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Abstract: In this paper, we propose a three-point coupled compact integrated
radial basis function (CCIRBF) approximation scheme for the discretisation of
second-order differential problems in one and two dimensions. The CCIRBF em-
ploys integrated radial basis functions (IRBFs) to construct the approximations for
its first and second derivatives over a three-point stencil in each direction. Nodal
values of the first and second derivatives (i.e. extra information), incorporated into
approximations by means of the constants of integration, are simultaneously em-
ployed to compute the first and second derivatives. The essence of the CCIRBF
scheme is to couple the extra information of the nodal first and second deriva-
tive values via their identity equations. Owing to its coupling of the information
of the nodal first and second derivatives, the CCIRBF scheme becomes more ac-
curate, stable and efficient than the normal compact integrated radial basis func-
tion (CIRBF) schemes proposed by [Thai-Quang, Mai-Duy, Tran, and Tran-Cong
(2012)]. The main features of the CCIRBF scheme include: three-point, high-order
accuracy, stability, efficiency and inclusion of boundary values. Several analytic
problems are considered to verify the present scheme and to compare its accuracy,
stability and efficiency with those of the CIRBF, higher-order compact finite dif-
ference (HOC) and some other high-order schemes. Numerical results show that
highly accurate and stable results are obtained with the proposed scheme. Ad-
ditionally, the present scheme also takes less time to achieve target accuracy in
comparison with the CIRBF and HOC schemes.
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1 Introduction

Considerable progress has been made over the past decades on developing high-
order accuracy schemes for solving second-order differential equations. The tradi-
tional first-order upwind and second-order central finite difference (FD) methods
have low rates of convergence and therefore require sufficiently fine meshes [Kun,
Yang, and Zhang (2012)]. The computational cost of those methods is thus rel-
atively high, particularly for the case of high level of accuracy. One approach to
alleviate these difficulties is to use high-order methods by which comparable accu-
racy can be obtained with much coarser discretisation.

Higher-order compact finite difference methods (HOC) [Hirsh (1975); Rubin and
Khosla (1977); Adam (1977); Noye and Tan (1989)], which require fewer grid
points, have been widely used in numerical calculations with high accuracy for the
small scale problems. These approaches can provide a compromised way of com-
bining the robustness of the FD and the accuracy of spectral-like methods which
converge exponentially towards the exact solution as the number of nodes is in-
creased. In the HOC methods, the derivative values at a particular node are im-
plicitly computed not only from the function values but also from the values of the
derivatives at the neighboring nodes. In comparison with the FD, these approaches
give a higher order of accuracy for the same number of grid points, using a smaller
stencil. Lele (1992) proposed a family of spectral-like compact formulations and
generalised its resolution characteristics on a uniform grid. Since then, the compact
schemes have attained wide popularity in solving various problems involving the
convection-diffusion and Navier-Stokes equations [Spotz and Carey (1995); Ma-
hesh (1998); Ma, Fu, Kobayashi, and Taniguchi (1999); Li and Tang (2001); Kalita,
Dalal, and Dass (2002); Karaa and Zhang (2004); Tian and Ge (2007); Tian, Liang,
and Yu (2011)].

Following the trend toward highly accurate numerical schemes for partial differen-
tial equations (PDEs), Kansa (1990a,b) first proposed the use of radial basis func-
tions (RBFs) as approximants (here referred to as direct/differential RBF or DRBF
methods). In the DRBF method, a closed form RBF approximating function is
first obtained from a set of training points and the derivative functions are then
calculated directly from the closed form RBF [Mai-Duy and Tran-Cong (2001a)].
Mai-Duy and Tran-Cong (2001b, 2003) afterward proposed the idea of using indi-
rect/integrated radial basis functions (IRBFs) for the solution of PDEs. In the IRBF
approach, the highest derivatives under interest are decomposed into a set of RBFs;
and expressions for the lower derivatives and its function are then obtained through
integration processes. Extensive numerical studies in [Mai-Duy and Tran-Cong
(2001a,b, 2003, 2005)] have shown that the integral approach is more accurate than
the differential approach because the integration process is averagely less sensi-



A Three-point Coupled Compact Integrated RBF Scheme 427

tive to noise. The integration process gives rise to integration constants through
which extra equations can be employed. A one-dimensional IRBF scheme has
been developed in [Mai-Duy and Tanner (2007)]. Global RBF schemes have ad-
vantages of fast convergence, meshless nature and simple implementation, however
its RBF matrices are fully populated and thus tend to be much more ill-conditioned
as the number of the RBF is increased. To resolve these drawbacks, Mai-Duy
and Tran-Cong (2011) developed a five-point compact IRBF (here referred to as
compact IRBF or CIRBF) scheme that is capable of solving second-order ellip-
tic PDEs. Recently, Mai-Duy and Tran-Cong (2013) have proposed a three-point
CIRBF scheme where only nodal values of second derivatives (i.e. extra infor-
mation) are incorporated into the approximations. Thai-Quang, Mai-Duy, Tran,
and Tran-Cong (2012) has proposed another three-point CIRBF scheme where the
extra information includes nodal values of the first and second derivatives for the
computation of the first and second derivatives, respectively. The latter scheme
was reported to be more accurate [Thai-Quang, Mai-Duy, Tran, and Tran-Cong
(2012)]. Several other approaches using RBFs for solving engineering and science
problems have been recently reported, see for example [Kosec, Zaloznik, Sarler,
and Combeau (2011); Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2012);
Sellountos, Polyzos, and Atluri (2012); Mramor, Vertnik, and Sarler (2013); Thai-
Quang, Mai-Duy, C.-D.Tran, and Tran-Cong (2013); Elgohary, Dong, Junkins, and
Atluri (2014a,b); Hon, Sarler, and Dong (2015)] and the references therein.

This article develops a new three-point coupled compact integrated radial basis
function (CCIRBF) scheme for solving second-order PDEs. In the proposed CCIR
BF scheme, the first and second derivatives at a particular node are implicitly and
simultaneously obtained from the function values at the stencil points and from the
nodal values of not only first but also second derivatives (i.e. extra information) at
two neighboring points. Coupling processes of the extra information of the nodal
first and second derivatives are performed by means of coupling identity equations.
The CCIRBF scheme is more accurate, stable and efficient than the normal CIRBF
schemes developed in [Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2012)], which
is achieved by the coupling of the first and second derivatives. Major features of the
CCIRBF scheme are: three-point, implicit, high-order accuracy, stability, efficiency
and inclusion of boundary values. Numerical solutions of PDEs, including Pois-
son equation, heat equation, Burgers equation, and steady/non-steady convection-
diffusion equations, are used to illustrate the accuracy, stability and efficiency of
the proposed CCIRBF scheme. Results obtained are also compared with those ob-
tained by the CIRBF, HOC and some other high-order schemes. Greater accuracy
and stability are obtained with the present scheme. Furthermore, it also achieves
prescribed accuracy with smaller amount of time compared with the CIRBF and
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HOC schemes. The proposed CCIRBF scheme appears to be an attractive alterna-
tive to the normal CIRBF scheme for computations of second-order PDEs.

The remainder of this paper is organised as follows: the CCIRBF scheme is pro-
posed in Section 2. Section 3 outlines the ADI solution for convection-diffusion
equations. In Section 4, numerical examples are presented and CCIRBF results are
compared with some published solutions, where appropriate. Finally, concluding
remarks are given in Section 5.

2 CCIRBF scheme

To improve the performance of compact local approximations, a coupled compact
integrated radial basis function (CCIRBF) scheme is developed in this paper as
follows.

Consider a two-dimensional domain Ω, which is represented by a uniform Carte-
sian grid. The nodes are indexed in the x-direction by the subscript i(i∈{1,2, ...,nx})
and in y-direction by j ( j ∈ {1,2, ...,ny}). For rectangular domain, let N be the
total number of nodes (N = nx × ny) and Nip be the number of interior nodes
(Nip = (nx−2)× (ny−2)). At an interior grid point xi, j = (x(i, j),y(i, j))T where
i ∈ {2,3, ...,nx − 1} and j ∈ {2,3, ...,ny − 1}, the associated stencils to be con-
sidered here are two local stencils: {x(i−1, j),x(i, j),x(i+1, j)} in the x-direction and
{y(i, j−1),y(i, j),y(i, j+1)} in the y-direction. Hereafter, for brevity, η denotes either x
or y in a generic local stencil {η1,η2,η3}, where η1 < η2 < η3 and η2 ≡ η(i, j), are
illustrated in Figure 1.

Figure 1: Compact three-point 1D-IRBF stencil for interior nodes.

