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A Meshless LBIE/LRBF Method for Solving the Nonlinear
Fisher Equation: Application to Bone Healing
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Abstract: A simple Local Boundary Integral Equation (LBIE) method for solv-
ing the Fisher nonlinear transient diffusion equation in two dimensions (2D) is re-
ported. The method utilizes, for its meshless implementation, randomly distributed
nodal points in the interior domain and nodal points corresponding to a Bound-
ary Element Method (BEM) mesh, at the global boundary. The interpolation of
the interior and boundary potentials is accomplished using a Local Radial Basis
Functions (LRBF) scheme. At the nodes of global boundary the potentials and
their fluxes are treated as independent variables. On the local boundaries, potential
fluxes are avoided by using the Laplacian companion solution. Potential gradients
are accurately evaluated without RBFs via a LBIE, valid for gradient of poten-
tials. Nonlinearity is treated using the Newton-Raphson scheme. The accuracy of
the proposed methodology is demonstrated through representative numerical ex-
amples. Fisher equation is solved here via the LBIE/LRBF method in order to
predict cell proliferation during bone healing. Cell concentrations and their gradi-
ents are numerically evaluated in a 2D model of fractured bone. The results are
demonstrated and discussed.

Keywords: Fisher equation, Local Boundary Integral Equation Method, LBIE,
Local Radial Basis Functions, Bone healing.

1 Introduction

Linear and nonlinear transient diffusion is associated with problems dealing with
heat conduction in materials, structures and tissues, mass transfer, surface anneal-
ing, welding and drilling of metals, chloride diffusion in concrete, pattern formation
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in population dynamics and solidification processes. In the context of biology and
for the difficult and complicated problem of cell proliferation and migration a math-
ematical model that has been widely used for the simulation of those processes is
the nonlinear partial differential equation proposed by [Fisher (1937)]. Specifically,
for the case of bone regeneration unforced and/or forced Fisher partial differential
equation has been employed in order to model the bone healing process and predict
relative experimental observations [Isaksson, Donkelaar, Huiskes and Ito (2008);
Garcia-Aznar, Kuiper, Gomez-Benito, Doblare and Richardson (2007); Andreykiv,
Van Keuler and Prendergast (2008); Gunzburger, Hou and Zhu (2005); Moreo,
Gaffney, Garcia-Aznar and Doblare (2010); Sengers, Please, Oreffo (2007)].

Due to nonlinear form of Fisher’s equation, analytical solutions are very difficult to
be performed in two or three dimensions and when they exist are confined to special
cases and simple geometries [Petrovskii and Shigesada (2001)]. For this reason re-
sort should be made to numerical methods, which are able to solve such problems.
In the rich literature of the numerical methods that are able to treat nonlinear dif-
fusion partial differential equations one can mention the Finite Element Method
(FEM) [Garcia-Aznar, Kuiper, Gomez-Benito, Doblare and Richardson (2007)],
the Finite Differences Method (FDM) [Khiari and Omrani (2011)], the Finite Vol-
ume Method (FVM) [Prokharau, Vermolen and Garcia-Aznar (2013)], the Dual
Reciprocity Boundary Element Method (DR-BEM) [Guo, Chen and Gao (2012)],
the Domain-BEM [Mohammadi, Hematiyan and Marin (2010)] and the Analog-
BEM [Katsikadelis and Nerantzaki (1999)]. The main problem with FEM, FDM
and FVM is their requirement for domain discretization, which could be problem-
atic or time consuming for complicated geometries, while the boundary methods
such as DR-BEM and Analog-BEM are associated with very time consuming fully
populated and non-symmetric matrices.

The last fifteen years, meshless methods have received considerable attention since
they are able to treat efficiently nonlinear problems without meshing requirements.
In the area of linear and nonlinear diffusion problems one has to mention the
Meshless Local Petrov-Galerkin (MLPG) method [Lin and Atluri (2000); Sladek,
Sladek, Tan and Atluri (2008); Chen and Liew (2011); Mirzaei and Dehgham
(2011)] the Local Boundary Integral Equation (LBIE) method [Sladek, Sladek and
Zhang (2004)], [Shirzadi, Sladek, Sladek (2013); Popov and Bui (2010)], the Mesh-
free Point Collocation Method (MPCM) [Bourantas and Burganos (2013); Sarler
and Vertnik (2006)], [Trobec, Kosec, Sterk and Sarler (2012)] and the Meshless
local radial point interpolation (MLRPI) method [Shivanian (2013)]. More details
on meshless methods one can find in the books of Atluri and Shen [Atluri and Shen
(2002); Atluri (2004); Li and Liu (2007)] and in the very recent review work of
[Sladek, Stanak, Han, Sladek, Atluri (2013); Atluri and Zhu (1998); Zhu, Zhang
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and Atluri (1998, 1999)] were the first who proposed the meshless MLPG and
LBIE methods, respectively, as a simple and less-costly alternative to the FEM and
BEM, respectively. Their methods are characterized as meshless methods because
the interpolation is accomplished through randomly distributed points covering the
domain of interest and characterized by no-connectivity requirements. The fields
at the local and global boundaries as well as in the interior of the subdomains are
usually approximated by the Moving Least Squares (MLS) approximation scheme.
The local nature of the sub-domains leads to a final linear system of equations the
coefficient matrix of which is sparse and not fully populated.

After the pioneering work of [Zhu, Zhang and Atluri (1998)], meshless LBIE
method have received considerable attention due to its accuracy as integral equa-
tion method and its flexibility to avoid any kind of mesh. Very recently [Sell-
ountos, Sequeira and Polyzos (2009)] proposed a stable, accurate and very simple
meshless LBIE method for solving elastostatic problems, which utilizes an efficient
Local Radial Basis Functions (LRBF) interpolation scheme [Sellountos, Sequeira
and Polyzos (2010); Hardy (1990)] instead of MLS approximation and combines
techniques applying in both BEM and LBIE method. At the boundaries of local
domains tractions are eliminated with the aid of the companion solution of elasto-
static equation [Li and Liu (2007)], while at the global boundary displacements and
tractions are treated as independent variables. All the integrals at local and global
boundaries are evaluated as in the case of a BEM formulation and the displacement
nodal values are interpolated through the LRBFs. In that way, the LBIE/LRBF
method proposed by [Sellountos, Polyzos and Atluri (2012)] solves the elastostatic
problem very efficiently avoiding derivatives of LRBFs and concluding to a final
system of algebraic equations with banded coefficient matrix.

