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The Lie-group Shooting Method for Radial Symmetric
Solutions of the Yamabe Equation

S. Abbasbandy1,2, R.A. Van Gorder3 and M. Hajiketabi1

Abstract: We transform the Yamabe equation on a ball of arbitrary dimension
greater than two into a nonlinear singularly boundary value problem on the unit
interval [0,1]. Then we apply Lie-group shooting method (LGSM) to search a
missing initial condition of slope through a weighting factor r ∈ (0,1). The best
r is determined by matching the right-end boundary condition. When the initial
slope is available we can apply the group preserving scheme (GPS) to calculate the
solution, which is highly accurate. By LGSM we obtain precise radial symmetric
solutions of the Yamabe equation. These results are useful in demonstrating the
utility of Lie-group based numerical approaches to solving nonlinear differential
equations.

Keywords: Yamabe equation, nonlinear singularly boundary value problem, group
preserving scheme, Lie-group shooting method.

1 Introduction

The Yamabe equation is a nonlinear differential equation arising in geometry and
related areas of physics [S.Y. Alice Chang, Z.C. Han and P. Yang (2005); L. Ander-
sson, P.T. Chrusciel and H. Friedrich (1992); A.H. Bhrawy, A.S. Alofi, R.A. Van
Gorder (2014); S. Brendle (2008); R.A. Van Gorder (2012)]. We shall consider the
Yamabe equation on the unit ball Bm in Rm, where m = 3,4,5, ... is the dimension
of the space. We can define Bm by Bm =

{
z ∈ Rm

∣∣∣‖z‖ ≤ 1
}

. Similarly, we define

the boundary of Bm to be the manifold Sm−1 =
{

z ∈ Rm−1
∣∣∣‖z‖= 1

}
.
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We then consider the Yamabe boundary value problem

−∆y = y−λy1+4/(m−2), (1)

y(z) = 1 for z ∈ Sm−1, (2)

where ∆ is the Laplacian operator and λ is a parameter. In recent years, various
methods for solving nonlinear equations and systems have been considered in liter-
ature; for example, you can see [T.A. Elgohary, L. Dong, J.L. Junkins, S.N. Atluri
(2014a); T.A. Elgohary, L. Dong, J.L. Junkins, S.N. Atluri (2014b); T. Elgohary,
D. Kim, J. Turner, J. Junkins (2014)]. Equation (1) is strongly nonlinear partial dif-
ferential equation for any choice of m greater than two. To simplify the situation,
we introduce a radially symmetric function and radial variable by

y(z) = v(x) and x =
√

z2
1 + z2

2 + ...+ z2
m. (3)

Let us also pick the constant

n = 1+
4

m−2
so that for m ≥ 3 we have n ∈ (1,5]. Then the boundary value problem (1)-(2) is
put into the form

v′′(x)+
m−1

x
v′(x)− v(x)+λvn(x) = 0, (4)

v′(0) = 0, v(1) = 1. (5)

We should remark that (4) is similar in form to the Lane-Emden equation of the
first kind which has been considered in the literature. Note that (4) has an extra
term, and that the form of the conditions is different (the relevant Lane-Emden
problem is an initial value problem, not a boundary value problem). Both λ and
n are parameters. We can take λ to be a real number, whereas n depends on m:
If m = 3, n = 5; if m = 4, n = 3; if m = 5, n = 7/3; and so on. As m tends to
infinity, n tends to one, so the problem is linear in this limit and the problem can be
solved exactly. In this paper we solve eqs. (4) and (5) that has been less attention
for various λ and m via the Lie group shooting method and obtain radial symmetric
solutions of the Yamabe equation. we show agreement between numerical solution
and the exact solution in the large m case.

