeneous and a very
limited literature is available for micro/nano-scale structures using FGM which are
based on the assumptions that undeformed plane of nanobeams is placed at the
mid-plane. It is found that most of the previous studies on vibration and buck-
ling analysis of FG nanobeams have been conducted based on the ignorance of the
physical neutral axis position and various boundary conditions effects. As a result,
these studies cannot be utilized in order to thoroughly study the FG nanobeams
under investigation. Therefore, there is strong scientific need to understand the
vibration and buckling behavior of FG nanobeams in considering the effects of
physical neutral axis position and different boundary conditions. Motivated by this
fact, in this study, differential transformation method is applied in analyzing vi-
bration and buckling characteristics of size-dependent FG nanobeams considering
the right neutral axis position. The superiority of the DTM is its simplicity and
good precision and dependence on Taylor series expansion while it takes less time
to solve polynomial series. It is different from the traditional high order Taylor’s
series method, which requires symbolic computation of the necessary derivatives
of the data functions. The Taylor series method computationally takes long time
for large orders. With this method, it is possible to obtain highly accurate results or
exact solutions for differential equations.

In this work free vibration and buckling analysis of FG nanobeams considering the
position of neutral axis are studied. It is assumed that material properties of the
beam vary continuously through the beam thickness according to power-law form.
Nonlocal Euler–Bernoulli beam model and Eringen’s nonlocal elasticity theory are
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employed. Governing equations and boundary conditions for the free vibration
and buckling of a nonlocal FG beam have been derived via Hamilton’s principle.
These equations are solved using DTM and numerical solutions are obtained. The
detailed mathematical derivations are presented while the emphasis is placed on in-
vestigating the effect of several parameters such as size effects, constituent volume
fractions, mode number, slenderness ratios, boundary conditions and small scale
on vibration characteristics of FG nanobeams. Comparisons with the results from
the existing literature are provided and good agreement between the results of this
article and those available in literature validated the presented approach. Numerical
results are presented to serve as benchmarks for the application and the design of
nanoelectronic and nano-drive devices, nano-oscillators, and nanosensors, in which
nanobeams act as basic elements.

2 Theory and formulation

2.1 Nonlocal power-law FG nanobeam equations based on physical neutral
axis

One of the most favorable models for FGMs is the power-law model, in which
material properties of FGMs are assumed to vary according to a power law about
spatial coordinates. The coordinate system for FG nanobeam is shown in Figure 1.
The FG nanobeam is assumed to be composed of ceramic and metal and effective
material properties of the FG beam such as Young’s modulus E f , shear modulus
G f and mass density ρ f are assumed to vary continuously in the thickness direc-
tion (z-axis direction) according to a power function of the volume fractions of the
constituents while the Poisson’s ratio is assumed to be constant in the thickness
direction. According to the rule of mixture, the effective material properties, Pf ,
can be expressed as [Simsek and Yurtcu (2013)]:

Pf = PcVc +PmVm (1)

where Pm, Pc, Vm and Vc are the material properties and the volume fractions of the
metal and the ceramic constituents related by:

Vc +Vm = 1 (2a)

The volume fraction of the ceramic constituent of the beam is assumed to be given
by:

Vc = (
z
h
+

1
2
)P (2b)

Here p is the non-negative variable parameter (power-law exponent) which deter-
mines the material distribution through the thickness of the beam. Therefore, from
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Eqs. (1)–(2), the effective material properties of the FG nanobeam can be expressed
as follows:

Pf (z) = (Pc−Pm)

(
z
h
+

1
2

)p

+Pm (3)

According to this distribution, bottom surface (z = −h/2) of functionally graded
beam is pure metal, whereas the top surface (z = h/2) is pure ceramics. Based
on the physical neutral surface concept introduced by Zhang and Zhou (2008), the
physical neutral surface of FGM beam is given by:

z0 =

∫ h
2
− h

2
zE(z)dz∫ h

2
− h

2
E(z)dz

=
(Ec−Em)hp

2(2+ p)(Ec +Em p)
(4)

It can be seen that the physical neutral surface and the geometric middle surface
are the same in a homogeneous isotropic beam.

2.2 Kinematic relations

Under the physical neutral surface concept and the Euler–Bernoulli nanobeam model,
the displacement field at any point of the beam can be written as

ux (x,z, t) = u(x, t)− (z− z0)
∂w(x, t)

∂x
(5a)

uz(x,z, t) = w(x, t) (5b)

where t is time, u and w are displacement components of the mid-plane along x and
z directions, respectively. By assuming the small deformations, the only nonzero
strain of the Euler–Bernoulli beam theory is:

εxx = ε
0
xx− (z− z0)k0, ε

0
xx =

∂u(x, t)
∂x

, k0 =
∂ 2w(x, t)

∂x2 (6)

where ε0
xx and k0 are the extensional strain and bending strain respectively. Based

on Hamilton’s principle, which states that the motion of an elastic structure during
the time interval t1 < t < t2 is such that the time integral of the total dynamics
potential is extremum, [Tauchert (1974)]:∫ t

0
δ (U−T +Wext)dt = 0 (7)
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Figure 1: Typical functionally graded beam with Cartesian coordinates.