In the present work, that methodology is implemented for the case of two dimen-
sional (2D) transient diffusion problems described by the nonlinear Fisher equation.
Then the new LBIE/LRBF method is employed to provide numerical predictions
for cell proliferation in a 2D model of fractured bone. As in [Sellountos, Sequeira
and Polyzos (2009)], at each internal or boundary point a circular support domain
is centered and the LBIE valid for the potential field and its flux is assigned. Both
LBIEs are derived with the aid of Laplace fundamental solution, thus containing
volume integrals coming from transient and nonlinear terms that act as internal
sources. On the local circular boundaries, all the integrals that contain the fluxes of
the potential field are eliminated via companion solutions derived for the needs of
the present work. The circular local domains are sectored into subregions and their
boundary is discretized into line quadratic elements that in turn introduce a number
of “temporary” nodal points which, however, have not any relation with the ini-
tially considered nodal points. Then, all the involved surface and volume integrals
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are very accurately evaluated with the aid of the integration technique proposed
by [Gao (2002, 2005)], while the potential fields defined at the “temporary” nodes
are interpolated through the LRBF scheme illustrated in [Sellountos, Sequeira and
Polyzos (2009)]. In that way, the final system of algebraic equations is derived very
efficiently without the use of derivatives of the LRBF interpolants. The treatment
of the nonlinearity is accomplished with the aid of the Newton-Raphson scheme
and the problem is solved without the need of any derivative of the utilized LRBFs.
It should be mentioned here that the idea of using “temporary” nodal points was
first proposed by [Popov and Bui (2010)] and that was unintended ignored in [Sell-
ountos, Polyzos and Atluri (2012)]. However, the LBIE methodology of Popov and
Bui is completely different to the ones proposed in [Sellountos, Polyzos and Atluri
(2012)] and here.

The paper is organized as follows: The LBIEs valid for potentials and their fluxes
are explicitly derived in the next section. The LRBF interpolation scheme em-
ployed in the present method is illustrated in section 3. The numerical implemen-
tation of the proposed LBIE/LRBF methodology for solving the Fisher equation is
presented in section 4, while representative benchmark problems that demonstrate
the accuracy of the method are provided in section 5. Finally, the LBIE/LRBF
method is employed to solve the Fisher equation for a 2D model dealing with cell
proliferation in a bone healing process. The obtained results are demonstrated and
discussed in section 6.

2 LBIEs for Fisher’s non-linear transient diffusion equation

In this section the LBIEs used in the present method are illustrated. Consider a two-
dimensional domain V surrounded by a surface S and a concentration or population
density function ϕ(x1,x2, t) at the spatial position (x1,x2) and time t. According to
Fisher equation, the field ϕ(x1,x2, t) satisfies the partial differential equation:

D1∂
2
i ϕ = ∂tϕ +D2ϕ (1−aϕ) (1)

where D1,D2,a are positive constants depending on the nature of the problem and
∂i,∂t partial derivatives with respect to spatial coordinate xi, i = 1,2 and time, re-
spectively.

The boundary conditions are assumed to be

ϕ (x) = ϕ0 (x) , x(x1,x2) ∈ Sϕ

q(x) =
∂ϕ (x)

∂n
= q0 (x) , x(x1,x2) ∈ Sq

(2)

with n denoting the unit vector normal to the global boundary, ϕ0,q0 prescribed
functions and Sϕ ∪Sq ≡ S.
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Making use of the finite-differences scheme

∂tϕ
p+1 =

ϕ p+1−ϕ p

∆t
+O(∆t) (3)

and ignoring higher order terms, the governing equation (1) obtains the form

∂
2
i ϕ

p+1 =

[
1

D1∆t
+

D2

D1

]
ϕ

p+1− 1
D1∆t

ϕ
p− aD2

D1

(
ϕ

p+1)2
(4)

Utilizing the fundamental solution of Laplace equation and applying Green’s inte-
gral identity one obtains the following integral equation

αϕ
p+1 (x)+

∫
Γ

q∗ (x,y)ϕ
p+1 (y)dSy

=
∫
Γ

ϕ
∗ (x,y)qp+1 (y)dSy

+
∫
V

ϕ
∗ (x,y)

{[
− 1

D1∆t
− D2

D1

]
ϕ

p+1 (y)+
1

D1∆t
ϕ

p (y)
}

dVy

+
∫
V

aD2

D1
ϕ
∗ (x,y)

(
ϕ

p+1 (y)
)2

dVy

(5)

where the coefficient α takes the value 0.5 when x∈ S and S being a smooth bound-
ary and the value 1 when x ∈V , while the kernels ϕ∗,q∗ have the form

ϕ
∗ =− 1

2π
lnr

q∗ =− 1
2πr

(ny, r̂)

r = |y−x| , r̂ =
y−x
|y−x|

(6)

A group of N randomly distributed points x(k),k = 1, ..,N that cover the domain of
interest V are considered, while the global boundary Sϕ ∪Sq ≡ S is defined through
a BEM mesh with Z totally nodal points. At any point x(k) a circular domain Ω(k)

(with boundary ∂Ω(k)) is centered, called support domain of x(k) and illustrated in
Figure 1.

Employing Green’s second identity for the domain being between the boundaries S
and ∂Ω(k), the integral representation (5) obtains the form:
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Figure 1: Local domains and local boundaries used for the LBIE representation of
density function ϕ(x(k)).

αϕ
p+1
(

x(k)
)
+

∫
Γ(k)∪∂Ω(k)

q∗
(

x(k),y
)

ϕ
p+1 (y)dSy

=
∫

Γ(k)∪∂Ω(k)

ϕ
∗
(

x(k),y
)

qp+1 (y)dSy

+
∫

Ω(k)

ϕ
∗
(

x(k),y
){[
− 1

D1∆t
− D2

D1

]
ϕ

p+1 (y)+
1

D1∆t
ϕ

p (y)
}

dVy

+
∫

Ω(k)

aD2

D1
ϕ
∗
(

x(k),y
)[

ϕ
p+1 (y)

]2
dVy

(7)

with Γ(k) being the part of the global boundary intersected by the circular support
domain of point x(k) (Fig. 1).

The coefficient α is equal to 1 for internal points and 1/2 for points lying on the
global boundary Γ with smooth tangent. As it has been already mentioned, in the
present formulation, boundary points are imposed with the aid of a BEM mesh.
Thus, in case of a non-smooth boundary partially discontinuous elements at both
sides of a corner are considered. Consequently, the coefficient α is always equal to
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0.5 for all the boundary points x(k).
In order to get rid of fluxes at the local boundary ∂Ω(k) the companion solution of
Laplace equation can be utilized [Atluri (2004)] and Eq. (7) becomes

αϕ
p+1
(

x(k)
)
+

∫
Γ(k)∪∂Ω(k)

q∗
(

x(k),y
)

ϕ
p+1 (y)dSy

=
∫

Γ(k)

[
ϕ
∗
(

x(k),y
)
−ϕ

c
(

x(k),y
)]

qp+1 (y)dSy

+
∫

Ω(k)

[
ϕ
∗
(

x(k),y
)
−ϕ

c
(

x(k),y
)]{[

− 1
D1∆t

− D2

D1

]
ϕ

p+1 (y)+
1

D1∆t
ϕ

p (y)
}

dVy

+
∫

Ω(k)

aD2

D1

[
ϕ
∗
(

x(k),y
)
−ϕ

c
(

x(k),y
)][

ϕ
p+1 (y)

]2
dVy

(8)

where ϕc represents the companion solution ϕc = − 1
2π

lnrk with rk denoting the
radius of the support domain of point x(k).
An integral representation for the gradient of ϕ p+1 can be obtained by applying the
gradient operator on Eq. (7), i.e.