The Lie group shooting method is based on the group-preserving scheme (GPS),
created previously by [C.-S. Liu (2001)] for solving the IVP of ODEs. Liu [C.-S.
Liu (2006a); C.-S. Liu (2006b); C.-S. Liu (2006c); C.-S. Liu (2012a)] has devel-
oped the GPS to solve the BVPs. In the formation of the Lie-group method for the
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solutions of BVPs, Liu [C.-S. Liu (2006b)] has presented the concept of one-step
GPS by utilizing the closure property of the Lie-group, and hence, the new shoot-
ing method had been named the Lie-group shooting method (LGSM). Because the
Lie-group method has certain advantages than other numerical methods due to its
Lie-group structure, is shown to be a powerful technique to solve the various prob-
lems [S. Abbasbandy, M.S. Hashemi , C.-S. Liu (2011); C.W. Chang, J.R. Chang,
C.-S. Liu (2006); C.W. Chang, J.R. Chang, C.-S. Liu (2008); C.-S. Liu (2006a); C.-
S. Liu (2006b); C.-S. Liu (2006c); C.-S. Liu (2006d); C.-S. Liu (2008); C.-S. Liu
(2009); C.-S. Liu (2010); C.-S. Liu (2011); C.-S. Liu (2012a); C.-S. Liu (2012b);
C.-S. Liu (2012c); C.-S. Liu, (2012d); C.-S. Liu (2013a); C.-S. Liu (2013b); C.-S.
Liu, (2013c); C.-S. Liu, C.W. Chang, J.R. Chang (2008); C.-S. Liu, J.R. Chang
(2008); C.-S. Liu, (2014)].

This paper is organized as follows. In section 2 we give a short sketch of the GPS
for ODEs, explain the making of one-step GPS by using the closure property of the
Lie-group, and find out it through a single-parameter Lie-group element in terms
of a parameter r and through a universal one-step Lie-group element. In section
3 we derive a Lie-group shooting method to solve BVPs, where a missing initial
condition is derived in a closed-form in terms of r in a range of r ∈ (0,1) and
we obtain r by matching the right boundary condition. In section 4 we convert
the Yamabe equation to an equation with equal value boundary conditions that is
very important in LGSM and present the numerical results of the LGSM on the
Yamabe problem for different values of λ and m that represents solutions with
good accuracy.

2 One-step group-preserving scheme

2.1 The GPS

Many physical systems can be writte as

u′ = f(u,x), (6)

u1(α) = c, u2(β ) = c, (7)

where

u :=
[

u1
u2

]
, f :=

[
u2

f (x,u1,u2)

]
. (8)

It is very important in the Lie group shooting method that we replace the originally
un-equal boundary conditions by the boundary conditions with an equal value. Liu
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[C.-S. Liu (2001)] has embedded Eq. (6) into an augmented differential system:

X
′
:=

d
dx

[
u
‖u‖

]
=

 02×2
f(x,u)
‖u‖

fT (x,u)
‖u‖

0

[ u
‖u‖

]
:= AX, (9)

where A is an element of the Lie-algebra so(2,1) satisfying

AT g+gA = 0, (10)

with

g =

[
I2 02×1

01×2 −1

]
(11)

a Minkowski metric. Here, I2 is the identity matrix, and the superscript T stands for
the transpose. The augmented variable X automatically satisfies the cone condition:

XT gX = u ·u−‖u‖2 = 0. (12)

Accordingly, Liu [C.-S. Liu (2001)] has developed a group-preserving scheme
(GPS) given as follows:

Xk+1 = G(k)Xk (13)

where Xk denotes the numerical value of X at the discrete xk, and G(k) ∈ SOo(2,1)
satisfies

GT gG = g, (14)

det G = 1, (15)

G0
0 > 0, (16)

where G0
0 > 0 is the 00th component of G and SOo(2,1) is the 3-dimensional

Lorentz group.

2.2 Generalized mid-point rule

Applying scheme (13) to Eq. (9) with a specified initial condition X0, we can com-
pute the solution X(x) by GPS. Assuming that the stepsize used in GPS is ∆x =
(β−α)/k and starting from an initial augmented condition X0 =(uT (α),‖u(α)‖)T

we want to calculate the value X f = (uT (β ),‖u(β )‖)T at x = β . By applying Eq.
(13) step-by-step we can obtain

X f = Gk(∆x) · · ·G1(∆x)X0, (17)
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where X f approximates the exact X f with a certain accuracy depending on ∆x.
However, let us recall that each Gi, i = 1,2, ...,k is an element of the Lie group
SOo(2,1) and by the closure property of Lie group Gk(∆x)...G1(∆x), is also a Lie
group denoted by G. Hence, we have

X f = GX0. (18)

This is a one-step transformation from X0 to X f .