The integral approach starts with the decomposition of second derivatives of a vari-
able, u, into RBFs

d2u(η)

dη2 =
m

∑
i=1

wiGi(η), (1)

where m is taken to be 3 for local stencils; {Gi(η)}m
i=1 is the set of RBFs; and

{wi}m
i=1 the set of weights/coefficients to be found. Approximate representations

for the first derivatives and the functions itself are then obtained through the inte-
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gration processes

du(η)

dη
=

m

∑
i=1

wiHi(η)+ c1, (2)

u(η) =
m

∑
i=1

wiH i(η)+ c1η + c2, (3)

where Hi(η) =
∫

Gi(η)dη ; H i(η) =
∫

Hi(η)dη ; c1 and c2 are the constants of
integration.

2.1 First derivatives at interior nodes

For the coupled compact approximation of the first derivatives at interior nodes,
nodal derivative values (i.e. extra information) are chosen as not only

{
du1
dη

; du3
dη

}
but also

{
d2u1
dη2 ; d2u3

dη2

}
. At a particular interior node, the approximation is processed

through three steps: (i) we first approximate its first derivative over its associated
three-point stencil involving

{
du1
dη

; du3
dη

}
; (ii) we then approximate its first derivative

over the same stencil used in step (i) involving
{

d2u1
dη2 ; d2u3

dη2

}
; (iii) an identity equa-

tion of the first derivative is employed to enhance the level of compactness of the
stencil. Both

{
du1
dη

; du3
dη

}
and

{
d2u1
dη2 ; d2u3

dη2

}
are incorporated into the first derivative

approximation.

2.1.1 First derivatives at interior nodes involving
{

du1
dη

; du3
dη

}
We construct a conversion system over a three-point stencil associated with an in-
terior node involving

{
du1
dη

; du3
dη

}
in the form

u1
u2
u3
du1
dη
du3
dη

=

[
H
H

]
︸ ︷︷ ︸

C1F


w1
w2
w3
c1
c2

 , (4)

where dui
dη

= du
dη

(ηi) with i ∈ {1,2,3}; C1F is the conversion matrix, where the
subscript 1 and F stand for the 1st derivatives to be approximated and the extra
information of the nodal first derivative values chosen, respectively; H and H are
defined as

H =

 H1(η1) H2(η1) H3(η1) η1 1
H1(η2) H2(η2) H3(η2) η2 1
H1(η3) H2(η3) H3(η3) η3 1

 , (5)
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H =

[
H1(η1) H2(η1) H3(η1) 1 0
H1(η3) H2(η3) H3(η3) 1 0

]
. (6)

Solving (4) yields
w1
w2
w3
c1
c2

= C−1
1F


u1
u2
u3
du1
dη
du3
dη

 , (7)

which maps the vector of nodal values of the function and first derivative to the
vector of RBF coefficients including the two integration constants. Approximate
expressions for the first derivative in the physical space are obtained by substituting
(7) into (2)

du(η)

dη
=
[

H1(η) H2(η) H3(η) 1 0
]

C−1
1F

 u
du1
dη
du3
dη

 , (8)

where η1 ≤ η ≤ η3 and u = [u1,u2,u3]
T . (8) can be rewritten as

du(η)

dη
=

3

∑
i=1

dφ1Fi(η)

dη
ui +

dφ1F4(η)

dη

du1

dη
+

dφ1F5(η)

dη

du3

dη
, (9)

where {φ1Fi(η)}5
i=1 is the set of IRBFs in the physical space. Collocating (9) at

η = η2 results in

du(η2)

dη
=

3

∑
i=1

dφ1Fi(η2)

dη
ui +

dφ1F4(η2)

dη

du1

dη
+

dφ1F5(η2)

dη

du3

dη
. (10)

For brevity, we rewrite expression (10) as

u′2 =
3

∑
i=1

µ1Fiui +µ1F4u′1 +µ1F5u′3, (11)

where {µ1Fi}5
i=1 =

{
dφ1Fi(η2)

dη

}5

i=1
; u′1 = du1

dη
; u′2 = du(η2)

dη
; and u′3 = du3

dη
. At the

current time level n, (11) is taken as

u′2
n
=

3

∑
i=1

µ1Fiui
n +µ1F4u′1

n
+µ1F5u′3

n
, (12)
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where the nodal values of the first derivatives on the right hand side are treated as
unknowns. Rearranging (12) in the matrix-vector form[
−µ1F4 1 −µ1F5

]
u′n +

[
0 0 0

]
u′′n =

[
µ1F1 µ1F2 µ1F3

]
un, (13)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T . It is

noted that u′′n is introduced here to produce a general form for the coupling task
which is mentioned later on.

2.1.2 First derivatives at interior nodes involving
{

d2u1
dη2 ; d2u3

dη2

}
We construct a conversion system over a three-point stencil associated with an in-
terior node involving

{
d2u1
dη2 ; d2u3

dη2

}
in the form


u1
u2
u3

d2u1
dη2

d2u3
dη2

=

[
H
G

]
︸ ︷︷ ︸

C1S


w1
w2
w3
c1
c2

 , (14)

where d2ui
dη2 = d2u

dη2 (ηi) with i ∈ {1,2,3}; C1S is the conversion matrix, where the
subscript 1 and S stand for the 1st derivatives to be approximated and the extra
information of the nodal second derivative values chosen, respectively; H is defined
as before, i.e. (5), and G is defined as

G =

[
G1(η1) G2(η1) G3(η1) 0 0
G1(η3) G2(η3) G3(η3) 0 0

]
. (15)

Solving (14) yields


w1
w2
w3
c1
c2

= C−1
1S


u1
u2
u3

d2u1
dη2

d2u3
dη2

 , (16)

which maps the vector of nodal values of the function and second derivative to the
vector of RBF coefficients including the two integration constants. Approximate
expressions for the first derivative in the physical space are obtained by substituting
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(16) into (2)

du(η)

dη
=
[

H1(η) H2(η) H3(η) 1 0
]

C−1
1S

 u
d2u1
dη2

d2u3
dη2

 , (17)

where η1 ≤ η ≤ η3 and u = [u1,u2,u3]
T . (17) can be rewritten as

du(η)

dη
=

3

∑
i=1

dφ1Si(η)

dη
ui +

dφ1S4(η)

dη

d2u1

dη2 +
dφ1S5(η)

dη

d2u3

dη2 , (18)

where {φ1Si(η)}5
i=1 is the set of IRBFs in the physical space. Collocating (18) at

η = η2 results in

du(η2)

dη
=

3

∑
i=1

dφ1Si(η2)

dη
ui +

dφ1S4(η2)

dη

d2u1

dη2 +
dφ1S5(η2)

dη

d2u3

dη2 . (19)

For brevity, we rewrite expression (19) as

u′2 =
3

∑
i=1

µ1Siui +µ1S4u′′1 +µ1S5u′′3, (20)

where {µ1Si}5
i=1 =

{
dφ1Si(η2)

dη

}5

i=1
; u′2 = du(η2)

dη
; u′′1 = d2u1

dη2 ; and u′′3 = d2u3
dη2 . At the

current time level n, (20) is taken as

u′2
n
=

3

∑
i=1

µ1Siui
n +µ1S4u′′1

n
+µ1S5u′′3

n
, (21)

where the nodal values of the second derivatives on the right hand side are treated
as unknowns. Rearranging (21) in the matrix-vector form[

0 1 0
]

u′n +
[
−µ1S4 0 −µ1S5

]
u′′n =

[
µ1S1 µ1S2 µ1S3

]
un, (22)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .

2.1.3 First derivative couplings at interior nodes

For the first derivative coupling at each interior node, e.g. η = η2, we set the
right hand side of (11) to be equal to that of (20) to couple the nodal first deriva-
tive information, i.e.

{
du1
dη

; du3
dη

}
, and the nodal second derivative information, i.e.{

d2u1
dη2 ; d2u3

dη2

}
, as follow

3

∑
i=1

µ1Fiui
n +µ1F4u′1

n
+µ1F5u′3

n
=

3

∑
i=1

µ1Siui
n +µ1S4u′′1

n
+µ1S5u′′3

n
, (23)



A Three-point Coupled Compact Integrated RBF Scheme 433

or in the matrix-vector form

[
µ1F4 0 µ1F5

]
u′n +

[
−µ1S4 0 −µ1S5

]
u′′n

=
[
(µ1S1−µ1F1) (µ1S2−µ1F2) (µ1S3−µ1F3)

]
un, (24)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .

2.2 First derivatives at boundary nodes

At the boundary nodes, the first derivatives are approximated in special compact
stencils. Consider the boundary node, e.g. η1. Its associated stencil is {η1,η2,η3,η4}
as shown in Figure 2. For the coupled compact approximation of the first derivative
at the boundary node η1, nodal derivative values (i.e. extra information) are chosen
as both du2

dη
and d2u2

dη2 . The approximation is processed through three steps: (i) we
first approximate its first derivative over its associated four-point stencil involving
du2
dη

; (ii) we then approximate its first derivative over the same stencil used in step

(i) involving d2u2
dη2 ; (iii) an identity equation of the first derivative is introduced to

incorporate both du2
dη

and d2u2
dη2 into the first derivative approximation.

Figure 2: Special compact four-point 1D-IRBF stencil for boundary nodes.

2.2.1 First derivatives at boundary node η1 involving du2
dη

We construct a conversion system over the special four-point stencil associated with
the boundary node η1 involving du2

dη
in the form


u1
u2
u3
u4
du2
dη

=

[
Hsp
Hsp

]
︸ ︷︷ ︸

Csp1F



w1
w2
w3
w4
c1
c2

 , (25)
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where Csp1F is the conversion matrix and Hsp, Hsp are defined as

Hsp =


H1(η1) H2(η1) H3(η1) H4(η1) η1 1
H1(η2) H2(η2) H3(η2) H4(η2) η2 1
H1(η3) H2(η3) H3(η3) H4(η3) η3 1
H1(η4) H2(η4) H3(η4) H4(η4) η4 1

 , (26)

Hsp =
[

H1(η2) H2(η2) H3(η2) H4(η2) 1 0
]
. (27)

Solving (25) yields

w1
w2
w3
w4
c1
c2

= C−1
sp1F


u1
u2
u3
u4
du2
dη

 . (28)

The boundary value of the first derivative is thus obtained by substituting (28) into
(2) and taking η = η1

du(η1)

dη
=
[

H1(η1) H2(η1) H3(η1) H4(η1) 1 0
]

C−1
sp1F

[
u

du2
dη

]
, (29)

where u = [u1,u2,u3,u4]
T . (29) can be rewritten as

du(η1)

dη
=

4

∑
i=1

dφsp1Fi(η1)

dη
ui +

dφsp1F5(η1)

dη

du2

dη
. (30)

For brevity, we rewrite expression (30) as

u′1 =
4

∑
i=1

µsp1Fiui +µsp1F5u′2, (31)

where
{

µsp1Fi
}5

i=1 =
{

dφsp1Fi(η1)
dη

}5

i=1
; u′1 =

du(η1)
dη

; and u′2 =
du2
dη

. At the current time
level n, (31) is taken as

u′1
n
=

4

∑
i=1

µsp1Fiui
n +µsp1F5u′2

n
, (32)

where the nodal value of the first derivative on the right hand side is treated as
unknowns. Rearranging (32) in the matrix-vector form[

1 −µsp1F5 0 0
]

u′n +
[

0 0 0 0
]

u′′n

=
[

µsp1F1 µsp1F2 µsp1F3 µsp1F4
]

un, (33)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.



A Three-point Coupled Compact Integrated RBF Scheme 435

2.2.2 First derivatives at boundary node η1 involving d2u2
dη2

We construct a conversion system over the special four-point stencil associated with
the boundary node η1 involving d2u2

dη2 in the form


u1
u2
u3
u4

d2u2
dη2

=

[
Hsp
Gsp

]
︸ ︷︷ ︸

Csp1S



w1
w2
w3
w4
c1
c2

 , (34)

where Csp1S is the conversion matrix; Hsp is defined as before, i.e. (26), and Gsp is
defined as

Gsp =
[

G1(η2) G2(η2) G3(η2) G4(η2) 0 0
]
. (35)

Solving (34) yields

w1
w2
w3
w4
c1
c2

= C−1
sp1S


u1
u2
u3
u4

d2u2
dη2

 . (36)

The boundary value of the first derivative is thus obtained by substituting (36) into
(2) and taking η = η1

du(η1)

dη
=
[

H1(η1) H2(η1) H3(η1) H4(η1) 1 0
]

C−1
sp1S

[
u

d2u2
dη2

]
, (37)

where u = [u1,u2,u3,u4]
T . (37) can be rewritten as

du(η1)

dη
=

4

∑
i=1

dφsp1Si(η1)

dη
ui +

dφsp1S5(η1)

dη

d2u2

dη2 . (38)

For brevity, we rewrite expression (38) as

u′1 =
4

∑
i=1

µsp1Siui +µsp1S5u′′2, (39)
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where
{

µsp1Si
}5

i=1 =
{

dφsp1Si(η1)
dη

}5

i=1
; u′1 = du(η1)

dη
; and u′′2 = d2u2

dη2 . At the current
time level n, (39) is taken as

u′1
n
=

4

∑
i=1

µsp1Siui
n +µsp1S5u′′2

n
, (40)

where the nodal value of the second derivative on the right hand side is treated as
unknowns. Rearranging (40) in the matrix-vector form[

1 0 0 0
]

u′n +
[

0 −µsp1S5 0 0
]

u′′n

=
[

µsp1S1 µsp1S2 µsp1S3 µsp1S4
]

un, (41)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

2.2.3 First derivative coupling at boundary node η1

For the first derivative coupling at each boundary node, e.g. η = η1, we set the
right hand side of (31) to be equal to that of (39) to couple the nodal first derivative
information, i.e. du2

dη
, and the nodal second derivative information, i.e. d2u2

dη2 , as
follows.

4

∑
i=1

µsp1Fiui
n +µsp1F5u′2

n
=

4

∑
i=1

µsp1Siui
n +µsp1S5u′′2

n
, (42)

or in the matrix-vector form[
0 µsp1F5 0 0

]
u′n +

[
0 −µsp1S5 0 0

]
u′′n

=
[
(µsp1S1−µsp1F1) (µsp1S2−µsp1F2) (µsp1S3−µsp1F3) (µsp1S4−µsp1F4)

]
un,
(43)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

In a similar manner, one is able to calculate the first derivative at the boundary node
ηnη

.

2.3 Second derivatives at interior nodes

For the coupled compact approximation of the second derivatives at interior nodes,
nodal derivative values (i.e. extra information) are chosen to be the same as those
used for the approximation of the first derivatives, i.e.

{
du1
dη

; du3
dη

}
and

{
d2u1
dη2 ; d2u3

dη2

}
.

At a particular interior node, the approximation of its second derivative is processed
through three steps: (i) we first approximate its second derivative over its associated
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three-point stencil involving
{

du1
dη

; du3
dη

}
; (ii) we then approximate its second deriva-

tive over the same stencil used in step (i) involving
{

d2u1
dη2 ; d2u3

dη2

}
; (iii) an identity

equation of the second derivative is employed to enhance the level of compactness
of the stencil. Both

{
du1
dη

; du3
dη

}
and

{
d2u1
dη2 ; d2u3

dη2

}
are incorporated into the second

derivative approximation.

2.3.1 Second derivatives at interior nodes involving
{

du1
dη

; du3
dη

}
Because we employ the same extra information used in the approximation of the
first derivatives involving

{
du1
dη

; du3
dη

}
, approximate expressions for the second deriva-

tive in the physical space are obtained by simply substituting (7) into (1)

d2u(η)

dη2 =
[

G1(η) G2(η) G3(η) 0 0
]

C−1
1F

 u
du1
dη
du3
dη

 , (44)

where η ∈ {η1,η2,η3} and u = [u1,u2,u3]
T . (44) can be rewritten as

d2u(η)

dη2 =
3

∑
i=1

d2φ2Fi(η)

dη2 ui +
d2φ2F4(η)

dη2
du1

dη
+

d2φ2F5(η)

dη2
du3

dη
, (45)

where {φ2Fi(η)}5
i=1 is the set of IRBFs in the physical space, in which 2 and F

stand for the 2nd derivatives to be approximated and the extra information of the
first derivatives, respectively. Collocating (45) at η = η2 results in

d2u(η2)

dη2 =
3

∑
i=1

d2φ2Fi(η2)

dη2 ui +
d2φ2F4(η2)

dη2
du1

dη
+

d2φ2F5(η2)

dη2
du3

dη
. (46)

For brevity, we rewrite expression (46) as

u′′2 =
3

∑
i=1

ν2Fiui +ν2F4u′1 +ν2F5u′3, (47)

where {ν2Fi}5
i=1 =

{
d2φ2Fi(η2)

dη2

}5

i=1
; u′1 = du1

dη
; u′3 = du3

dη
; and u′′2 = d2u(η2)

dη2 . At the
current time level n, (47) is taken as

u′′2
n
=

3

∑
i=1

ν2Fiui
n +ν2F4u′1

n
+ν2F5u′3

n
, (48)
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where the nodal values of the first derivatives on the right hand side are treated as
unknowns. Rearranging (48) in the matrix-vector form[
−ν2F4 0 −ν2F5

]
u′n +

[
0 1 0

]
u′′n =

[
ν2F1 ν2F2 ν2F3

]
un, (49)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .

2.3.2 Second derivatives at interior nodes involving
{

d2u1
dη2 ; d2u3

dη2

}
Because we employ the same extra information used in the approximation of the
first derivatives involving

{
d2u1
dη2 ; d2u3

dη2

}
, approximate expressions for the second

derivative in the physical space are obtained by simply substituting (16) into (1)

d2u(η)

dη2 =
[

G1(η) G2(η) G3(η) 0 0
]

C−1
1S

 u
d2u1
dη2

d2u3
dη2

 , (50)

where η1 ≤ η ≤ η3 and u = [u1,u2,u3]
T . (50) can be rewritten as

d2u(η)

dη2 =
3

∑
i=1

d2φ2Si(η)

dη2 ui +
d2φ2S4(η)

dη2
d2u1

dη2 +
d2φ2S5(η)

dη2
d2u3

dη2 , (51)

where {φ2Si(η)}5
i=1 is the set of IRBFs in the physical space, in which 2 and S stand

for the 2nd derivatives to be approximated and the extra information of the second
derivatives, respectively. Collocating (51) at η = η2 results in

d2u(η2)

dη2 =
3

∑
i=1

d2φ2Si(η2)

dη2 ui +
d2φ2S4(η2)

dη2
d2u1

dη2 +
d2φ2S5(η2)

dη2
d2u3

dη2 . (52)

For brevity, we rewrite expression (52) as

u′′2 =
3

∑
i=1

ν2Siui +ν2S4u′′1 +ν2S5u′′3, (53)

where {ν2Si}5
i=1 =

{
d2φ2Si(η2)

dη2

}5

i=1
; u′′1 = d2u1

dη2 ; u′′2 = d2u(η2)
dη2 ; and u′′3 = d2u3

dη2 . At the
current time level n, (53) is taken as

u′′2
n
=

3

∑
i=1

ν2Siui
n +ν2S4u′′1

n
+ν2S5u′′3

n
, (54)

where the nodal values of the second derivatives on the right hand side are treated
as unknowns. Rearranging (54) in the matrix-vector form[

0 0 0
]

u′n +
[
−ν2S4 1 −ν2S5

]
u′′n =

[
ν2S1 ν2S2 ν2S3

]
un, (55)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .
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2.3.3 Second derivative couplings at interior nodes

For the second derivative coupling at each interior node, e.g. η = η2, we set the
right hand side of (47) to be equal to that of (53) to couple the nodal first deriva-
tive information, i.e.

{
du1
dη

; du3
dη

}
, and the nodal second derivative information, i.e.{

d2u1
dη2 ; d2u3

dη2

}
, as follows.

3

∑
i=1

ν2Fiui
n +ν2F4u′1

n
+ν2F5u′3

n
=

3

∑
i=1

ν2Siui
n +ν2S4u′′1

n
+ν2S5u′′3

n
, (56)

or in the matrix-vector form[
ν2F4 0 ν2F5

]
u′n +

[
−ν2S4 0 −ν2S5

]
u′′n

=
[
(ν2S1−ν2F1) (ν2S2−ν2F2) (ν2S3−ν2F3)

]
un, (57)

where u′n = [u′1
n,u′2

n,u′3
n]

T ; u′′n = [u′′1
n,u′′2

n,u′′3
n]

T ; and un = [u1
n,u2

n,u3
n]T .

2.4 Second derivatives at boundary nodes

At the boundary nodes, the second derivatives are approximated in special com-
pact stencils. Consider the boundary node, e.g. η1. Its associated stencil is
{η1,η2,η3,η4} as shown in Figure 2. For the coupled compact approximation
of the second derivative at the boundary node η1, nodal derivative values (i.e. extra
information) are chosen to be the same as those used for the approximation of the
first derivatives, i.e. du2

dη
and d2u2

dη2 . The approximation of its second derivative is
processed through three steps: (i) we first approximate its second derivative over
its associated four-point stencil involving du2

dη
; (ii) we then approximate its second

derivative over the same stencil used in step (i) involving d2u2
dη2 ; (iii) an identity equa-

tion of the second derivative is introduced to incorporate both du2
dη

and d2u2
dη2 into the

second derivative approximation.

2.4.1 Second derivatives at boundary node η1 involving du2
dη

Because we employ the same extra information used in the approximation of the
first derivatives involving du2

dη
, approximate expression for the second derivative at

η1 in the physical space is obtained by simply substituting (28) into (1) and taking
η = η1

d2u(η1)

dη2 =
[

G1(η1) G2(η1) G3(η1) G4(η1) 0 0
]

C−1
sp1F

[
u

du2
dη

]
, (58)
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where u = [u1,u2,u3,u4]
T . (58) can be rewritten as

d2u(η1)

dη2 =
4

∑
i=1

d2φsp2Fi(η1)

dη2 ui +
d2φsp2F5(η1)

dη2
du2

dη
. (59)

For brevity, we rewrite expression (59) as

u′′1 =
4

∑
i=1

νsp2Fiui +νsp2F5u′2, (60)

where
{

νsp2Fi
}5

i=1 =
{

d2φsp2Fi(η1)

dη2

}5

i=1
; u′2 = du2

dη
; and u′′1 = d2u(η1)

dη2 . At the current
time level n, (60) is taken as

u′′1
n
=

4

∑
i=1

νsp2Fiui
n +νsp2F5u′2

n
, (61)

where the nodal value of the first derivative on the right hand side is treated as
unknowns. Rearranging (61) in the matrix-vector form[

0 −νsp2F5 0 0
]

u′n +
[

1 0 0 0
]

u′′n

=
[

νsp2F1 νsp2F2 νsp2F3 νsp2F4
]

un, (62)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

2.4.2 Second derivatives at boundary node η1 involving d2u2
dη2

Because we employ the same extra information used in the approximation of the
first derivatives involving d2u2

dη2 , approximate expression for the second derivative at
η1 in the physical space is obtained by simply substituting (36) into (1) and taking
η = η1

d2u(η1)

dη2 =
[

G1(η1) G2(η1) G3(η1) G4(η1) 0 0
]

C−1
sp1S

[
u

d2u2
dη2

]
, (63)

where u = [u1,u2,u3,u4]
T . (63) can be rewritten as

d2u(η1)

dη2 =
4

∑
i=1

d2φsp2Si(η1)

dη2 ui +
d2φsp2S5(η1)

dη2
d2u2

dη2 . (64)

For brevity, we rewrite expression (64) as

u′′1 =
4

∑
i=1

νsp2Siui +νsp2S5u′′2, (65)
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where
{

νsp2Si
}5

i=1 =
{

d2φsp2Si(η1)

dη2

}5

i=1
; u′′1 = d2u(η1)

dη2 ; and u′′2 = d2u2
dη2 . At the current

time level n, (65) is taken as

u′′1
n
=

4

∑
i=1

νsp2Siui
n +νsp2S5u′′2

n
, (66)

where the nodal value of the second derivative on the right hand side is treated as
unknowns. Rearranging (66) in the matrix-vector form[

0 0 0 0
]

u′n +
[

1 −νsp2S5 0 0
]

u′′n

=
[

νsp2S1 νsp2S2 νsp2S3 νsp2S4
]

un, (67)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

2.4.3 Second derivative coupling at boundary node η1

For the second derivative coupling at each boundary node, e.g. η = η1, we set the
right hand side of (60) to be equal to that of (65) to couple the nodal first derivative
information, i.e. du2

dη
, and the nodal second derivative information, i.e. d2u2

dη2 , as
follow

4

∑
i=1

νsp2Fiui
n +νsp2F5u′2

n
=

4

∑
i=1

νsp2Siui
n +νsp2S5u′′2

n
, (68)

or in the matrix-vector form[
0 νsp2F5 0 0

]
u′n +

[
0 −νsp2S5 0 0

]
u′′n

=
[
(νsp2S1−νsp2F1) (νsp2S2−νsp2F2) (νsp2S3−νsp2F3) (νsp2S4−νsp2F4)

]
un,
(69)

where u′n=[u′1
n,u′2

n,u′3
n,u′4

n]
T; u′′n=[u′′1

n,u′′2
n,u′′3

n,u′′4
n]

T; and un=[u1
n,u2

n,u3
n,u4

n]T.

In a similar manner, one is able to calculate the second derivative at the boundary
node ηnη

.