Here U is strain energy, T is kinetic energy and Wext is work done by external
forces. The virtual strain energy can be calculated as:

δU =
∫

v
σi jδεi jdV =

∫
v
(σxxδεxx)dV (8)

Substituting Eq. (6) into Eq. (8) yields:

δU =
∫ L

0
(N(δε

0
xx)−M(δk0))dx (9)

In which N, M are the axial force and bending moment respectively. These stress
resultants used in Eq. (9) are defined as:

N =
∫

A
σxxdA,M =

∫
A

σxx(z− z0)dA (10)

The kinetic energy for Euler-Bernoulli beam can be written as:

T =
1
2

∫ L

0

∫
A

ρ(z)((
∂ux

∂ t
)2 +(

∂uz

∂ t
)2)dAdx (11)

Also the virtual kinetic energy is:

δT=
∫ L

0

[
I0(

∂u
∂ t

∂δu
∂ t

+
∂w
∂ t

∂δw
∂ t

)−I1(
∂u
∂ t

∂ 2δw
∂ t∂x

+
∂δu
∂ t

∂ 2w
∂ t∂x

) + I2
∂ 2w
∂ t∂x

∂ 2δw
∂ t∂x

]
dx

(12)

where (I0, I1, I2) are the mass moment of inertias, defined as follows:

(I0, I1, I2) =
∫

A
ρ(z)(1,(z− z0),(z− z0)

2)dA (13)

The first variation of external forces of the beam can be written in the form:

δWext =
∫ L

0

(
f δu+qδw+ p̄

∂w
∂x

∂δw
∂x

)
dx (14)
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where p̄ is the axial compressive force, f and q are the external axial and transverse
loads distribution along length of beam, respectively. By substituting Eqs. (9), (12)
and (14) into Eq. (7) and setting the coefficients of δu,δw and δ∂w

∂x to zero, the
following Euler–Lagrange equation can be obtained:

∂N
∂x

+ f = I0
∂ 2u
∂ t2 − I1

∂ 3w
∂x∂ t2 (15a)

∂ 2M
∂x2 +q− ∂

∂x
(p̄

∂w
∂x

) = I0
∂ 2w
∂ t2 + I1

∂ 3u
∂x∂ t2 − I2

∂ 4w
∂x2∂ t2 (15b)

Under the following boundary conditions:

N = 0 or u = 0 at x = 0 and x = L (16a)

∂M
∂x
− p̄

∂w
∂x
− I1

∂ 2u
∂ t2 + I2

∂ 3w
∂x∂ t2 = 0 or w = 0 at x = 0 and x = L (16b)

M = 0 or
∂w
∂x

= 0 at x = 0 and x = L (16c)

2.3 The nonlocal elasticity model for FG nanobeam

Based on Eringen nonlocal elasticity model [Eringen & Edelen (1972)], the stress
at a reference point x in a body is considered as a function of strains of all points in
the near region. This assumption is in agreement with experimental observations
of atomic theory and lattice dynamics in phonon scattering in which for a homoge-
neous and isotropic elastic solid the nonlocal stress-tensor components σi j at any
point x in the body can be expressed as:

σi j(x) =
∫
Ω

α(
∣∣x′− x

∣∣ ,τ) ti j(x′)dΩ(x′) (17)

where ti j(x′) are the components of the classical local stress tensor at point x which
are related to the components of the linear strain tensor εkl by the conventional
constitutive relations for a Hookean material, i.e:

ti j =Ci jklεkl (18)

The meaning of Eq. (17) is that the nonlocal stress at point x is the weighted average
of the local stress of all points in the neighborhood of x, the size of which is related
to the nonlocal kernel α(|x′− x| ,τ). Here |x′− x| is the Euclidean distance and τ is
a constant given by:

τ =
e0a

l
(19)
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which represents the ratio between a characteristic internal length, a (such as lat-
tice parameter, C–C bond length and granular distance) and a characteristic external
one, l (e.g. crack length, wavelength) through an adjusting constant, e0, dependent
on each material. The magnitude of e0 is determined experimentally or approx-
imated by matching the dispersion curves of plane waves with those of atomic
lattice dynamics. According to Eringen and Edelen (1972) for a class of physically
admissible kernel α(|x′− x| ,τ) it is possible to represent the integral constitutive
relations given by Eq. (17) in an equivalent differential form as:

(1− (e0a)2
∇

2)σkl = tkl (20)

where ∇2 is the Laplacian operator. Thus, the scale length e0 a takes into account
the size effect on the response of nanostructures. For an elastic material in the one
dimensional case, the nonlocal constitutive relations may be simplified as:

σ(x)− (e0a)2 ∂ 2σ(x)
∂x2 = Eε(x) (21)

where σ and ε are the nonlocal stress and strain, respectively. E is the Young’s
modulus. For Euler–Bernoulli nonlocal FG beam, Eq. (21) can be written as:

σxx−µ
∂ 2σxx

∂x2 = E(z)εxx (22)

where (µ = (e0a)2). Integrating Eq. (22) over the beam’s cross-section area, the
force-strain and the moment-strain relations of the nonlocal Euler-Bernoulli beam
theory can be obtained as follows:

N−µ
∂ 2N
∂x2 = Axx

∂u
∂x
−Bxx

∂ 2w
∂x2 (23)

M−µ
∂ 2M
∂x2 = Bxx

∂u
∂x
−Cxx

∂ 2w
∂x2 (24)