α∂iϕ
p+1
(

x(k)
)
+

∫
Γ(k)∪∂Ω(k)

Q∗
(

x(k),y
)

ϕ
p+1 (y)dSy

=
∫

Γ(k)∪∂Ω(k)

Φ
∗
ι

(
x(k),y

)
qp+1 (y)dSy

+
∫

Ω(k)

Φ
∗
ι

(
x(k),y

){[
− 1

D1∆t
− D2

D1

]
ϕ

p+1 (y)+
1

D1∆t
ϕ

p (y)
}

dVy

+
∫

Ω(k)

aD2

D1
Φ
∗
ι

(
x(k),y

)[
ϕ

p+1 (y)
]2

dVy

(9)

where the vectors Φ∗i ,Q
∗
i correspond to ∂iϕ

∗,∂iq∗, respectively.

The integral defined at the local boundary ∂Ω(k) and containing the fluxes qp+1 can
be eliminated with the aid of a new companion solution derived in Appendix A.
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Thus, following the procedure described in Appendix A Eq. (9) can be written as

α∂iϕ
p+1
(

x(k)
)
+

∫
Γ(k)∪∂Ω(k)

[Q∗i
(

x(k),y
)
−Qi

(
x(k),y

)
]ϕ p+1 (y)dSy

=
∫

Γ(k)

[Φ∗i

(
x(k),y

)
−Φ

c
i

(
x(k),y

)
]qp+1 (y)dSy

+
∫

Ω(k)

[Φ∗i

(
x(k),y

)
−Φ

c
i

(
x(k),y

)
]

{[
− 1

D1∆t
− D2

D1

]
ϕ

p+1 (y)+
1

D1∆t
ϕ

p (y)
}

dVy

+
∫

Ω(k)

Gc
i

(
x(k),y

)
ϕ

p+1 (y)dSy

+
∫

Ω(k)

aD2

D1
[Φ∗i

(
x(k),y

)
−Φ

c
i

(
x(k),y

)
]
[
ϕ

p+1 (y)
]2

dVy

(10)

where

Φ
∗
i =−

1
2πr

∂ir

Φ
c
i =−

1
2π

r2

r2
k

∂ir

Q∗i =
1

2πr2 [2(nm∂mr)∂ir−ni]

Qc
i =−

1
2π

r
r3

k
[(nm∂mr)∂ir+ni]

Gc
i =−

3
2π

1
r3

k
∂ir

(11)

The integral equations (8) and (10) represent the LBIEs for the (p+1) - step fields
ϕ p+1 and ∂iϕ

p+1, respectively at any interior and boundary point of the analyzed
domain.

3 The LRBF interpolation scheme

In the present section the LRBF interpolation scheme employed in the present work
is illustrated. Consider a domain V surrounded by a boundary Γ covered by arbi-
trarily distributed nodal points

x(k),k = 1,2, ..,N (12)
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as shown in Fig. 1. Each nodal point x(k) is considered as the centre of a small
circular domain Ωk of radius rk called support domain of x(k). All support domains
of a group of adjacent nodal points that satisfy the condition∣∣∣x(k)−x( j)

∣∣∣< rk + r j (13)

form a domain called domain of influence of point x(k) (Fig. 2). The support
domains of all the considered internal and boundary points are overlapping circles
that cover completely the domain of interest. The support domains of the nodal
points that contain a point x form the domain of definition of point x, also illustrated
in Fig. 2

Figure 2: Domain of influence of the point x( j) and domain of definition of point x.

At any point x of Ω, the interpolation of the unknown field ϕ(x), is accomplished
by the relation

ϕ (x) = BT (x) ·a(x)+PT (x) ·b(x) (14)

or

ϕ (x) =
[

BT (x) PT (x)
]
·
[

a(x)
b(x)

]
(15)
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where

x =
[

x1 x2
]T

a =
[

a1 a2 · · · an
]T

b =
[

b1 b2 · · · bm
]T

B(x) =
[

W
(
x,x(1)

)
W
(
x,x(2)

)
· · · W

(
x,x(n)

) ]T
P(x) =

[
P1 (x) P2 (x) · · · Pm (x)

]
(16)

with n representing the total number of nodal points belonging to the domain of
definition of point x and m the number of complete polynomials with m < n. The
vectors a and b stand for unknown coefficient vectors that depend on the location
of the nodal points belonging to the domain of definition of point x. P(x) is a vector
containing the monomial basis, i.e.

PT (x) =
[

1 x1 x2
]

for m = 3

PT (x) =
[

1 x1 x2 x2
1 x1x2 x2

2
]

for m = 6
(17)

and W
(
x,x(n)

)
are RBFs defined in the present work as multiquadric LRBFs (MQ-

LRBFs)

W
(

x,x(n)
)
=

√(
x1− x(n)2

)2
+
(

x2− x(n)2

)2
+C2 (18)

For the domain of definition of x, C is a constant the value of which is taken equal
to [Hardy (1990)]

C (x) = 0.815
1
n

n

∑
i=1

di (19)

with di being the distance between every nodal point of the domain of definition of
x and its closest nodal neighbor.

The definition of the unknown vectors a and b is accomplished by imposing an
interpolation passing of Eq. (15) through all nodal points x(n), i.e.

ϕ

(
x(e)
)
=
[

BT
(
x(e)
)

PT
(
x(e)
) ]
·
[

a
b

]
, e = 1,2, . . . ,n (20)

and considering the extra system of algebraic equations

n

∑
e=1

Pl

(
x(e)
)

ae = 0, l = 1,2, . . . ,m (21)
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Thus, the following system of equations is formed:[
B0 P0
PT

0 0

][
a
b

]
=

[
f(e)
0

]
(22)

where

B0 =


W
(
x(1),x(1)

)
W
(
x(1),x(2)

)
· · · W

(
x(1),x(n)

)
W
(
x(2),x(1)

)
W
(
x(2),x(2)

)
· · · W

(
x(2),x(n)

)
· · · · · · · · · · · ·

W
(
x(n),x(1)

)
W
(
x(n),x(2)

)
· · · W

(
x(n),x(n)

)
 (23)

P0 =


P1
(
x(1)
)

P2
(
x(1)
)
· · · Pm

(
x(1)
)

P1
(
x(2)
)

P2
(
x(2)
)
· · · Pm

(
x(2)
)

· · · · · · · · · · · ·
P1
(
x(n)
)

P2
(
x(n)
)
· · · Pm

(
x(n)
)
 (24)

and

f(e) =
[

ϕ(1) ϕ(2) · · · ϕ(n)
]T

(25)

In view of Eq. (22) the coefficient vector
[

a b
]T is equal to[

a
b

]
= A−1

[
f(e)
0

]
(26)

where A is the symmetric matrix

A =

[
B0 P0
PT

0 0

]
(27)

Finally, the interpolation Eq. (15) obtains the form

ϕ (x) =
[

BT (x) PT (x)
]
·A−1 ·

[
f(e)
0

]
= R

(
x,x(e)

)
· f(e) (28)

where

R
(

x,x(e)
)
=
[

R(1) R(2) · · · R(n)
]

R(e) =
n

∑
i=1

Bi (x)A−1
ie +

m

∑
j=1

Pj (x)A−1
(n+ j)e,e = 1,2, . . . ,n

(29)

with A−1
qr representing the (qr)-element of the matrix A−1.
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The LRBF shape functions (29) depend uniquely on the distribution of scattered
nodes belonging to the support domain of the point where the field is interpolated.
The positive definitiveness of the just described LRBFs is accomplished with the
use of the additional polynomial term in Eq. (14) and the homogeneous constraint
condition (21). More details on the LRBFs one can find in the book of [Buh-
mann (2004)] and in the representative works of [Sellountos and Sequeira (2008a,
2008b); Wang and Liu (2002); Gilhooley, Xiao, Batra, McCarthy and Gillespie
(2008)] and [Bourantas, Skouras, Loukopoulos, Nikiforidis (2010)].