2.5 Matrix assembly for first and second derivative expressions

The IRBF system on a grid line for the first derivative is obtained by letting the
interior node taking values from 2 to (nη −1) in (13), (22), and (24); and, making
use of (33), (41), and (43) for the boundary nodes 1 and nη . In a similar manner,
the IRBF system on a grid line for the second derivative is obtained by letting the
interior node taking values from 2 to (nη −1) in (49), (55), and (57); and, making
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use of (62), (67), and (69) for the boundary nodes 1 and nη . The resultant matrix
assembly is expressed as

A1F 0
A1S B1S
A1FS B1FS
A2F B2F
0 B2S
A2FS B2FS


︸ ︷︷ ︸

Coefficient matrix

[
u′n

u′′n
]
=



R1F
R1S
R1FS
R2F
R2S
R2FS

 un , (70)

where A1F, A1S, B1S, A1FS, B1FS, A2F, B2F, B2S, A2FS, B2FS, and 0 are nη ×

nη matrices; u′n =
{

u′1
n,u′2

n, ...,u′nη

n
}T

; u′′n =
{

u′′1
n,u′′2

n, ...,u′′nη

n
}T

; and un ={
u1

n,u2
n, ...,unη

n
}T . The coefficient matrix is sparse with diagonal, bi-diagonal,

and tri-diagonal sub-matrices. Solving (70) yields

u′n = Dηun, (71)

u′′n = Dηηun, (72)

where Dη and Dηη are nη ×nη matrices.

It is noted that, for brevity, we use the same notations to represent the RBF coef-
ficients for the approximation of first and second derivatives. In fact, for example,
the coefficient set [w1,w2,w3,c1,c2]

T in (4) is not the same as that in (14).

3 ADI method for convection-diffusion equations

We consider a two-dimensional (2D) unsteady convection-diffusion equation for a
variable u

∂u
∂ t

+ cx
∂u
∂x

+ cy
∂u
∂y

= dx
∂ 2u
∂x2 +dy

∂ 2u
∂y2 + fb, (x,y, t) ∈Ω× [0,T ] , (73)

subject to the initial condition

u(x,y,0) = u0(x,y), (x,y) ∈Ω, (74)

and Dirichlet boundary condition

u(x,y, t) = uΓ(x,y, t), (x,y) ∈ Γ, (75)

where Ω is a two-dimensional rectangular domain; Γ is the boundary of Ω; [0,T ] is
the time interval; fb is the driving function; u0 and uΓ are some given functions. In
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(73), cx and cy are the convective velocities, and dx and dy are the positive diffusive
coefficients. For the steady-state case, (73) reduces to

cx
∂u
∂x

+ cy
∂u
∂y

= dx
∂ 2u
∂x2 +dy

∂ 2u
∂y2 + fb. (76)

(73) and (76) are known as a simplified version of the Navier-Stokes equation.
They have been widely used in computational fluid dynamics (CFD) and physical
sciences to describe the transport of mass, momentum, vorticity, heat and energy,
the modeling of semiconductors, etc. In this article, we implement the alternating
direction implicit (ADI) method proposed by You (2006) in the context of CCIRBF
approximations for the solution of the convection-diffusion equation.

3.1 You’s ADI temporal discretisation

You (2006) proposed the following ADI factorisation to (73)

(
1+

∆t
2

cx
∂

∂x

)(
1− ∆t

2
dx

∂ 2

∂x2

)(
1+

∆t
2

cy
∂

∂y

)(
1− ∆t

2
dy

∂ 2

∂y2

)
un

=

(
1− ∆t

2
cx

∂

∂x

)(
1+

∆t
2

dx
∂ 2

∂x2

)(
1− ∆t

2
cy

∂

∂y

)(
1+

∆t
2

dy
∂ 2

∂y2

)
un−1

+∆t f n−1/2
b +O(∆t2). (77)

We rewrite (77)

T+
x T−xx T+

y T−yy un = T−x T+
xx T−y T+

yy un−1, (78)

where

T±x =

(
1± ∆t

2
cx

∂

∂x

)
, T±xx =

(
1± ∆t

2
dx

∂ 2

∂x2

)
, (79)

T±y =

(
1± ∆t

2
cy

∂

∂y

)
, T±yy =

(
1± ∆t

2
dy

∂ 2

∂y2

)
.

(78) can be solved by the following two steps

T+
x T−xx u∗ = T−x T+

xx T−y T+
yy un−1, (80)

T+
y T−yy un = u∗. (81)
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3.2 ADI spatial-temporal discretisation

We incorporate the CCIRBF approximations derived in Section 2 into the ADI
equation by substituting (71) and (72), nodal value of the first and second deriva-
tives, into (77), resulting in the matrix-vector form

T+
x T−xxT+

y T−yyun = T−x T+
xxT−y T+

yyun−1 +∆tfn−1/2
b , (82)

where

T±x =

(
I± ∆t

2
cxDx

)
, T±xx =

(
I± ∆t

2
dxDxx

)
, (83)

T±y =

(
I± ∆t

2
cyDy

)
, T±yy =

(
I± ∆t

2
dyDyy

)
,

and I is the nη ×nη identity matrix.

3.3 ADI calculation procedure

Equation (82) is equivalent to

T+
x T−xxu∗ = T−x T+

xxT−y T+
yyun−1 +∆tfn−1/2

b , (84)

T+
y T−yyun = u∗, (85)

which can be solved by the following two steps.

Step 1: This step involves two sub-steps

• Sub-step 1: Compute the nodal values of u∗ at the left and right boundaries
of the computational domain via (85) for x = x1 and x = xnx with the given
boundary condition (75).

• Sub-step 2: Solve (84) on the x-grid lines (y = y j, j ∈ {2,3, · · · ,ny−1}) for
the values of u∗ at the interior nodes.

Step 2: Solve (85) on the y-grid lines (x = xi, i ∈ {2,3, · · · ,nx−1}) for the values
of un at the interior nodes.

4 Numerical examples

We choose the multiquadric (MQ) function as the basis function in the present
calculations

Gi(x) =
√
(x− ci)2 +a2

i , (86)
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where ci and ai are the centre and the width of the i-th MQ, respectively. For each
stencil, the set of nodal points is taken to be the same as the set of MQ centres. We
simply choose the MQ width as ai = βhi, where β is a positive scalar and hi is the
distance between the i-th node and its closest neighbour. The value of β = 50 is
employed in the present work. We evaluate the performance of the present scheme
through the following measures

i. the root mean square error (RMS) is defined as

RMS =

√
∑

N
i=1
(

fi− f i
)2

N
, (87)

where fi and f i are the computed and exact values of the solution f at the i-th
node, respectively; and, N is the number of nodes over the whole domain.

ii. the average absolute error (L1) is defined as

L1 =
1
N

N

∑
i=1
| fi− f i|, (88)

iii. the maximum absolute error (L∞) is defined as

L∞ = max
i=1,...,N

| fi− f i|, (89)

iv. the global convergence rate with respect to the grid refinement is defined
through

Error(h)≈ γhα = O(hα), (90)

v. a solution is considered to reach its steady state when√
∑

N
i=1
(

f n
i − f n−1

i

)2

N
< 10−9. (91)

In this work, calculations are done with a Dell computer Optiplex 9010 version
2013. Its specifications are intel(R) core(TM) i7-3770 CPU 3.40 GHz 3.40 GHz,
memory(RAM) of 8GB(7.89 usable) and 64-bit operating system. The Matlab(R)
version 2012 is utilised.
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4.1 Poisson equation

In order to study the spatial accuracy of the present CCIRBF approximation scheme,
we consider the following Poisson equation

d2u
dx2

1
+

d2u
dx2

2
=−18π

2 sin(3πx1)sin(3πx2), (92)

on a square domain [0,1]2, subjected to Dirichlet boundary condition derived from
the following exact solution

u = sin(3πx1)sin(3πx2), (93)

The calculations are carried out on a set of uniform grids of {21× 21,31× 31, ...,
111× 111}. Table 1 shows that the proposed scheme outperforms the HOC and
CIRBF schemes in terms of solution accuracy. Figure 3 illustrates the matrix con-
dition number grows with approximately the rate of O(h−2.00) for the HOC and
CIRBF, and O(h−1.90) for the CCIRBF.

Table 1: Poisson equation: The effect of grid size h on the solution accuracy RMS.