In which the cross-sectional rigidities are defined as follows:

(Axx,Bxx,Cxx) =
∫

A
E(z)(1,(z− z0),(z− z0)

2)dA (25)

The explicit relation of the nonlocal normal force can be derived by substituting for
the second derivative of N from Eq. (15a) into Eq. (23) as follows:

N = Axx
∂u
∂x
−Bxx

∂ 2w
∂x2 +µ(I0

∂ 3u
∂x∂ t2 − I1

∂ 4w
∂x2∂ t2 −

∂ f
∂x

) (26)
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Also the explicit relation of the nonlocal bending moment can be derived by sub-
stituting for the second derivative of Mfrom Eq. (15b) into Eq. (24) as follows:

M = Bxx
∂u
∂x
−Cxx

∂ 2w
∂x2 +µ(I0

∂ 2w
∂ t2 + I1

∂ 3u
∂x∂ t2 − I2

∂ 4w
∂x2∂ t2 +

∂

∂x
(p̄

∂w
∂x

)−q) (27)

The nonlocal governing equations of Euler-Bernoulli FG nanobeam in terms of the
displacement can be derived by substituting for Nand Mfrom Eqs. (26) and (27),
respectively, into Eq. (15) as follows:

Axx
∂ 2u
∂x2−Bxx

∂ 3w
∂x3 +µ

(
I0

∂ 4u
∂ t2∂x2 − I1

∂ 5w
∂ t2∂x3 −

∂ 2 f
∂x2

)
− I0

∂ 2u
∂ t2+I1

∂ 3w
∂ t2∂x

+f=0

(28)

Bxx
∂ 3u
∂x3−Cxx

∂ 4w
∂x4−p̄

∂ 2w
∂x2 +µ(I0

∂ 4w
∂ t2∂x2+I1

∂ 5u
∂ t2∂x3 − I2

∂ 6w
∂ t2∂x4 −

∂ 2q
∂x2 + p̄

∂ 4w
∂x4 )

− I0
∂ 2w
∂ t2 − I1

∂ 3u
∂ t2∂x

+ I2
∂ 4w

∂ t2∂x2 +q = 0

(29)

When the FG nanobeam vibrates with a natural frequency ω , it is possible to sepa-
rate the time dependency by expressing the displacement parameters in the follow-
ing form:

u(x, t) = u(x)eiω t (30)

w(x, t) = w(x)eiω t (31)

Substituting harmonic vibration modes, Eqs. (30) and (31), into Eqs. (28) and (29)
leads to a time independent governing equation as follows:

Axx
∂ 2u
∂x2−Bxx

∂ 3w
∂x3 +µ

(
−I0ω

2 ∂ 2u
∂x2+I1ω

2 ∂ 3w
∂x3−

∂ 2 f
∂x2

)
+ I0ω

2u− I1ω
2 ∂w

∂x
+ f=0

(32)

Bxx
∂ 3u
∂x3−Cxx

∂ 4w
∂x4−p̄

∂ 2w
∂x2 +µ(−I0ω

2 ∂ 2w
∂x2 − I1ω

2 ∂ 3u
∂x3 + I2ω

2 ∂ 4w
∂x4−

∂ 2q
∂x2+p̄

∂ 4w
∂x4 )

+ I0ω
2 w+ I1ω

2 ∂u
∂x
− I2ω

2 ∂ 2w
∂x2 +q = 0

(33)
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3 Implementation of differential transform method

Generally, it is rather difficult to derive an analytical solution for Eqs. (32) and
(33) due to the nature of non-homogeneity. In this circumstance, the DTM is em-
ployed to translate the governing equations into a set of ordinary equations. First,
the procedure of differential transform method is briefly reviewed. The differen-
tial transforms method provides an analytical solution procedure in the form of
polynomials to solve ordinary and partial differential equations. In this method,
differential transformation of kth derivative function y(x) and differential inverse
transformation of Y(k) are respectively defined as follows [Abdel-Halim Hassan
(2002)]:

Y (k) =
1
k!

[
dk

dxk y(x)
]

x=0
(34)

y(x) =
∞

∑
0

xkY (k) (35)

In which y(x) is the original function and Y(k) is the transformed function. Conse-
quently from equations (34, 35) we obtain:

y(x) = ∑
∞

k=0
xk

k!

[
dk

dxk y(x)
]

x=0
(36)

Equation (36) reveals that the concept of the differential transformation is derived
from Taylor’s series expansion. In real applications the function y(x) in equation
(36) can be written in a finite form as:

y(x) = ∑
N
k=0 xkY (k) (37)

In this calculations y(x) = ∑
∞
n+1 xkY (k) is small enough to be neglected, and N is

determined by the convergence of the eigenvalues. From the definitions of DTM in
Equations (34)-(36), the fundamental theorems of differential transforms method
can be performed that are listed in Table 1 while Table 2 presents the differential
transformation of conventional boundary conditions. According to the basic trans-
formation operations introduced in Table 1, the transformed form of the governing
equations (32) and (33) around x0= 0 may be obtained as:

Axx (k+1)(k+2)U [k+2]−Bxx (k+1)(k+2)(k+3)W [k+3]

− I0ω
2 (−U [k]+µ (k+1)(k+2)U [k+2])

− I1ω
2(−µ (k+1)(k+2)(k+3)W [k+3]+ (k+1)W [k+1]) = 0

(38)
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Bxx (k+1)(k+2)(k+3)U [k+3]−Cxx (k+1)(k+2)(k+3)(k+4)W [k+4]

− p̄(k+1)(k+2)w[k+2]− I0ω
2 (−W [k]+µ (k+1)(k+2)W [k+2])

− I1ω
2 (−(k+1)U [k+1]+µ (k+1)(k+2)(k+3)U [k+3])

− I2ω
2 (−µ (k+1)(k+2)(k+3)(k+4)W [k+4]+ (k+1)(k+2)W [k+2])

+µ p̄(k+1)(k+2)(k+3)(k+4)w[k+4] = 0
(39)

where U [k] and W [k] are the transformed functions of u, w, respectively.