Theoretically, such a one-step G exists, and the remaining problem is how to deter-
mine G. While an exact solution of G is not available, we can calculate G through
a numerical method by a generalized mid-point rule, which is obtained from an
exponential mapping of A by taking the values of the argument variables of A at a
generalized mid-point. The Lie group generated form A ∈ so(2,1) is known as a
proper orthochronous Lorentz group, which admits a closed-form representation:

G =


I2 +

a−1
‖ f̂‖2 f̂ f̂

T b f̂
‖ f̂‖

b f̂
T

‖ f̂‖ a

 , (19)

where

û = ru0 +(1− r)u f , (20)

f̂ = f (x̂, û), (21)

a = cosh
(
(β −α)

‖ f̂‖
‖û‖

)
, (22)

b = sinh
(
(β −α)

‖ f̂‖
‖û‖

)
. (23)

Here, we use the initial u0 = (u1(α),u2(α))T and the final u f = (u1(β ),u2(β ))
T

through a suitable weighting factor r to calculate G, where 0 < r < 1 is a parameter
and x̂ = rα +(1− r)β . The above method employed a generalized mid-point rule
to calculate G, and the resultant is a single-parameter Lie group element G(r). In
section 3 we will describe a process to find a suitable r ∈ (0,1).

The approach of Eq. (19) can be realized alternatively by using

G′ = A(x,u)G. (24)

Integrating the above equation and using the mean-value theorem we obtain

G = exp
[∫

β

α

A(x,u)dx
]
= exp[(β −α)A(x̂, û)]. (25)

Inserting Eq. (9) for A and calculating the exponential we can derive Eqs. (19)-(23)
again.
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2.3 A universal Lie-group mapping between two points on the cone

Now we define a new vector

F :=
f̂
‖û‖

, (26)

such that Eqs. (19), (22) and (23) can also be expressed as

G =

I2 +
a−1
‖F‖2 FFT bF

‖F‖

bFT

‖F‖ a

 , (27)

a = cosh
[
(β −α)‖F‖

]
, (28)

b = sinh
[
(β −α)‖F‖

]
. (29)

From Eqs. (18) and (27) the one-step Lie-group transformation is written as

u f = u0 +ηF, (30)

‖u f ‖= a‖u0‖+b
F.u0

‖F‖
, (31)

where

η :=
(a−1)F.u0 +b‖u0‖‖F‖

‖F‖2 . (32)

Substituting

F =
1
η
(u f −u0), (33)

into Eq. (31) and dividing both the sides by ‖u0‖, we can obtain

‖u f ‖
‖u0‖

= a+b
(u f −u0).u0

‖u f −u0‖‖u0‖
, (34)

where

a = cosh
(
(β −α)‖u f −u0‖

η

)
, (35)

b = sinh
(
(β −α)‖u f −u0‖

η

)
, (36)
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are obtained by inserting Eq. (33) for F into Eqs. (28) and (29). Let

cosθ :=
(u f −u0).u0

‖u f −u0‖‖u0‖
, (37)

and

γ := (β −α)‖u f −u0‖, (38)

where 0≤ θ ≤ π is the intersection angle between vectors u f −u0 and u0, and thus
from Eqs. (34)-(36) it follows that

‖u f ‖
‖u0‖

= cosh
(

γ

η

)
+ cos θ sinh

(
γ

η

)
. (39)

Upon defining

Z := exp
(

γ

η

)
, (40)

from Eq. (39) we obtain a quadratic equation for Z:

(1+ cos θ)Z2−
2‖u f ‖
‖u0‖

Z +1− cos θ = 0. (41)

The solution is found to be

Z =

‖u f ‖
‖u0‖ +

√(
‖u f ‖
‖u0‖

)2
−1+ cos2 θ

1+ cos θ
, (42)

and thus from Eqs. (40) and (38) we can compute η by

η =
(β −α)‖u f −u0‖

lnZ
. (43)

Therefore, between any two points (u0,‖u0‖) and (u f ‖u f ‖) on the cone, there
exists a Lie-group element G ∈ SO0(2n,1) mapping (u0,‖u0‖) onto (u f ,‖u f ‖):[

u f

‖u f ‖

]
= G

[
u0
‖u0‖

]
, (44)

where G is uniquely determined by u0 and u f through Eqs. (27), (28), (29), (33),
(37) ,(42) and (43) . We write this G to be G(u0,u f ), in order to emphasize it
as being a Lie-group mapping between the quantities of u0 and u f , which are the
values of u occurred at two ends of a whole interval of x ∈ [α,β ].
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The above G(u0,u f ) is different from the one in Eq. (19). These two Lie-group el-
ements G(r) and G(u0,u f ) are constructed by different manners. When the former
is an approximation by using the generalized mid-point rule, the latter is a univer-
sal mapping between (u0,‖u0‖) and (u f ,‖u f ‖) independent to the vector field f
and the parameter r, which means that such a mapping is applicable to all ODEs
systems.