4 Numerical implementation of the proposed LBIE/LRBF method

In this section the numerical implementation of the proposed LBIE/LRBF method-
ology is reported.

As it has been explained in section 2, the function ϕ p+1(x(k)) defined at any internal
point x(k) with support domain that does not intersect the global boundary, admits
a LBIE of the form

ϕ
p+1(x(k))+

∫
∂Ω(k)

q∗(x(k),y)ϕ p+1(y)dSy

=
∫

Ω(k)

[
ϕ
∗(x(k),y)−ϕ

c(x(k),y)
]{[
− 1

D1∆t
− D2

D1

]
φ

p+1(y)+
1

D1∆t
φ

p(y)
}

dVy

+
∫

Ω(k)

aD2

D1

[
ϕ
∗(x(k),y)−ϕ

c(x(k),y)
][

ϕ
p+1(y)

]2
dVy

(30)

Since Ω(k) represents a circular domain, the above LBIE can be written in polar
coordinated as [Gao (2002, 2005)].

ϕ
p+1(x(k))+

∫
∂Ω(k)

q∗(x(k),y)ϕ p+1(y)dSy

=
∫

∂Ω(k)

F(1)(x(k),y)
R(x(k),y)

dSy +
∫

∂Ω(k)

F(2)(x(k),y)
R(x(k),y)

dSy

(31)

where

F(1)(x(k),y)

=

R(x(k),y)∫
0

[
ϕ
∗(x(k),x)−ϕ

c(x(k),x)
]
·
{[
− 1

D1∆t
− D2

D1

]
ϕ

p+1(x)+
1

D1∆t
ϕ

p(x)
}

rdr

(32)
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F(2)(x(k),y) =
R(x(k),y)∫

0

aD2

D1

[
ϕ
∗(x(k),x)−ϕ

c(x(k),x)
][

ϕ
p+1(x)

]2
rdr (33)

dSy = R
(

x(k),y
)

dϕ

x = x(k)+ rr̂

r̂ =
x(k)−y∣∣x(k)−y

∣∣
R
(

x(k),y
)
=
∣∣∣x(k)−y

∣∣∣
(34)

Considering, just for demonstration purposes, 4 quadratic line elements across the
circumferential direction and one quadratic element in radial direction, the LBIE
(31) obtains the form

ϕ
p+1(x(k))+

 4

∑
b=1

3

∑
n=1

1∫
−1

q∗N(bn)Jbdξ

ϕ
p+1(x(3bn))

−

 4

∑
b=1

3

∑
n=1

1∫
−1

 3

∑
m=1

1∫
−1

[ϕ∗−ϕ
c]

[
− 1

D1∆t
− D2

D1

]
rN(m)Jmdξ

N(bn)Jbdξ

ϕ
p+1(x(mbn))

−

 4

∑
b=1

3

∑
n=1

1∫
−1

 3

∑
m=1

1∫
−1

[ϕ∗−ϕ
c]

1
D1∆t

rN(m)Jmdξ

N(bn)Jbdξ

ϕ
p(x(mbn))

−

 4

∑
b=1

3

∑
n=1

1∫
−1

 3

∑
m=1

1∫
−1

[ϕ∗−ϕ
c]

aD2

D1
rN(m)Jmdξ

N(bn)Jbdξ

[ϕ p(x(mbn))
]2

= 0

(35)

where N(bn), N(m) are the shape functions corresponding to quadratic line elements
in the circumferential and radial direction, respectively, Jb and Jm are the corre-
sponding Jacobians of the transformation from the global to the local coordinate
systems ξ and the vector x(mbn) represents all the radial and circumferential nodes
indicated with open circles in Fig. 3.

It should be noticed here that those points x(mbn) have not any relation with the
initially considered nodal points, which in Fig. 3 are indicated with the full circles.
Thus, in Fig. 3 the full circles represent the nodal points used for the meshless
procedure while the open circles represent the “temporary” nodal points, which are
the same for any non-intersected support domain. Considering the 16 “temporary”



100 Copyright © 2015 Tech Science Press CMES, vol.105, no.2, pp.87-122, 2015

(a)

(b)

Figure 3: (a) The support domain of an internal point x(k) sectored and discetized
by line quadratic elements in the circumferential and radial direction. The full
circles stand for the nodal points used for the meshless treatment of the structure,
while the open circles represent the “temporary” nodal points. (b) The field at each
“temporary” nodal point is interpolated via LRBFs defined via the nodal points (red
points) belonging in the support domain (red circle) of the “temporary” nodal point
indicated by the arrow.
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nodal points of Fig. 3(a), Eq. (33) obtains the form

16

∑
l=1

ϕ
(l)

ϕ
p+1(x(l))+

16

∑
l=1

Ψ
(l)

ϕ
p(x(l))+

16

∑
l=1

Z(l)
[
ϕ

p+1(x(l))
]2

= 0 (36)

where ϕ(l), Ψ(l), Z(l) represent all the integrals involved in (35) and evaluated once
since they are the same for all non-intersected support.

For a boundary point x(k), the corresponding LBIE is given by equation (8) with a=
1
2 . Considering the discretization shown in Fig. 3(b), adopting polar coordinates
and following the procedure described previously, equation (8) is finally written as

9

∑
l=1

Q(l)
ϕ

p+1(x(l))+
5

∑
c=1

Q(c)
q qp+1(x(c))+

9

∑
l=1

X (l)
ϕ

p(x(l))+
9

∑
l=1

Ω
(l)
[
ϕ

p+1(x(l))
]2
+b=0

(37)

where x(c) represents the five nodal points that define the portion of the global
boundary and b is scalar coming from the application of boundary conditions.

As in (36), all the integrals defined across the circumferential direction are already
known. The only integrals that have to be evaluated here are those defined across
the global boundary.