Table 1: Some of the transformation rules of the one-dimensional DTM [Chen and
Ju (2004)].

Original function Transformed function
y(x) = λϕ(x) Y (k) = λΦ(k)

y(x) = ϕ(x)±θ(x) Y (k) = Φ(k)±Θ(k)
y(x) = dϕ

dx Y (k) = (k+1)Φ(k+1)

y(x) = d2ϕ

dx2 Y (k) = (k+1)(k+2)Φ(k+1)

y(x) = ϕ(x)θ(x) Y (k) =
k
∑

l=0
Φ(l)Θ(k−1)

y(x) = xm Y (k) = δ (k−m) =

{
1 k = m
0 k 6= 0

Table 2: Transformed boundary conditions (B.C.) based on DTM [Chen and Ju
(2004)].

X=0 X=1
Original BC Transformed BC Original BC Transformed BC

f(0)=0 F[0]=0 f(1)=0
∞

∑
k=0

F [k] = 0

d f
dx (0) = 0 F[1]=0 d f

dx (1) = 0
∞

∑
k=0

kF [k] = 0

d2 f
dx2 (0) = 0 F[2]=0 d2 f

dx2 (1) = 0
∞

∑
k=0

k(k−1)F [k] = 0

d3 f
dx3 (0) = 0 F[3]=0 d3 f

dx3 (1) = 0
∞

∑
k=0

k(k−1)(k−2)F [k] = 0

Additionally, the differential transform method is applied to various boundary con-
ditions by using the theorems introduced in Table 2 and the following transformed
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boundary conditions are obtained.

• Simply supported–Simply supported:

W [0] = 0, W [2] = 0, U [0] = 0
∞

∑
k=0

W [k] = 0,
∞

∑
k=0

k(k−1)W [k] = 0,
∞

∑
k=0

kU [k] = 0
(40a)

• Clamped–Clamped:

W [0] = 0, W [1] = 0, U [0] = 0
∞

∑
k=0

W [k] = 0,
∞

∑
k=0

kW [k] = 0,
∞

∑
k=0

U [k] = 0
(40b)

• Clamped–Simply supported:

W [0] = 0, W [1] = 0, U [0] = 0
∞

∑
k=0

W [k] = 0,
∞

∑
k=0

k(k−1)W [k] = 0,
∞

∑
k=0

kU [k] = 0
(40c)

• Clamped-Free:

W [0] = 0, W [1] = 0, U [0] = 0
∞

∑
k=0

k(k−1)W [k] = 0,
∞

∑
k=0

k(k−1)(k−2)W [k] = 0,
∞

∑
k=0

kU [k] = 0
(40d)

By using Eqs. (38) and (39) together with the transformed boundary conditions one
arrives at the following eigenvalue problem: M11(ω) M12(ω) M13(ω)

M21(ω) M22(ω) M23(ω)
M31(ω) M32(ω) M33(ω)

 [C] = 0 (41a)

where [C] correspond to the missing boundary conditions at x = 0 and Mi j(ω) are
polynomials in terms of ω . For the non-trivial solutions of Eq. (41a), it is necessary
that the determinant of the coefficient matrix is equal to zero:∣∣∣∣∣∣

M11(ω) M12(ω) M13(ω)
M21(ω) M22(ω) M23(ω)
M31(ω) M32(ω) M33(ω)

∣∣∣∣∣∣= 0 (41b)
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Solution of Eq. (41b) is simply a polynomial root finding problem. In the present
study, the Newton–Raphson method is used to solve the governing equation of
the non-dimensional natural frequencies. Solving equation (41b), the ith estimated
eigenvalue for nth iteration (ω = ω

(n)
i ) may be obtained and the total number of

iterations is related to the accuracy of calculations which can be determined by the
following equation:∣∣∣ω(n)

i −ω
(n−1)
i

∣∣∣< ε (42)

In this study ε=0.0001 considered in procedure of finding eigenvalues which re-
sults in 4 digit precision in estimated eigenvalues. Further a Matlab program has
been developed according to DTM rule stated above, in order to find eigenvalues.
As mentioned before, DT method implies an iterative procedure to obtain the high-
order Taylor series solution of differential equations. The Taylor series method
requires a long computational time for large orders, whereas one advantage of em-
ploying DTM in solving differential equations is a fast convergence rate and a small
calculation error.