Grid (nx×ny)
HOC CIRBF present CCIRBF

Tian et al. (2011) Thai-Quang et al. (2012)
RMS RMS RMS

21×21 3.3579E-04 3.3492E-04 2.5405E-04
31×31 5.6856E-05 5.6674E-05 4.2362E-05
41×41 1.4589E-05 1.4594E-05 1.0997E-05
51×51 4.9330E-06 4.7158E-06 3.7709E-06
61×61 2.0151E-06 1.9227E-06 1.5371E-06
71×71 9.4467E-07 9.2935E-07 7.1799E-07
81×81 4.9199E-07 4.6935E-07 3.8210E-07
91×91 2.7850E-07 3.0597E-07 2.0317E-07
101×101 1.6869E-07 1.5204E-07 1.3230E-07
111×111 1.0805E-07 1.4662E-07 7.8442E-08

To compare the computational efficiency of the CCIRBF, CIRBF and HOC schemes,
we let the grid increase as {21×21,23×23, ...} until the solution accuracy achieves
a target RMS level of 10−6. Figure 4 shows that the present scheme takes much less
time to reach the target accuracy than the CIRBF and HOC. It is noted that the final
grid used to achieve the target accuracy is 71× 71 for the HOC and CIRBF and
67×67 for the CCIRBF.

The effect of the MQ width on the solution accuracy for three different grids
{21×21,51×51,81×81} is illustrated in Figure 5. It can be seen that the present
scheme has better accuracy and is more stable than the CIRBF scheme.
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Figure 3: Poisson equation, {21×21,31×31, ...,111×111}: The effect of grid
size h on the matrix condition number. It is noted that the curves for the HOC-ADI
and CIRBF-ADI are indistinguishable.
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Figure 4: Poisson equation, {21×21,23×23, ...}: The computational cost to
achieve the target accuracy of 10−6. The final grid is 71× 71 for the HOC and
CIRBF and 67×67 for the CCIRBF.
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Figure 5: Poisson equation, {21×21,51×51,81×81}: The effect of the MQ
width β on the solution accuracy RMS.

4.2 Heat equation

By selecting the following heat equation, the performance of the proposed scheme
can be studied for the diffusive term only as

∂u
∂ t

=
∂ 2u
∂x2 , a≤ x≤ b, t ≥ 0, (94)

u(x,0) = u0(x), a≤ x≤ b, (95)

u(a, t) = uΓ1(t) and u(b, t) = uΓ2(t), t ≥ 0, (96)

where u and t are the field variable and time, respectively; and u0(x), uΓ1(t), and
uΓ2(t) are prescribed functions. The temporal discretisation of (94) with a Crank-
Nicolson scheme gives

un−un−1

∆t
=

1
2

{
∂ 2un

∂x2 +
∂ 2un−1

∂x2

}
, (97)
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where the superscript n denotes the current time step. (97) can be rewritten as{
1− ∆t

2
∂ 2

∂x2

}
un =

{
1+

∆t
2

∂ 2

∂x2

}
un−1. (98)

Consider (94) on a segment [0,π] with the initial and boundary conditions u(x,0) =
sin(2x), 0 < x < π and u(0, t) = u(π, t) = 0, t ≥ 0, respectively. The exact solution
of this problem can be verified to be u(x, t) = sin(2x)e−4t . The spatial accuracy
of the proposed scheme is tested on various uniform grids {11,21, ...,111}. We
employ here a small time step, ∆t = 10−6, to minimise the effect of the approxima-
tion error in time. The solution is computed at t = 0.0125. Table 2 shows that the
CCIRBF outperforms the HOC and CIRBF in terms of both solution accuracy and
convergence rate. At the two finest grids, it can be seen that the CCIRBF maintains
its high convergence rates and produces highly accurate and stable results while
the convergence rates of the CIRBF fall dramatically. Figure 6 illustrates a similar
trend of the matrix condition number for the three schemes.

Table 2: Heat equation, ∆t = 10−6, t = 0.0125: The effect of grid size h on the
solution accuracy RMS. LCR stands for "Local Convergence Rate".

Grid (nx×ny)
HOC CIRBF present CCIRBF

Tian et al. (2011) Thai-Quang et al. (2012)
RMS LCR RMS LCR RMS LCR

11×11 1.9029E-04 — 1.8980E-04 — 1.6692E-04 —
21×21 2.1464E-05 3.37 2.1213E-05 3.39 1.5704E-05 3.66
31×31 4.1528E-06 3.69 4.0418E-06 3.72 2.9809E-06 3.89
41×41 1.1631E-06 3.87 1.1049E-06 3.91 8.2778E-07 4.03
51×51 4.1535E-07 3.99 3.8564E-07 4.04 2.8916E-07 4.15
61×61 1.7581E-07 4.08 1.5638E-07 4.15 1.1851E-07 4.23
71×71 8.4228E-08 4.14 7.2009E-08 4.22 5.7172E-08 4.28
81×81 4.4304E-08 4.19 3.6360E-08 4.29 3.2741E-08 4.28
91×91 2.5062E-08 4.23 1.8962E-08 4.36 1.3035E-08 4.48
101×101 1.5025E-08 4.26 1.8306E-08 4.17 7.5240E-09 4.51
111×111 9.4465E-09 4.29 2.1701E-08 3.93 4.9223E-09 4.51

LCR=-log[RMS(nx)/RMS(11)]/log[nx/11].

To study the computational efficiency of the CCIRBF, CIRBF and HOC schemes,
we increase the number of grids as {11,13, ...} until the solution accuracy achieves
a target RMS level of 10−6. We also use a small time step, ∆t = 10−6 and the
solution is computed at t = 0.0125. Figure 7 shows that the present scheme uses a
smaller amount of time to reach the target accuracy than the CIRBF and HOC. It is
noted that the final grid used to achieve the target accuracy is 43 for the HOC and
CIRBF and 41 for the CCIRBF.
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Figure 6: Heat equation, {11,21, ...,111}, ∆t = 10−6, t = 0.0125: The effect of grid
size h on the matrix condition number. It is noted that the curves for the HOC-ADI
and CIRBF-ADI are indistinguishable.
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Figure 7: Heat equation, {11,13, ...}: The computational cost to achieve the target
accuracy of 10−6. The final grid is 43 for the HOC and CIRBF and 41 for the
CCIRBF.
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The effect of the MQ width on the solution accuracy for three different grids
{11,41,71} is illustrated in Figure 8 where it can be observed that the present
scheme has better accuracy than the CIRBF scheme.

0 20 40 60 80 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

β

R
M

S

 

 

CIRBF 11x11 [Thai−Quang et al. (2012)]
present CCIRBF 11x11
CIRBF 41x41 [Thai−Quang et al. (2012)]
present CCIRBF 41x41
CIRBF 71x71 [Thai−Quang et al. (2012)]
present CCIRBF 71x71

Figure 8: Heat equation, {11,41,71}, ∆t = 10−6, t = 0.0125: The effect of the MQ
width β on the solution accuracy RMS.

4.3 Burgers equation

With Burgers equation, the performance of the proposed scheme can be investi-
gated for both convective and diffusive terms as

∂u
∂ t

+u
∂u
∂x

=
1

Re
∂ 2u
∂x2 , a≤ x≤ b, t ≥ 0, (99)

u(x,0) = u0(x), a≤ x≤ b, (100)

u(a, t) = uΓ1(t) and u(b, t) = uΓ2(t), t ≥ 0, (101)

where Re > 0 is the Reynolds number; and u0(x), uΓ1(t), and uΓ2(t) are prescribed
functions. The temporal discretisations of (99) using the Adams-Bashforth scheme
for the convective term and Crank-Nicolson scheme for the diffusive term, result in

un−un−1

∆t
+

{
3
2

(
u

∂u
∂x

)n−1

− 1
2

(
u

∂u
∂x

)n−2
}

=
1

2Re

{
∂ 2un

∂x2 +
∂ 2un−1

∂x2

}
, (102)
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Figure 9: Burgers equation, {31,41, ...,191}, Re = 100, ∆t = 10−6, t = 0.0125:
The effect of grid size h on the solution accuracy RMS. The solution converges as
O(h4.29) for the HOC, O(h4.21) for the CIRBF, and O(h4.27) for the CCIRBF.

10
−2

10
−1

10
0.001

10
0.002

h

C
on

d(
A

)

 

 

HOC [Tian et al. (2011)]
CIRBF [Thai−Quang et al. (2012)]
present CCIRBF

Figure 10: Burgers equation, {31,41, ...,191}, Re = 100, ∆t = 10−6, t = 0.0125:
The effect of grid size h on the matrix condition number. It is noted that the curves
for the HOC-ADI and CIRBF-ADI are indistinguishable.
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Figure 11: Burgers equation, {31,41, ...}: The computational cost to achieve the
target accuracy of 10−6. The final grid is 121 for the HOC and CIRBF and 111 for
the CCIRBF.
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Figure 12: Burgers equation, {31,71,101}, Re = 100, ∆t = 10−6, t = 0.0125: The
effect of the MQ width β on the solution accuracy RMS.
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or{
1− ∆t

2Re
∂ 2

∂x2

}
un =

{
1+

∆t
2Re

∂ 2

∂x2

}
un−1−∆t

{
3
2

(
u

∂u
∂x

)n−1

− 1
2

(
u

∂u
∂x

)n−2
}
.