The key idea of the present LBIE/LRBF method is that Eq. (36) is the same for
all internal points with complete support domains and all the aforementioned “tem-
porary” nodal fields are interpolated via the LRBF scheme illustrated in previous
section. Consequently, Eqs. (36) and (37) obtain the form, respectively

16

∑
l=1

ϕ
(l)

∑
i

R(x(l),x(i))ϕ p+1(x(l))+
16

∑
l=1

Ψ
(l)

∑
i

R(x(l),x(i))ϕ p(x(l))

+
16

∑
l=1

Z(l)
∑

i
R(x(l),x(i))

[
ϕ

p+1(x(l))
]2

= 0

(38)

16

∑
l=1

Q(l)
ϕ ∑

i
R(x(l),x(i))ϕ p+1(x(l))+

5

∑
c=1

Q(c)
ϕ qp+1(x(l))+

9

∑
l=1

X (l)
∑

i
R(x(l),x(i))ϕ p(x(l))

+
9

∑
l=1

X (l)
∑

i
R(x(l),x(i))

[
ϕ

p+1(x(l))
]2

+b = 0

(39)

where x(i) represents all the nodal points belonging in the support domain of each
nodal or “temporary” point, shown in Fig. 4 by red full circles.
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Both Eqs. (38) and (39) can be written in vector form as

H(1) · fp+1 +H(2) ·vp+1 = H(3) · fp (40)

(a)

(b)

Figure 4: (a) The support domain of a boundary point x(k) intersected by the global
boundary of the structure and discretized as in Figure 3. The full circles stand for
the nodal points used for the meshless treatment of the structure, while the open
circles represent the “temporary” nodal points. (b) The field at each “temporary”
nodal point is interpolated via LRBFs defined via the nodal points (red points) be-
longing in the support domain (red circle) of the “temporary” nodal point indicated
by the arrow.
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P(1) · fp+1 +G(1) ·qp+1 +P(2) ·vp+1 = P(3) · fp +b (41)

where fp+1, qp+1, vp+1 are vectors comprising all the unknown values of ϕ p+1,
qp+1,

(
ϕ p+1

)2, respectively, while the vector fp contains all the nodal values of ϕ p

known from the previous time step.

Collocating Eqs. (40) and (41) at all internal and boundary nodal points one obtains
the following non-linear system of algebraic equations

f (x) = A ·x−B = 0 (42)

where the vector x contains the unknown nodal values ϕ p+1,qp+1 and (ϕ p+1)2 and
the vector B is known from the previous time step and the boundary conditions.

The non-linear system (42) is solved according to standard Newton-Raphson algo-
rithm adopting the following steps:

1. Make an initial guess for the unknown vector x, let x(0). In the present work
the initial guess was x(0)= 0.

2. Evaluate the Jacobian matrix ∇x f (x). Since the only non-linear term is that
corresponding to the nodal values (ϕ p+1)2, it is apparent that the Jacobian is
a linear matrix with respect to x.

3. Solve the linear system ∇x(0) f (x(0)) ·
(
x(1)−x(0)

)
= − f (x(0)) and find the

new vector x(1).

Supposing that convergence is accomplished in the (k+1)-step, then the final vector
x(k+1) satisfies the linear system ∇x(k) f (x(k)) ·

(
x(k+1)−x(k)

)
=− f (x(k)).

As soon as the functions ϕ p+1 and qp+1 are known, the vector ∂iϕ
p+1 can be eval-

uated either by taking directly the gradient of the LRBF-interpolated ϕ p+1 or by
considering the LBIE given by Eq. (10).

5 Benchmark problems

In the present section, the LBIE/BEM method illustrated in previous sections is
tested with two linear benchmark problems and one nonlinear problem with a so-
lution taken by the FEM.

Consider the 1m×1m rectangular plate shown in Fig. 5(a). The upper side of
the plate is subjected to a sudden thermal loading of unit temperature T=1.0 and
remains at that temperature for the rest of time. The other three sides of the plate
are isolated with zero temperature fluxes and all the material properties are assumed



104 Copyright © 2015 Tech Science Press CMES, vol.105, no.2, pp.87-122, 2015

to be equal to unity. The just described transient thermal diffusion boundary value
problem is represented by the following equations:

∂
2
i T (x1,x2, t) = ∂tT (x1,x2, t)

T (x1, l, t) = l,

∂T (x1,x2, t)
∂x1

∣∣∣∣
x1=0

=
∂T (x1,x2, t)

∂x1

∣∣∣∣
x1=1

=
∂T (x1,x2, t)

∂x1

∣∣∣∣
x2=0

(43)

The analytical solution of (43) has the form [Carter, Beaupre, Giori and Helms
(1998)]:

T (x1,x2, t) = 1− 4
π

∞

∑
n=0

(−1)n

n+1
e−

(2n+1)2π2t
4 cos

(2n+1)πx2

2
(44)

For the LBIE/LRBF solution of the problem 81 uniformly distributed internal points
have been considered, while the external boundary has been discretized with 16
quadratic line elements. The support domains have been selected to be the same
for all nodes and equal to 0.566 m. The temperature at (x, y) = (0.5, 0.5) has been
calculated and compared to analytical ones provided by Eq. (44). As it is apparent
in Fig. 5(b) the agreement is excellent.

The previous problem has also been solved utilizing 185 non-uniformly distributed
nodal points (Fig. 6a) with support domain of radius equal to 0.3456m. The tem-
perature at (x, y) = (0.5, 0.5) as a function of time has been evaluated and compared
to the corresponding solution concerning uniformly distributed points in Fig. 6b.
The comparison shows an excellent agreement.

The accuracy of the present method in calculating the gradient of the field at any
point of the analyzed domain is also tested. Concerning the above diffusion prob-
lem of the rectangular plate the analytical solution for the temperature gradient is
given by

∇T =
4
π

∞

∑
n=0

(−1)n

n+1
e−

(2n+1)2π2t
4

(2n+1)π

2
sin

(2n+1)πx2

2
x̂2 (45)

with x̂2 representing the unit vector at x2 direction.

The gradient of the temperature at the (x, y) = (0.5, 0.5) has been evaluated with the
aid of the LBIE of Eq. (10) and it is compared with the analytical one provided by
Eq. (45). As it is shown in Fig. 7 the agreement between numerical and analytical
results is excellent.

As it has been already mentioned in section 4, the gradient of the density function
ϕ p+1 can be evaluated either by using the LBIE of Eq. (10) or via the derivatives of
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(a)

(b)

Figure 5: (a) Internal and boundary nodal points considered for the LBIE/LRBF
solution of the problem described by Eq. (43). (b) Time history of temperature at
(x, y) = (0.5, 0.5).
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(a)

(b)

Figure 6: The problem of Fig. 5 with non-unform distribution of nodal points.
(a) Internal and boundary nodal points considered for the LBIE/LRBF solution of
problem described by Eq. (43). (b) Time history of temperature at (x, y) = (0.5,
0.5).
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Figure 7: Time history of the gradient of temperature and comparison with the
analytical solution (45).

the local radial basis interpolation functions. Comparing the accuracy provided by
the two methodologies, the general conclusion is that Eq. (10) is always superior
to derivatives of LRBFs especially at points lying near and on the global boundary
of the considered domain. For internal points far from the external boundary the
provided accuracy is comparable. For example, the numerical error appearing in the
evaluation of ∂iϕ via the LBIE of Eq. (10) at points A(1.0, 1.0), B(0.5, 0.5), C(0.1,
0.1) (Fig. 5(a)) is 0.08%, 0.1% and 0.07% respectively, while via the derivatives
of LRBFs at the corresponding points ∂iϕ is 2.1%, 1.0% and 1.8%. Knowing
that the interpolation provided by the LRBFs near to the boundary points is better
than that provided by their derivatives, the aforementioned behaviour is expectable
since the evaluation of ∂iϕ through Eq (10) is accomplished by avoiding the use
of derivatives of LRBFs. In that sense, the evaluation of ∂iϕ through the LBIE of
Eq. (10) could not be characterized as “expensive” because for points lying near
to the boundary provides better accuracy, while for internal points all the involved
integrals in Eq. (10) are evaluated once as in the case of Eq. (9) explained in section
4.