4 Numerical results and discussions

Through this section, a numerical testing of the procedure as well as parametric
studies are performed in order to establish the validity and usefulness of the DTM
approach. The effect of neutral axis position on the natural frequencies and buck-
ling load of FG size-dependent nanobeam is presented. The functionally graded
nanobeam is composed of steel and alumina where its properties are given in Table
3. The bottom surface of the beam is pure steel, whereas the top surface is pure
alumina. The beam geometry has the following dimensions: L(length) = 10,000
nm, b(width) = 1000 nm and h (thickness) = 100 nm.

4.1 Convergence and correctness study of the solution method

In order to show that differential transform method is an effective and reliable
tool for examining the vibration and buckling characteristics of nanobeams, a FG
nanobeam composed of a ceramic–metal pair of materials (steel and alumina) is
considered. Relation described in equation (43) is performed in order to calculate
the non-dimensional natural frequencies.

ω̄ = ωL2
√

ρcA/EIc (43)

where I = bh3/12 is the moment of inertia of the cross section of the beam. Ta-
ble 4 tabulates the convergence of DT method for the first four frequencies of FG
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nanobeams with various gradient indexes. It is found that in DT method after a
certain number of iterations eigenvalues converged to a value with good precision,
so the number of iterations is important in DT method convergence. According
to Table 4 the first natural frequency converged after 19 iterations (k) with 4 digit
precision while the 2nd , 3rd and 4th frequencies converged after 29, 39 and 47
iterations respectively.

Table 3: Material properties of the FGM constituents [Asghari et al. (2011)].

property unit Steel Alumina( Al2O3)

E GPa 210 390
ρ Kg/m3 7800 3960

Table 4: Convergence study for the first four natural frequencies of simply sup-
ported FG nanobeam (L/h = 20,µ = 3∗10−12).

k
p = 0 p = 5

ω̄1 ω̄2 ω̄3 ω̄4 ω̄1 ω̄2 ω̄3 ω̄4

11 8.6787 - - - 5.2260 - - -
13 8.6591 - - - 5.2142 - - -
15 8.6604 25.1913 - - 5.2150 15.1696 - -
17 8.6603 27.0573 - - 5.2149 16.2933 - -
19 8.6603 26.5590 - - 5.2149 15.9932 - -
21 8.6603 26.6066 - - 5.2149 16.0219 - -
23 8.6603 26.6020 - - 5.2149 16.0191 - -
25 8.6603 26.6024 45.4881 - 5.2149 16.0193 27.3927 -
27 8.6603 26.6023 46.0575 - 5.2149 16.0193 27.7356 -
29 8.6603 26.6023 45.9679 - 5.2149 16.0193 27.6816 -
31 8.6603 26.6023 45.9773 - 5.2149 16.0193 27.6873 -
33 8.6603 26.6023 45.9764 - 5.2149 16.0193 27.6868 -
35 8.6603 26.6023 45.9765 64.7491 5.2149 16.0193 27.6868 38.9931
37 8.6603 26.6023 45.9765 64.8836 5.2149 16.0193 27.6868 39.0741
39 8.6603 26.6023 45.9765 64.8667 5.2149 16.0193 27.6868 39.0640
41 8.6603 26.6023 45.9765 64.8685 5.2149 16.0193 27.6868 39.0650
43 8.6603 26.6023 45.9765 64.8683 5.2149 16.0193 27.6868 39.0649
45 8.6603 26.6023 45.9765 64.8684 5.2149 16.0193 27.6868 39.0649
47 8.6603 26.6023 45.9765 64.8684 5.2149 16.0193 27.6868 39.0649

After looking into the satisfactory results for the convergence of frequencies, one
may compare the nondimensional frequencies of FG nanobeam associated with dif-
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ferent boundary conditions, nonlocal parameter, slenderness ratios and constituent
volume fraction exponents. To demonstrate the correctness of present study the
results for FG nanobeam are compared with the results of FG nanobeams available
in the literature. Table 5 compares the semi-analytical results of the present study
obtained based on physical neutral axis position (NA) and the results for the simply
supported-simply supported (S-S) FG nanobeam with various nonlocal parameter
and constituent volume fraction exponents presented by Eltaher et al. (2012) which
has been obtained by using finite element method. One may clearly notice here
that the fundamental frequency parameters obtained in the present investigation are
in approximately close enough to the results provided in these literatures and thus
validates the proposed method of solution.

4.2 Vibration analysis

After validating the approaches, in this section some parametric studies are con-
ducted in order to examine the influences of various FG nanobeam parameters
such as constituent volume fractions, nonlocal parameters, slenderness ratios and
boundary conditions on the natural frequencies of the size-dependent FG nanobeam
model based on neutral axis position (NA) and central axis position (CA). Here af-
ter, to better extract the influence of the neutral axis position on the vibrational
behavior of the FG nanobeams, the normalized form of the nonlinear natural fre-
quencies as specified in Eq. (43), are presented in the numerical results.

The effect of neutral axis position on first four nondimensional frequencies of FG
nanobeam with various nonlocal parameters and constituent volume fractions is
presented in Tables 5-8. In these tables the first four nondimensional frequencies
of FG nanobeam for different boundary conditions such as simply supported- sim-
ply supported (S-S), clamped-clamped (C-C), clamped-simply supported(C-S) and
clamped-free(C-F) are tabulated based on neutral axis position and midplane po-
sition calculations. The nonlocal parameter µ ranges from 0 to 4 and the material
distribution parameter p ranges from 0 to 10. When these two parameters vanish
(µ = 0, p = 0), the classical isotropic beam theory is rendered. Fixing the non-
local parameter µ and varying the material distribution parameter p results in a
significant change in the natural frequencies.