(103)

The problem is considered on a segment 0 ≤ x ≤ 1, t ≥ 0 in the form [Hassanien,
Salama, and Hosham (2005)]

u(x, t) =
α0 +µ0 +(µ0−α0)exp(η)

1+ exp(η)
, (104)

where η = α0Re(x−µ0t−β0), α0 = 0.4, β0 = 0.125, µ0 = 0.6, and Re = 100. The
initial and boundary conditions can be derived from the analytic solution (104).
The calculations are carried out on a set of uniform grids {31,41, ...,191}. The
time step ∆t = 10−6 is chosen. The errors of the solution are calculated at the time
t = 0.0125. Figure 9 displays that the present scheme has lower errors than the
HOC and CIRBF. At high grid densities, it can be also seen that the CCIRBF is
more accurate and stable than the CIRBF. A similar trend of the matrix condition
number for the three schemes is observed in Figure 10.

To study the computational efficiency of the CCIRBF, CIRBF and HOC schemes,
we increase the number of grids as {31,41, ...} until the solution accuracy achieves
a target RMS level of 10−6. The time step ∆t = 10−6 is chosen and the errors of
the solution are calculated at the time t = 0.0125. Figure 11 shows that the present
scheme takes less time to reach the target accuracy than the CIRBF and HOC. It is
noted that the final grid used to achieve the target accuracy is 121 for the HOC and
CIRBF and 111 for the CCIRBF.

Figure 12 shows the effect of the MQ width on the solution accuracy, where the
present scheme produces better accuracy than the CIRBF scheme over a wide range
of β for three different grids {31,71,101}.

4.4 Steady convection-diffusion equation

Consider (76) with cx = cy = 0.1, dx = dy = 1 in a square Ω = [0,L]× [0,L] and
subject to Dirichlet boundary condition. The analytic solution takes the form [Sheu,
Kao, Chiu, and Lin (2011)]

u =
u0

er+− er−
eδx/2 sin(πx)(er+y− er−y) , (105)

where u0 = 1, δx = cxL/dx, δy = cyL/dy, L = 1, and

r± =
1
2

δy±
1
2

√(
δ 2

y +4W
)
, W = 4π

2 +δ
2
x /4. (106)
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Figure 13: Steady convection-diffusion equation, {11×11,16×16, ...,51×51}:
The effect of grid size h on the solution accuracy RMS. The present solution is
more accurate than those by HOC-ADI and CIRBF-ADI.
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Figure 14: Steady convection-diffusion equation, {11×11,13×13, ...}: The com-
putational cost to achieve the target accuracy of 10−6. The final grid is 47×47 for
the CIRBF-ADI, 45×45 for the HOC-ADI and 43×43 for the CCIRBF-ADI.
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Figure 15: Steady convection-diffusion equation, {31×31,41×41,51×51}: The
effect of the MQ width β on the solution accuracy RMS.
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Figure 16: Unsteady diffusion equation, {11×11,16×16, ...,41×41}, ∆t = 10−5,
t = 0.0125: The effect of grid size h on the solution accuracy RMS. The present
solution is more accurate than those by HOC-ADI and CIRBF-ADI.
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The driving function fb is given by

fb = cx
∂u
∂x

+ cy
∂u
∂y
−dx

∂ 2u
∂x2 −dy

∂ 2u
∂y2 . (107)

To solve the steady equation (76), we make use of the unsteady form (73) where ∂u
∂ t

is considered as a pseudo time-derivative term to facilitate an iterative calculation.
The steady equation (76) thus has the same form as the unsteady equation (73).
When the difference of u between two successive time levels is small, i.e. less than
a given tolerance (91), the obtained solution is the solution to (76).

In order to study the accuracy of the solution with grid refinement, we employ a set
of uniform grids {11×11,16×16, ...,51×51} and a time step of 0.0005. Figure 13
displays the present results are better than those of the HOC-ADI and CIRBF-ADI.

To investigate the computational efficiency of the CCIRBF-ADI, CIRBF-ADI and
HOC-ADI schemes, we let the number of grids increase as {11×11,13×13, ...}
until the solution accuracy achieves a target RMS level of 10−6. The time step
is 0.0005. Figure 14 shows that the present scheme takes less time to reach the
target accuracy than the CIRBF-ADI and HOC-ADI. It is noted that the final grid
used to achieve the target accuracy is 47×47 for the CIRBF-ADI, 45×45 for the
HOC-ADI and 43×43 for the CCIRBF-ADI.

Figure 15 illustrates the solution accuracy versus the MQ width for three different
grids {31×31,41×41,51×51}. It is observed that the CCIRBF-ADI is more
accurate and stable than the CIRBF-ADI.

4.5 Unsteady diffusion equation

Consider a diffusion equation by setting the parameters in (73) as cx = cy = 0,
dx = dy = 1 and fb = 0. The analytic solution is taken here as [Tian and Ge (2007)]

u(x,y, t) = e−2π2t sin(πx)sin(πy). (108)

The problem domain is chosen to be a unit square Ω = [0,1]× [0,1] and the initial
and Dirichlet boundary conditions are derived from (108).

We employ a set of uniform grids {11× 11,16× 16, ...,41× 41} to study the ac-
curacy of the solution with grid refinement. Results computed at t = 0.0125 using
∆t = 10−5 are displayed in Figure 16, showing that the CCIRBF-ADI gives lower
errors than the HOC-ADI and CIRBF-ADI.

In order to investigate the computational efficiency of the CCIRBF-ADI, CIRBF-
ADI and HOC-ADI schemes, we increase the number of grids as {11× 11,13×
13, ...} until the solution accuracy achieves a target RMS level of 10−6. Results are
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also computed at t = 0.0125 using ∆t = 10−5. Figure 17 shows that the present
scheme reaches the target accuracy using less time than the CIRBF-ADI and HOC-
ADI. It is noted that the final grid used to achieve the target accuracy is 25×25 for
the HOC-ADI and CIRBF-ADI and 23×23 for the CCIRBF-ADI.

We employ a set of time steps ∆t = {0.05,0.025,0.0125,0.00625} to test the tem-
poral accuracy. Results are computed at t = 1.25 using a uniform grid of 81× 81
are shown in Table 3.

Table 3: Unsteady diffusion equation, t = 1.25, grid 81×81: Solution accuracy of
the three schemes against time step.

∆t
HOC-ADI CIRBF-ADI present CCIRBF-ADI

Tian et al. (2011) Thai-Quang et al. (2012)
RMS Rate RMS Rate RMS Rate

0.05 3.8518E-12 — 3.8518E-12 — 3.8519E-12 —
0.025 1.1276E-12 1.77 1.1276E-12 1.77 1.1277E-12 1.77
0.0125 2.9340E-13 1.94 2.9337E-13 1.94 2.9351E-13 1.94
0.00625 7.4089E-14 1.99 7.4054E-14 1.99 7.4199E-14 1.98

Table 4: Unsteady diffusion equation, t = 0.125, ∆t = h2: Effect of grid size on the
solution accuracy RMS.

Grid
EHOC-ADI HOC-ADI CIRBF-ADI present
Tian and Ge

(2007)
Tian et al.

(2011)
Thai-Quang
et al. (2012)

CCIRBF-ADI

RMS RMS RMS RMS
11×11 8.5513E-05 9.4741E-05 9.3942E-05 8.7048E-05
21×21 5.1916E-06 5.7865E-06 5.8195E-06 5.5153E-06
41×41 3.1748E-07 3.3969E-07 4.0291E-07 3.3936E-07

To facilitate a further comparison with the exponential high-order compact ADI
scheme (EHOC-ADI) [Tian and Ge (2007)], we now choose ∆t = h2 and t = 0.125.
Table 4 indicates that the present CCIRBF-ADI scheme is more accurate than the
HOC-ADI and CIRBF-ADI schemes and comparable with the EHOC-ADI scheme.
The four schemes yield similar local rates of convergence of about 4.

Figure 18 plots the RMS error against time with ∆t = 10−4 and t = 0.125 using a
grid of 21×21. The plot shows that the CCIRBF-ADI is more accurate than both
HOC-ADI and CIRBF-ADI.