The nonlinear version of the above mentioned problem has been solved with the
coefficients D1, D2 and α of Eq. (1) being D1 = D2 = α=1. The obtained so-
lution is compared to the corresponding one taken through the commercial FEM
package COMSOL Multiphysics 4.0a and depicted in Fig. 8. As it is apparent, the
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agreement is very good.

Figure 8: Temperature at (x, y) = (0.5, 0.5) as a function of time for the nonlinear
version of problem (43). Comparison between the results taken from COMSOL
Multiphysics 4.0a and the present LBIE/LRBF.

In the sequel, the accuracy of the present LBIE/LRBF method in solving the afore-
mentioned nonlinear problem with the non-uniformly point distribution of Fig. 6
is checked. As it is shown in Fig. 9 the agreement between the numerical results
taken through LBIE and those taken through the commercial FEM package COM-
SOL Multiphysics 4.0a is excellent.

Finally, the convergence while making the mesh denser for the two cases (linear
and non-linear Fisher equation) is examined. Both uniformly and non-uniformly
distributed nodal points have been considered. Three mesh cases corresponding
to 49, 81 and 121 nodal points have been considered. Comparing to analytical
and FEM solutions, the convergence error for a nodal point in the center of the
rectangular plate (x, y) = (0.5, 0.5) and in the upper left corner near the boundary
(x, y) = (0.9, 0.9), is calculated and reported in Tables 1 and 2.
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Figure 9: Temperature at (x, y) = (0.5, 0.5) as a function of time for the nonlin-
ear version of problem (43). Comparison on the obtained results when uniformly
distributed points and non- uniformly distributed points are considered.

Table 1: Mesh convergence error for the linear case (uniformly and non-uniformly
distributed nodes. Center and upper left node checked).

Linear Case
Uniformly distributed nodes Non-uniformly distributed nodes

Nodes Center Node Upper-left Node Center Node Upper-left Node
49 0.88% 0.90% 0.88% 0.90%
81 0.82% 0.87% 0.82% 0.87%
121 0.70% 0.75% 0.70% 0.75%

Table 2: Mesh convergence error for the non-linear case (uniformly and non-
uniformly distributed nodes. Center and upper left node checked).

Non-linear Case
Uniformly distributed nodes Non-uniformly distributed nodes

Nodes Center Node Upper-left Node Center Node Upper-left Node
49 0.89% 0.94% 0.89% 0.94%
81 0.84% 0.88% 0.84% 0.88%
121 0.72% 0.79% 0.72% 0.79%
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6 Application to bone healing

The process of bone fracture healing includes complex sequence of cellular events
which gradually restore the functional and mechanical bone properties, such as
load-bearing capacity, stiffness and strength. Initially an inflammatory reaction
takes place and a hematoma is formed at the fracture gap forming an initial frac-
ture callus that mainly consists of mesenchymal cells. Then along the bone mes-
enchymal cells differentiate into osteoblasts which begin to synthesize bone. In the
interior of the initial callus and adjacent to the fracture mesenchymal cells differ-
entiate into chondrocytes which synthesize cartilage. Subsequently blood vessels
are formed in the calcified cartilage which is then absorbed by osteoclasts. The
cartilage is replaced with ossified tissue and woven bone is formed via endochon-
dral ossification of the callus. Finally the remodelling stage takes place in which
the external callus is completely resorbed and in the fracture gap the disorganized
osteoclasts and osteoblasts are remodeled into cortical.

The determination of the underlying cellular mechanisms of bone healing remains
an open issue in the literature, despite the intensive work that has been conducted in
the field. To this end several mechanobiological computational models have been
proposed aiming to investigate and derive quantitative criteria that describe how
mechanical stimulation affects tissue differentiation, growth, adaptation and main-
tenance during bone healing [Gao (2002, 2005); Carter, Beaupre, Giori and Helms
(1998); Claes and Heigele (1998); Prendergast (1997); Lacroix and Prendergast
(2002)].

Most of the existing mechanobiology models incorporate bioregulatory models
which simulate the cellular processes such as dispersion and proliferation in bio-
logic tissues via diffusion equations [Andreykiv, Van Keuler and Prendergast (2008);
Claes and Heigele (1998); Prendergast (1997)]. [Lacroix and Prendergast (2002)]
were the first to account for cell phenomena such as cell migration, proliferation
and differentiation with the aid of diffusion equations. In this model progenitor
cells were assumed to originate from different parts of healing bone i.e., perios-
teum and bone marrow. [Bailon-Plaza and van der Meulen (2001)] also modeled
migration and proliferation of mesenchymal cells as well as chondrocyte and os-
teoblast proliferation and differentiation via diffusive processes. In another study
[Isaksson, Donkelaar, Huiskes and Ito (2008)] the cellular processes are directly
connected with mechanical stimulation and act at cell-phenotype rates.

In all of the aforementioned studies numerical predictions of tissue differentiation
and bone healing are derived using the Finite Element Method. Although FEM
is a well-known and robust numerical method, when applied to problems dealing
with phase changes, suffers from global remeshing when new born surfaces or
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material phases appear. On the other hand in meshless methods no background
cells are required for the numerical evaluation of the involved integrals [Sellountos
and Sequeira (2008b); Wang and Liu (2002)]. This renders the present LBIE/LRBF
method ideal for solving problems with moving or new-born boundaries since it
avoids remeshing as new bone solidification regions appear.

In this subsection the LBIE/LRBF method is used for the first time for deriving
predictions of cell distribution in fractured bone during the healing process.

Although in most cases the description of cell activities is achieved by complicated
systems of partial differential equations that correlate all the types of cells involved
in bone healing process, we adopt herein a simplified but rather effective model in
which the concentration of all cell types is modeled as one parameter following the
Fisher Eq. (1) .

6.1 Geometrical model of healing bone

We considered a 2D model of callus based on previous mechanical models of heal-
ing bone [Isaksson, Donkelaar, Huiskes and Ito (2008)] as shown in Fig. 10. The
cortical bone had inner and outer diameters of 14 mm and 20 mm [Isaksson, Donke-
laar, Huiskes and Ito (2008); Claes and Heigele (1998)].