As it can be seen from Table 5, for a simply supported FG nanobeam by increasing
the nonlocal parameter from 0 to 4 at a constant material graduation parameter, the
first natural frequency decreases about 15%. Whereas, by increasing the nonlocal
parameter the difference between the natural frequencies obtained based on central
axis and neutral axis decreases. It can be noticed from Table 5 that, the neutral axis
position has a significant effect on the natural frequencies of simply supported FG
nanobeam.
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Table
5:E

ffectofneutralaxis
position

on
nondim

ensionalfrequencies
atdifferentnonlocality

and
m

aterialexponentforS-S
FG

nanobeam
(L
/h=20).

µ
ω̄

i
p=0

p
=1

p
=5

p
=10

N
A

(Present
study)

C
A

[E
ltaher

etal.
(2012)]

N
A

(Present
study)

C
A

[E
ltaher

etal.
(2012)]

N
A

(Present
study)

C
A

[E
ltaher

etal.
(2012)]

N
A

(Present
study)

C
A

[E
ltaher

etal.
(2012)]

0
i
=

1
9.8594

9.8797
6.9885

7.0904
5.9370

6.0025
5.6713

5.7058
i
=

2
39.3171

39.6419
27.8603

28.0910
23.6759

23.8575
22.6178

22.7937
i
=

3
88.0158

89.6599
62.3387

63.6216
53.0027

53.9949
50.6399

51.5621
i
=

4
155.3780

160.5776
109.9780

113.5435
93.5718

96.3766
89.4148

92.1857
1

i
=

1
9.4062

9.4238
6.6672

6.7631
5.6641

5.7256
5.4106

5.4425
i
=

2
33.2911

33.4875
23.5902

23.7318
20.0471

20.1580
19.1512

19.2580
i
=

3
64.0515

64.6769
45.3656

45.8980
38.5715

38.9745
36.8520

37.2138
i
=

4
96.7506

97.9683
68.4808

69.3845
58.2650
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56.3432
2

i
=

1
9.0102

9.0257
6.3865

6.4774
5.4256

5.4837
5.1828

5.2126
i
=

2
29.3905

29.5254
20.8263

20.9248
17.6983

17.7750
16.9074

16.9810
i
=

3
52.8213

53.1705
37.4117

37.7336
31.8088

32.0479
30.3908

30.5987
i
=

4
76.1964

76.7870
53.9323

54.3949
45.8869

46.2370
43.8483

44.1764
3

i
=

1
8.6603

8.6741
6.1385

6.2251
5.2149

5.2702
4.9815

5.0096
i
=

2
26.6023

26.7022
18.8506

18.9245
16.0193
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15.3034
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i
=

3
45.9765

46.2062
32.5637

32.7918
27.6868

27.8534
26.4526
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i
=

4
64.8684
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45.9143

46.2132
39.0649

39.2870
37.3294

37.5340
4

i
=

1
8.3483

8.3607
5.9174

6.0001
5.0271

5.0797
4.8020

4.8286
i
=

2
24.4818

24.5596
17.3480

17.4063
14.7424

14.7874
14.0836

14.1263
i
=

3
41.2486

41.4142
29.2150

29.3913
24.8397

24.9665
23.7324

23.8367
i
=

4
57.4431

57.6950
40.6586

40.8757
34.5933

34.7518
33.0565

33.2001
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34.9795

34.9864
i
=

4
84.5127

84.5127
59.8029

59.8728
50.8959

50.9350
48.6380

48.6543
3

i
=

1
13.2651

13.2651
9.4020

9.4029
7.9878

7.9883
7.6303

7.6305
i
=

2
32.8727

32.8727
23.2911

23.2988
19.7954

19.7997
18.9112

18.9131
i
=

3
52.8175

52.8175
37.4014

37.4276
31.8068

31.8215
30.3904

30.3965
i
=

4
71.9060

71.9060
50.8811

50.9413
43.3039

43.3375
41.3829

41.3970
4

i
=

1
12.7267

12.7267
9.0203

9.0212
7.6635

7.6640
7.3206

7.3208
i
=

2
30.1723

30.1723
21.3775

21.3848
18.1692

18.1733
17.3578

17.3595
i
=

3
47.3463

47.3463
33.5266

33.5504
28.5121

28.5253
27.2425

27.2480
i
=

4
63.6714

63.6714
45.0537

45.1074
38.3448

38.3748
36.6440

36.6565
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For the case in hand, changing the material parameter p from 0 to 10 results in
decreasing the natural frequencies, as can be seen in Tables 5-8. It should be noted
that as the nonlocal parameter increases, the first natural frequency increases, which
highlights the significance of the nonlocal effect. One may clearly notice here
that, the calculated frequencies based on central axis position are overestimated
compared to those obtained based on neutral axis position.