3 The Lie-group shooting method

It is interesting that by putting G(r) = G(u0,u f ) we can conclude the required
equations for finding the missing initial condition. From Eqs. (6)-(8) it follows that

u̇1 = u2, (45)

u̇2 = f (x,u1,u2), (46)

u1(α) = c, u1(β ) = c, (47)

u2(α) = A, u2(β ) = B, (48)

where A and B are two unknown constants, and c is a given positive constant deter-
mined by the user. From Eqs. (33), (47) and (48) it follows that

F :=
[

F1
F2

]
=

1
η

[
0

B−A

]
. (49)

From Eqs. (43), (42) and (37) by inserting Eq. (8) for u and noting that

u0 =

[
u1(α)
u2(α)

]
=

[
c
A

]
, u f =

[
u1(β )
u2(β )

]
=

[
c
B

]
, (50)

we obtain

η =
(β −α)

√
(A−B)2

lnZ
, (51)

where

Z =

√
c2+B2√
c2+A2 +

√
c2+B2

c2+A2 −1+ cos2 θ

1+ cos θ
, (52)

cos θ =
A(B−A)√

(A−B)2
√

c2 +A2
. (53)
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By comparing Eq. (49) with Eq. (26), with the aid of Eqs. (20), (21), (47) and (48)
we obtain

rA+(1− r)B = 0, (54)

A−B+
η

ξ
f̂ = 0, (55)

where

f̂ := f (rα +(1− r)β ,rc+(1− r)c,rA+(1− r)B), (56)

ξ :=
√

c2 +[rA+(1− r)B]2. (57)

The above derivation of the governing equations (54)- (57) is based on by equating
the two F in Eqs. (49) and (26). It also means that the two Lie group elements
defined by Eqs. (19) and (27) are equal. In this sense we may call our shooting
technique a Lie-group shooting method.

3.1 The solution of A

Firstly, Liu [C.-S. Liu (2006b)] analytically solved A for general second-order
BVPs. Remarkably, Eqs.(54) and (55) can be used to solve A exactly. From Eqs.
(54) and (57) it follows that

ξ = c, (58)

which is a positive constant. This equation is very important to reduce our follow-
ing works to conclude a closed-form solution of A in terms of r. This is the reason
that we replace the originally un-equal boundary conditions by the boundary con-
ditions with an equal value in Eq. (7), which lends to rA+(1− r)B = 0 as shown
in Eq. (54), and hence ξ defined by Eq. (57) becomes a constant as shown in Eq.
(58). Hence, from Eq. (55) with the aid of Eqs. (51)-(54), (56) and (58) we can
obtain a single algebraic equation for solving the unknown variable A:

Ac+η0 f̂ = 0, (59)

where

f̂ = f (rα +(1− r)β ,c,0), (60)

Z =

√
c2 +B2 +

√
B2

√
c2 +A2−

√
A2

, (61)

η0 =
(β −α)

√
A2

lnZ
, (62)

and B = rA/(r− 1) has a different sign with A due to r ∈ (0,1). Eq. (59) can be
used to solve A for a given r. If A is available, we can return to Eqs. (45)-(48) and
integrate them by a suitable IVP solver.
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3.2 The case of A > 0

Here we first consider the case of A > 0. Inserting Eq. (62) for η0 into Eq. (59) we
obtain

lnZ =−(β −α) f̂
c

. (63)

Defining

g1 := exp
(
−(β −α) f̂

c

)
, (64)

and substituting Eq. (61) for Z into Eq. (63) we obtain
√

c2 +B2 +
√

B2
√

c2 +A2−
√

A2
= g1. (65)

By using A > 0 and B < 0, Eq. (65) can be written as

g1A−B = g1

√
c2 +A2−

√
c2 +B2. (66)

Squaring the above equation and cancelling out the common terms we can rear-
range it to

2g1

√
c2 +A2

√
c2 +B2 = (1+g2

1)c
2 +2g1AB. (67)

Squaring again and cancelling out the common term and factor we can obtain

4g2
1(A

2 +B2)−4g1(1+g2
1)AB = (1−g2

1)
2c2. (68)

Inserting B = rA/(r−1) and through some algebraic manipulations we eventually
obtain

4g1

(r−1)2 [g1 +(1−g1)
2r− (1−g1)

2r2]A2 = (1−g2
1)

2c2. (69)