Cells were assumed to distribute according to Eq. (1) in which the field c(x1,x2, t)
is the cell concentration within the callus region. Solution was derived for a = 1
i.e., a non-linear diffusion equation. Cell parameters were considered equal to
those of mesenchymal stem cells (MSC) [Isaksson, Donkelaar, Huiskes and Ito
(2008)].The diffusivity was equal to 0.65mm2/day [Isaksson, Donkelaar, Huiskes
and Ito (2008)]. Initially fixed MSC concentrations were assumed at the perios-
teum, the marrow interface and the interface between bone and callus at the fracture
site as depicted in Fig. 10. In addition, across the remainder external boundaries
zero flux was assumed (Fig. 10(b)) i.e.,

dc
dn

= 0 (46)

Numerical calculations were performed for 100 iterations which correspond to 40
days post-fracture. The interior of the callus is fulfilled with 642 distributed nodes
(Fig. 10c) with support domains of radius 0.4256.

6.2 Numerical Predictions of cell distribution during bone healing

The MSC distribution in the callus area during the process of bone healing is shown
in Fig 11. The red colors correspond to maximum cell concentrations whereas blue
ones to minimum. As shown in Figs. 11(a), (b) MSCs initially (i.e., at the begin-
ning and day 1) proliferate along the periosteum covering first the remote fracture
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Figure 10: (a) Two-Dimensional model of healing bone, (b) callus model, [2] (c)
callus geometry discretized by randomly distributed points.

site. Augmented cell concentrations are also observed at the regions along the
periosteum at some distance from the gap. As the days pass, MSC proliferation
rapidly evolves along periosteum and fracture gap (Fig. 11(c)). Concurrently cell
concentrations are significantly increased in the fracture gap after day 6, which sug-
gests that progressive intramembraneous ossification occurs possibly followed by
endochondral replacement. Finally at day 8 MSC distribution is shown to decrease
along the periosteum (Fig. 11(d)). After that day there are no more changes in
MSC concentrations and thus a plateau is reached.

From the results it is clear that the proposed LBIE method is able to predict several
physiological aspects of bone healing. MSC activity at the fracture gap started from
the 5th day and was rapidly increasing. Therefore MSCs differentiate into fibrob-
lasts leading to the formation of fibrous tissue close to the fracture ends. Concur-
rently at 8th day cells started proliferate along the periosteum at a distance from the
fracture gap, which may be indicative of an initial intramembraneous bone forma-
tion. Cell proliferation was also found to successively increase at the regions closer
to the fracture gap possibly towards the development of cartilage.

Numerical solution has been also derived for the corresponding linear diffusion
problem i.e., assuming a = 0 in Eq. 1, for comparison purposes. The derived MSC
distributions in the callus region during the 1st , 3rd and 8th day post-fracture are
shown in Fig. 12(a), (b) and (c) respectively.

At day 1 MSC proliferation starts along the periosteum at a distance from the frac-
ture site. As the days pass proliferation continues the gap as well (Figs. 12(b) and
(c)). The phenomenon evolves until the 8th which is in accordance with the non-
linear case. However, the linear diffusion model predicts that proliferation stops
at a distance from the external callus booundary and the most intensive cell action
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Figure 11: Predicted distributions of MSC in the callus during normal fracture
healing at (a) day 0 (beginning of the phenomenon), (b) day 1, (c) day 2, (d) day 5
and (e) day 8.

Figure 12: MSC distributions in the callus during normal fracture healing at (a) day
1, (b) day 3 and (c) day 8 derived from the linear diffusion equation.
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is observed along the periosteun at a remote fracture site. On the other hand, in
the non-linear model the most increased cell activity is observed within the whole
callus region, which suggests that non-linear diffusion models can provide more
realistic decription of biological healing processes such as MSC proliferation.

Our findings make clear that meshless LBIE method seems promising in describ-
ing complicated biological mechanisms that occur during bone healing. Therefore
enhanced bioregulatory models based on such computational methods could be
proved effective for the quantitative evaluation of bone pahtologies.

7 Discussion - Conclusion

In this work a simple meshless LBIE/LRBF methodology for solving the 2D Fisher
non-linear transient diffusion equation has been reported. The method utilizes a
cloud of randomly distributed and without any connectivity requirements points
covering the domain of interest and a BEM mesh for the representation of the ex-
ternal boundary. At each point a circular support domain is centered and a LBIE
is assigned. The Laplace fundamental solution is employed and thus, each LBIE
contains surface integrals defined at the circular boundary of the support domain
and volume integrals coming from the non-Laplacian terms of Fisher equation. For
intersected support domains by the global boundary, the corresponding LBIE com-
prizes both integrals defined at the circular boundary of the support domain and
integrals defined at the portion of the global boundary intersected by the support
domain of the considered point. A finite difference scheme is utilized for the time
derivative of Fisher equation. In all the considered LBIEs, fluxes defined at the
circular boundaries are eliminated with the aid of companion solutions derived in
the framework of the present work. The accuracy of the addressed LBIE/LRBF
method remains high as that provided by previous LBIE formulations proposed by
Sellountos, Polyzos and collaborators. As far as the efficiency of the method is con-
cerned, the obvious improvement is the much faster formation of the final algebraic
equations for all the internal points the support domain of which do not intersect
the global boundary. Because of that, the efficiency of the proposed LBIE/LRBF
method is obviously better than that of our previous LBIE formulations and the for-
mation of the algebraic equations of each internal point is at least ten times faster in
the present LBIE/LRBF formulation. That advantage becomes more pronounced
when uniform distributions of points are considered.

The novelty of the present meshless LBIE/LRBF formulation for solving nonlinear
transient diffusion problems can be summarized as follows: (i) Utilizing the idea
proposed by [Popov and Bui (2010)] and [Sellountos, Polyzos and Atluri (2012)]
and illustrated in section 4, all the points with non-intersected support domains have
the same LBIE given by Eq. (36). Thus, all the involved integrals are evaluated
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once and the final system of algebraic equations is formed quickly and economi-
cally. Making use of companion solutions derived in the present work, the proposed
formulation is different than that of [Popov and Bui (2010)] since it employs, for
each point, only the regular LBIE and not the regular plus the hypersingular LBIE
as the Popov-Bui methodology does. (ii) The volume integrals are implemented
with the aid of the integration technique proposed by [Gao (2002, 2005)], which
transforms all the volume integrals to line ones avoiding thus time consuming do-
main descritization techniques or the DR-BEM for converting the volume integrals
to surface ones. (iii) The stability of the proposed LBIE/LRBF is excellent even
for irregular distribution of nodal points. (iv) The convergence of the method is
accomplished with relatively coarse distribution of points and the final accuracy is
less than 0.1% even for boundary and near to the boundary points. (v) The gradi-
ent of density function at any point of the analyzed domain is evaluated after the
solution of the final system of algebraic equations and employing the hypersigu-
lar LBIE of the considered point instead of the derivatives of RBFs. The higher
accuracy of that technique is confirmed in the benchmark problems and it is in ac-
cordance with the well known advantage of BEM over FEM when the BEM utilizes
the hypersingular integral equation and the FEM derivatives of shape functions for
the evaluation of gradients of density functions at or near to the global boundary.