It is also observed that, by increasing the nonlocal parameter from 0 to 4, the first
nondimensional frequency decreases about 15% at a constant material distribution
for S-S, C-C and C-S boundary conditions while the trend for the 2nd, 3rd and the
4th nondimensional frequencies are decreasing about 38%, 54% and 64% respec-
tively. On the other hand, for the C-F boundary condition the first natural frequency
increases about 1.8% and the 2nd, 3rd and the 4th nondimensional frequencies de-
creases about 21%, 40% and 55% respectively, at a fixed material distribution. In
this study, increasing the material distribution parameter at a constant nonlocal pa-
rameter causes the decreasing in all frequencies, due to increasing the ceramics
phase constituent, and hence, stiffness of the beam. By changing the material dis-
tribution parameter from 0 to 10, the first four frequencies reduced about 40-45%.
This result indicates that, the effect of material graduation index strengthen the
nanobeam by increasing the ceramics constituent phase. This trend is observable in
other edge conditions of C-C, C-S and C-F. Lastly the effect of nonlocal parameter
and material distribution on the nondimensional frequency of FG nanobeam with
various edge conditions are presented in Tables 6-8. For a C-C nanobeam, as the
nonlocal parameter changes from 0 to 4, the first natural frequency decreases about
18%, as can be noted from the Table 6.

The effect of nonlocal and material distribution parameter on the frequencies of
C-S FG nanobeam is illustrated in Table 7. It is observed that, by increasing the
nonlocal parameter from 0 to 4, the first natural frequency decreases about 17% at
a fixed material graduation parameter.

The nondimensional frequencies of the C-F FG nanobeam, versus the nonlocal and
material distribution parameters, are tabulated in Table 8. It is observed that, by
increasing the nonlocal parameter from 0 to 4, the first natural frequency increases
about 1.8% at a constant material distribution parameter. It can be noticed that, the
neutral axis position has negligible effect on the first natural frequency of C-F FG
nanobeam. For all boundary conditions, the results show a decreasing about 42%
in first four natural frequencies of FG nanobeams at a fixed nonlocal parameter,
where the material distribution parameter changes from 0 to 10.

Figure 2 demonstrate the variation of nondimensional fundamental frequency with
changing the material graduation parameter for various nonlocal parameters of FG
nanobeam with different boundary conditions. As presented in this figure, for all
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Figure 2: Variation of the first dimensionless frequency of FG nanobeam with ma-
terial graduation for various boundary conditions (L/h=100).
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boundary conditions by increasing material graduation parameter, the first dimen-
sionless frequency decreases. It is also observed that, in the case of C-F edge
condition, increasing material graduation parameter at constant nonlocal parameter
of µ = 0has non-sensitive effect on frequency parameter.

4.3 Buckling analysis

For the purpose of verification, the present model is used to find the buckling load
for a S-S FG nanobeam modeled based on neutral axis position where the nonlocal
effect is taken into consideration. The obtained results by DTM are compared with
the results available in literature. To the author’s best knowledge no study reported
on the buckling analysis of FG nanobeams based on neutral axis position yet. This
comparison is presented in Table 9 for the length-to-thickness ratio of 100 while
varying the nonlocal parameter µ from 0 to 4. As can be seen from Table 9, the
obtained results are in a good agreement with those of Reddy (2007) which has
been obtained by analytical method. The buckling load is non-dimensionalized as
follows:

λ =
P̄crL2

EI
(44)

Table 9: Comparison of the nondimensional buckling load for a simply supported
nanobeam (L/h=100).

µ Analytical
[Reddy (2007)]

DTM
(Present study)

0 9.8696 9.8696044
0.5 9.4055 9.4054633
1 8.9830 8.9830162

1.5 8.5969 8.5968863
2 8.2426 8.2425836

2.5 7.9163 7.9163286
3 7.6149 7.6149176

3.5 7.3356 7.3356170
4 7.0761 7.0760799

For all edge conditions, the nondimensional buckling load is presented considering
the physical neutral axis position in Tables 10-12 as the nonlocal parameter µ varies
from 0 to 5 and the material distribution parameter p ranges from 0 to 5.
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Table 10: Effect of neutral axis position on nondimensional buckling load of S-S
FG nanobeams with different nonlocality and material exponents (L/h=100).

µ
p=0 p =0.2 p =0.5

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]
0 9.8696 9.8620 11.4907 11.6594 12.7110 12.9460
1 8.9830 8.9843 10.4585 10.2614 11.5691 11.6760
2 8.2425 8.2431 9.5964 9.7741 10.6156 10.6585
3 7.6149 7.6149 8.8657 9.3545 9.8071 9.8093
4 7.0760 7.0765 8.2383 8.3176 9.1132 9.0585
5 6.6084 6.6085 7.6939 7.7393 8.5109 8.7364

µ
p =1 p =2 p =5

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]
0 13.6765 14.0775 14.5609 14.8474 15.7324 15.7748
1 12.4479 12.4581 13.2529 13.1254 14.3191 13.5711
2 11.4219 12.0652 12.1605 12.4757 13.1389 13.2140
3 10.5521 10.9776 11.2345 11.7415 12.1384 12.2786
4 9.8054 9.9816 10.4395 10.4649 11.2794 11.5231
5 9.1574 9.0551 9.7496 10.0097 10.5340 10.7810

By changing the material distribution parameter p, a significant change in the buck-
ling load is observed at a fixed nonlocal parameter. For the case in hand, changing
the material parameter p from 0 to 5 results in an increase in the buckling load
of about 60%, as can be seen from Tables 10-12. It is also concluded that as the
nonlocal parameter increases, the buckling load decreases, which highlight the sig-
nificance of the nonlocal effect.