The effect of the MQ width on the solution accuracy for three different grids {21×
21,31×31,41×41} is illustrated in Figure 19.
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Figure 17: Unsteady diffusion equation, {11×11,13×13, ...}: The computational
cost to achieve the target accuracy of 10−6. The final grid is 25×25 for the HOC-
ADI and CIRBF-ADI and 23×23 for the CCIRBF-ADI.
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Figure 18: Unsteady diffusion equation, grid 21× 21, ∆t = 10−4, t = 0.125: The
solution accuracy RMS against time.
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Figure 19: Unsteady diffusion equation, {21×21,31×31,41×41}, ∆t = 10−4,
t = 0.125: The effect of the MQ width β on the solution accuracy RMS.

4.6 Unsteady convection-diffusion equation

Consider the unsteady convection-diffusion equation (73), where fb = 0, in a square
Ω = [0,2]× [0,2] with the following analytic solution [Noye and Tan (1989)]

u(x,y, t) =
1

4t +1
exp
[
−(x− cxt−0.5)2

dx(4t +1)
−

(y− cyt−0.5)2

dy(4t +1)

]
, (109)

and subject to Dirichlet boundary conditions. From (109), one can derive the initial
and boundary conditions. The problem parameters are chosen as cx = cy = 0.8 and
dx = dy = 0.01.

To study the accuracy of the solution with grid refinement, we employ a set of
uniform grids {31× 31,41× 41, ...,81× 81}. The solution is calculated at t =
1.25 using ∆t = 10−4. Figure 20 describes that the proposed scheme has better
performance than the HOC-ADI and CIRBF-ADI schemes.

To investigate the computational cost in achieving an accuracy of interest, we in-
crease the grid {33×33,35×35, ...} until the solution accuracy reaches the target
accuracy which is chosen to be RMS = 10−5. The solution is also calculated at
t = 1.25 using ∆t = 10−4. Figure 21 illustrates that for a given level of accuracy, the
proposed scheme is more efficient than the HOC-ADI and CIRBF-ADI schemes.
It is noted that the final grid used to achieve the target accuracy is 61× 61 for the
HOC-ADI and CIRBF-ADI and 45×45 for the CCIRBF-ADI.
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Figure 20: Unsteady convection-diffusion equation, cx = cy = 0.8 and dx = dy =
0.01, {31×31,41×41, ...,81×81}, ∆t = 10−4, t = 1.25: The effect of grid size
h on the solution accuracy RMS. The solution converges as O(h4.41) for the HOC-
ADI, O(h4.32) for the CIRBF-ADI, and O(h4.27) for the CCIRBF-ADI.
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Figure 21: Unsteady convection-diffusion equation, {33×33,35×35, ...}: The
computational cost to achieve the target accuracy of 10−5. The final grid is 61×61
for the HOC-ADI and CIRBF-ADI and 45×45 for the CCIRBF-ADI.
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Figure 22: Unsteady convection-diffusion equation, cx = cy = 0.8 and dx = dy =
0.01, grid 81× 81, ∆t = 0.00625, t = 1.25: The solution accuracy RMS against
time. It is noted that the curves for the HOC-ADI and CIRBF-ADI are indistin-
guishable.
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Figure 23: Unsteady convection-diffusion equation, case I, {31×31,51×51,81×
81}: The effect of the MQ width β on the solution accuracy RMS.
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Figure 24: Unsteady convection-diffusion equation, case II, {21×21,51×51,81×
81}: The effect of the MQ width β on the solution accuracy RMS.

Table 5 shows a comparison of L1, RMS and L∞ errors between the present scheme
and the third-order nine-point compact scheme [Noye and Tan (1989)], fourth-order
nine-point compact scheme [Kalita, Dalal, and Dass (2002)], HOC-ADI scheme
[Karaa and Zhang (2004)], exponential high-order compact ADI (EHOC-ADI)
[Tian and Ge (2007)], high-order compact boundary value method (HOC-BVM)
scheme [Dehghan and Mohebbi (2008)], HOC-ADI scheme [Tian, Liang, and Yu
(2011)], and CIRBF-ADI [Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2012)].
It can be seen that the present scheme yields the most accurate solution. Further-
more, Figure 22 plots the solution accuracy against time for these schemes (except
EHOC-ADI, for which the data are not available). It illustrates that all of these
curves have similar shapes and the present scheme produces smaller error for every
time step.

Ma, Sun, Haake, Churchill, and Ho (2012) proposed a high-order hybrid Pad-ADI
(HPD-ADI) method for the convection-dominated diffusion problem and examined
the performance of the HPD-ADI scheme via this example, which is also consid-
ered in [Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2012)]. For comparison
purposes, we also consider two sets of parameters used in their articles

Case I: cx = cy = 0.8, dx = dy = 0.01, t = 1.25, ∆t = 2.5E−4.

Case II: cx = cy = 80, dx = dy = 0.01, t = 0.0125, ∆t = 2.5E−6.
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Table 5: Unsteady convection-diffusion equation, cx = cy = 0.8 and dx = dy = 0.01,
grid 81×81, t = 1.25, ∆t = 0.00625: Comparison of the solution accuracy between
the present CCIRBF-ADI scheme and some others.

Method L1(u) RMS(u) L∞(u)
third-order nine-point compact

[Noye and Tan (1989)]
1.971E-05 1.280E-04 6.509E-04

fourth-order nine-point compact
[Kalita et al. (2002)]

1.597E-05 1.024E-04 4.477E-04

HOC-ADI [Karaa and Zhang (2004)] 9.218E-06 5.931E-05 2.500E-04
EHOC-ADI [Tian and Ge (2007)] 9.663E-06 6.194E-05 2.664E-04

HOC-BVM [Dehghan and Mohebbi
(2008)]

9.493E-06 — 2.477E-04

HOC-ADI [Tian et al. (2011)] 6.754E-06 2.200E-05 1.706E-04
CIRBF-ADI [Thai-Quang et al.

(2012)]
6.742E-06 2.197E-05 1.703E-04

present CCIRBF-ADI 5.989E-06 1.904E-05 1.427E-04

Table 6: Unsteady convection-diffusion equation, case I, grid 81×81: Comparison
of the solution accuracy between the present CCIRBF-ADI scheme and some other
techniques.

Method RMS(u) L∞(u)
HOC-ADI [Karaa and Zhang (2004)] 2.73E-05 2.46E-04

PDE-ADI [You (2006)] 2.20E-05 1.71E-04
HPD-ADI [Ma et al. (2012)] 6.38E-05 6.54E-04

HOC-ADI [Tian et al. (2011)] 2.79E-06 2.40E-05
CIRBF-ADI [Thai-Quang et al. (2012)] 2.75E-06 2.37E-05

present CCIRBF-ADI 6.68E-07 6.43E-06

Table 7: Unsteady convection-diffusion equation, case II, grid 81×81: Comparison
of the solution accuracy between the present CCIRBF-ADI scheme and some other
techniques.

Method RMS(u) L∞(u)
HOC-ADI [Karaa and Zhang (2004)] 1.47E-02 2.42E-01

PDE-ADI [You (2006)] 5.49E-04 1.22E-02
HPD-ADI [Ma et al. (2012)] 5.49E-04 1.24E-02

HOC-ADI [Tian et al. (2011)] 5.46E-04 1.06E-02
CIRBF-ADI [Thai-Quang et al. (2012)] 5.45E-04 1.06E-02

present CCIRBF-ADI 1.55E-04 2.93E-03
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The corresponding Peclet number is thus Pe = 2 for case I and Pe = 200 for case
II. Results concerning RMS and L∞ errors are presented in Tables 6-8. In the case
of low Pe, the present scheme is superior to the HPD-ADI and also other schemes
(Table 6). In the case of high Pe (i.e. convection dominated), the CCIRBF-ADI
yields the best performance: higher degrees of accuracy (Table 7) and higher rates
of convergence (Table 8).

The effect of the MQ width on the solution accuracy is also plotted in Figure 23 for
case I and in Figure 24 for case II. In both plots, it can be seen that the CCIRBF-
ADI gives much more accurate results than the CIRBF-ADI.

5 Concluding remarks

A coupled compact integrated radial basis function (CCIRBF) scheme has been
proposed in this paper. The proposed scheme is constructed over a three-point
stencil, where nodal first and second derivative values of the field variable are both
incorporated into the approximation by means of their identity equations. This
leads to a significant improvement in accuracy and stability in comparison with the
normal compact integrated radial basis functions (CIRBF). Numerical examples
indicate that the results obtained by the present scheme are superior to those of
the CIRBF, HOC and some other high-order schemes. Moreover, the enhanced
convergence rate of the present scheme provides the present scheme with an ability
to obtain prescribed accuracy using smaller amount of time compared with the
CIRBF and HOC schemes. It can be stated that the CCIRBF scheme is a stable,
efficient and promising highly accurate method for both derivative computation and
second-order differential solutions.
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Postgraduate Research Scholarship. This work was supported by the Australian
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