Thereafter the method was applied for investigating MSC proliferation and calcu-
late cell concentration during bone healing. Numerical simulations were performed
in a 2D model of callus. MSCs were assumed to distribute according to the Fisher
equation and originate from the bone-callus interface, the bone marrow and the
periosteum. Predictions were performed for a linear and a non-linear diffusion
case. Although in both cases cell proliferation was completed within the same
time (i.e., at the 8th day) the non-linear model provided more realistic results since
MSCs were predicted to progressively proliferate within the whole callus region
rather than along the periosteum (which was found in the linear model). Overall,
meshless LBIE method can capture significant events that occur during bone heal-
ing such as intramembraneous bone formation starting far from the fracture gap.
Furthermore, it can be combined effectively with a corresponding technique for
solving poroelastic problems and thus to provide effective solutions in bone heal-
ing processes, where new phases appear, without the need of rediscretization of the
analyzed domain.
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Appendix A

In the present appendix the companion solution utilized in Eq. (10) is explicitly
derived.
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We consider the Poisson equation

∇
2
ϕ = p (A.1)

and the corresponding LBIE

ϕ (x)+
∫

∂Ωs

q∗ (x,y)ϕ (y)dSy +
∫
Ωs

ϕ
∗ (x,y) p(y)dΩy =

∫
∂Ωs

ϕ
∗ (x,y)q(y)dSy (A.2)

where

ϕ
∗ =− 1

2π
lnr

q∗ =
∂ϕ∗

∂ny
= n̂ ·∇yϕ

∗ = n̂ ·∇rϕ
∗ =− 1

2πr
(ny · r̂)

(A.3)

Then the LBIE for the potential gradient is obtained by applying the gradient oper-
ator on (A.2), i.e.

∇xϕ (x)+
∫

∂Ω

Q∗ (x,y)ϕ (y)dSy +
∫
Ωs

Φ
∗ (x,y) p(y)dΩy =

∫
∂Ωs

Φ
∗ (x,y)q(y)dSy

(A.4)

where

ϕ
∗ = ∇xϕ

∗(x,y) =−∇rϕ
∗(x,y) =

1
2πr

r̂

Q∗ = ∇xq∗(x,y) =−∇rq∗(x,y) =
1

2πr2 [n̂y−2(n̂y · r̂)r̂]
(A.5)

Assuming the regular, radial function

ϕ
c =

1
2π

∑
m

Amrm (A.6)

and applying Green’s Second identity for the function ϕ and ϕ∗ one obtains∫
∂Ω

qc (x,y)ϕ (y)dSy+
∫
Ωs

[ϕc (x,y) p(y)− pc (x,y)ϕ (y)]dΩy =
∫

∂Ω

ϕ
c (x,y)q(y)dSy

(A.7)

where

qc = ∇yϕ
c = ∇rϕ

c = (n̂y · r̂)
1

2π
∑
m

mAmrm−1

pc = ∇
2
yϕ

c = ∇
2
r ϕ

c =
1

2π
∑
m

m2Amrm−2
(A.8)
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Applying the gradient operator ∇x on (A.7) we get∫
∂Ω

Qc (x,y)ϕ (y)dSy+
∫
Ωs

[Φc (x,y) p(y)−Pc (x,y)ϕ (y)]dΩy =
∫

∂Ω

Φ
c (x,y)q(y)dSy

(A.9)

where

ϕ
c = ∇xϕ

c =−∇rϕ
c =− 1

2π

(
∑
m

mAmrm−1
)

r̂

Qc =∇xqc =−∇rqc =−
{

1
2π

[
∑
m

m(m−2)Amrm−2
]
·(n̂y·r̂)r̂+

1
2π

[
∑
m

mAmrm−2
]}

Pc = ∇x pc =−∇r pc =− 1
2π

[
∑
m

m2(m−2)Amrm−3
]

r̂ (A.10)

Abstracting (A.7) and (A.9) from (A.2) and (A.4), respectively the following LBIEs
are obtained.

ϕ +
∫

∂Ωs

(q∗−qc)ϕdS+
∫
Ωs

(ϕ∗−ϕ
c) pdΩ+

∫
Ωs

pc
ϕdΩ =

∫
∂Ωs

(ϕ∗−ϕ
c)qdS (A.11)

∇ϕ +
∫

∂Ωs

(Q∗−Qc)ϕdS+
∫
Ωs

(Φ∗−Φ
c) pdΩ+

∫
Ωs

Pc
ϕdΩ =

∫
∂Ωs

(Φ∗−Φ
c)qdS

(A.12)

In order to get rid of q in (A.11) we consider that

ϕ
∗(rk) = ϕ

c

or − 1
2π

lnrk =
1

2π
∑
m

Amrm (A.13)

where rk is the radius of the circular domain Ωs. From (A.13) it is apparent that

A0 =− lnrk,A1 = A2 = . . .= 0

and

ϕ
c =− 1

2π
lnrk
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which is the well-known companion solution [23] utilized in Eq. (8).

Also, from (A.8) it is apparent that qc = 0 and pc = 0.

Similarly for the LBIE (A.12), flux q disappears when Φ∗(rk) = Φc, which via
(A.5) and (A.10) reads

− 1
2πrk

r̂ =− 1
2π

(
∑
m

mAmrm−1
)

r̂ (A.14)

In order to keep the regularity of Pc in Ωs we consider that m> 2 (see third equation
of (A.10)). Thus (A.14) gives

A3 =
1

3r3
k
,A1 = A2 = A4 = . . .= 0 (A.15)

and

ϕ
c =− 1

2π

r2

r3
k

r̂ (A.16)

Consequently, the LBIE (A.12) in view of (A.15) obtains the final form

∇ϕ +
∫

∂Ωs

(Q∗−Qc)ϕdS+
∫
Ωs

(Φ∗−Φ
c) pdΩ+

∫
Ωs

Pc
ϕdΩ = 0 (A.17)

where ϕc is given by (A.15) and Qc,Pc are provided by (A.10) for m = 3 and
n̂y · r̂ = 1 (since ∂Ωs is a circle), i.e.

Qc =− 1
2π

r
r3

k
r̂

Pc =− 1
2π

3
r3

k
r̂

(A.18)

Because of the multiplier (m-2) in the third equation of (A.10), the regularity of ϕc,
Qc, Pc is also valid for m=2. In that case we obtain a more convenient form of the
aforementioned auxiliary parameters, i.e

ϕ
c =− 1

2π

r
r2

k
r̂

Qc =− 1
2π

1
r2

k
r̂

Pc = 0

(A.19)

Any function proportional to rm, m ≥ 2 is a possible candidate as a companion
solution, since Eq. (A.2) is always satisfied. However, for m > 3 the vector ϕc of
(A.16) becomes of third order with respect to r and thus it can not be interpolated
accurately by one quadratic element in the radial direction.