Effect of neutral axis position on nondimensional buckling load for all boundary
conditions of FG nanobeam is significant. It can be noticed from Tables 10-12
that the calculated buckling load based on central axis position is underestimated
compared to one obtained based on neutral axis position.

For a FG nanobeam with S-S edge condition, as the nonlocal parameter increases
from 0 to 5, the buckling load decreases about 50%, as presented in Table 10. In
addition, by increasing the material distribution parameter form 0 to 5, the buck-
ling load increases about 60%. The nondimensional buckling load of the C-C FG
nanobeam, versus the nonlocal and material distribution parameters, is tabulated in
Table 11. It is observed that, by increasing the nonlocal parameter from 0 to 5, the
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Table 11: Effect of neutral axis position on nondimensional buckling load of C-C
FG nanobeams with different nonlocality and material exponents (L/h=100).

µ
p =0 p =0.2 p =0.5

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]
0 39.4784 39.4999 45.9630 45.4462 50.8439 51.4620
1 28.3043 30.6731 32.9535 35.0730 36.4529 38.7988
2 22.0603 24.2329 25.6838 27.7791 28.4113 30.7304
3 18.0733 19.8038 21.0419 22.7661 23.2764 25.1852
4 15.3068 16.6666 17.8211 19.2009 19.7135 21.2417
5 13.2749 14.3566 15.4554 16.5660 17.0966 18.3258

µ
p =1 p =2 p =5

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]
0 54.7058 55.2474 58.2435 55.9902 62.9295 63.4032
1 39.2217 41.7464 41.7581 44.4451 45.1177 48.0202
2 30.5693 33.0649 32.5461 35.2028 35.1646 38.0331
3 25.0444 27.0988 26.6640 28.8504 28.8092 31.1701
4 21.2109 22.8558 22.5826 24.3331 24.3995 26.2887
5 18.3952 19.7183 19.5847 20.9930 21.1605 22.6818

buckling load decreases about 66% at a constant material distribution parameter p.
By changing the material distribution parameter form 0 to 5, the buckling load is
increased by about 60%. Moreover the effect of nonlocality and material distribu-
tion on the buckling load of FG nanobeam with C-S edge condition is illustrated
in Table 12. It is observed that, by increasing the nonlocal parameter from 0 to 5,
the buckling load decreases about 50% at a fixed material graduation parameter.
Whereas, by changing the material distribution parameter from 0 to 5, the variation
of the buckling load is similar to those of S-S and the C-C FG nanobeams. Fig-
ure 3 presents the nondimensional buckling load for a FG nanobeam with varying
material distribution parameter for various nonlocal parameters and different edge
conditions. This observation is found to be similar for different values of nonlo-
cal parameters µ=1, 2, 3, 4 and 5 as shown in Figure 3. Conclusions drawn from
Tables 10-12 can be easily noted from these figures.
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Figure 3: Variation of the nondimensional buckling load with material graduation
for different boundary condition (L/h=100).
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Table 12: Effect of neutral axis position on nondimensional buckling load of C-S
FG nanobeams with different nonlocality and material exponents (L/h=100).

µ
p =0 p =0.2 p =0.5

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]
0 20.1907 20.1958 23.5072 23.8797 26.0035 26.2847
1 16.7989 16.8744 19.5582 19.2855 21.6352 22.0704
2 14.3828 14.4880 16.7452 16.4072 18.5234 19.0595
3 12.5742 12.6883 14.6396 14.8992 16.1942 16.1701
4 11.1697 11.2792 13.0044 13.0443 14.3854 14.5569
5 10.0475 10.1515 11.6978 11.7682 12.9400 13.0258

µ
p =1 p =2 p =5

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]

NA
(Present
study)

CA
[Eltaher et

al. (2013b)]
0 27.9786 28.1763 29.7879 30.0269 32.1845 32.8452
1 23.2785 23.4290 24.7838 24.3045 26.7778 27.1898
2 19.9304 20.2627 21.2192 21.8358 22.9265 21.9874
3 17.4243 17.0362 18.5511 18.8833 20.0436 20.4901
4 15.4781 15.8088 16.4790 16.6923 17.8048 17.6784
5 13.9229 14.1183 14.8233 15.1221 16.0159 16.2613

5 Conclusions

In this paper, free vibration and buckling analysis of functionally graded size-
dependent nanobeams modeled based on physical neutral axis position is inves-
tigated within the framework of a semi-analytical technique called the differential
transform method. The material properties of FG nanobeams vary continuously
in the thickness direction according to the power-law form. Nonlocal elasticity
equations of Eringen are applied in the formulations to achieve the vibration and
buckling characteristics of FG nanobeam through Hamilton’s principle. The good
agreement between the results of this article and those available in literature vali-
dated the presented approach. Several important aspects such as material volume
fraction index, nonlocal parameter, mode number and as well as various edge condi-
tions which have impacts on natural frequencies of FG nanobeams are investigated
and discussed in detail. Numerical results reveal that the neutral axis position play
an important role on the vibration and buckling behavior of a FG nanobeam and the
calculated frequencies based on geometrical central axis position is overestimated.
Numerical results are presented to serve as benchmarks for future analyses of FG
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nanobeams.
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