If the following condition holds

Ψ1(r) := g1 +(1−g1)
2r− (1−g1)

2r2 > 0, (70)

then A has a positive solution:

A =

√
(r−1)2(1−g2

1)
2c2

4Ψ1g1
. (71)

The condition (70) can be used to identify the range where r is permitted.
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3.3 The case of A < 0

Next we consider the case of A < 0. Inserting Eq. (62) for η0 into Eq. (59) we
obtain

lnZ =
(β −α) f̂

c
. (72)

Defining

g2 := exp
(
(β −α) f̂

c

)
, (73)

and substituting Eq. (61) for Z into Eq. (72) we obtain
√

c2 +B2 +
√

B2
√

c2 +A2−
√

A2
= g2. (74)

By using A < 0 and B > 0, Eq. (74) can be written as

g2A−B =
√

c2 +B2−g2

√
c2 +A2. (75)

Squaring the above equation and cancelling out the common terms we can rear-
range it to

2g2

√
c2 +B2

√
c2 +A2 = (1+g2

2)c
2 +2g2AB. (76)

Squaring again and cancelling out the common term and factor we can obtain

4g2
2(A

2 +B2)−4g2(1+g2
2)AB = (1−g2

2)
2c2. (77)

Inserting B = rA/(r−1) and through some algebraic manipulations we eventually
obtain

4g2

(r−1)2 [g2 +(1−g2)
2r− (1−g2)

2r2]A2 = (1−g2
2)

2c2. (78)

If the following condition holds

Ψ2(r) := g2 +(1−g2)
2r− (1−g2)

2r2 > 0, (79)

then A has a negative solution:

A =−

√
(r−1)2(1−g2

2)
2c2

4Ψ2g2
. (80)
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3.4 Adjusting the slope A

In the previous two subsections we have derived two closed-form formulae to cal-
culate the slope A for each r in its admissible range. If A is available, we can apply
the GPS to integrate the (u,x)-IVP in Eqs. (45)-(48). Up to this point we should
note that the Lie-group shooting method is an exactly solving technique for the
second-order nonlinear BVPs without making any assumption or the approxima-
tion in derivations of all required formulas.

Now, in order to determine a correct r and thus a correct A, we need a numerical
integration of the nonlinear ODEs in Eqs. (45)-(48) via a shooting technique. For
a trial r in the admissible range, we can calculate A and then numerically integrate
Eqs. (45)-(48) from x = α to x = β , and compare the end value of ur

1(β ) with the
exact one u1(β ) = c. If |ur

1(β )− c| is smaller than a given error tolerance ε , then
the process of finding the solution of A is finished. Otherwise, we need to calculate
the end values of u1(β ) corresponding to different r1 < r and r2 > r, which are
denoted by ur1

1 (β ) and ur2
1 (β ) , respectively. If [ur1

1 (β )− c][ur
1(β )− c] < 0, then

there exists one root between r1 and r; otherwise, the root is located between (r,r2).
Continuing this process we can quickly select a suitable r to satisfy the criterion of
|ur

1(β )− c| ≤ ε .

3.5 The GPS

We have derived the closed-form solutions to calculate the slope A for each r in
its admissible range, and thus we can integrate the (u,x)-IVP in Eqs. (45)-(48)
by the GPS method. The Lie group generated from A ∈ so(2,1) is known as a
proper orthochronous Lorentz group. An exponential mapping of A(n) admits the
closed-form representation:

exp[∆xA(n)] =

I2 +
(αn−1)
‖ f n‖

2 f n f T
n

βn fn
‖ fn‖

βn f T
n

‖ f n‖
αn

 (81)

where

fn = f(xn,un), (82)

αn = cosh
(

∆x‖fn‖
‖un‖

)
, (83)

βn = sinh
(

∆x‖fn‖
‖un‖

)
. (84)
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Substituting the above exp[∆xA(n)] for G into Eq. (18) and taking its first row, we
obtain

un+1 = un +
(αn−1)fn.un +βn‖un‖‖fn‖

‖fn‖2 fn. (85)

The numerical scheme (85) was first derived by Liu [C.-S. Liu (2001)]. We use
from (85) to integrate IVPs. The major difference between GPS and the traditional
numerical methods is that those schemes are all formulated directly in the usual
Euclidean space Rn; none of them are considered in the Minkowski space Mn+1.
One of the benefits of GPS in the augmented Minkowski space is that the resulting
schemes can avoid the spurious solutions and ghost fixed points.

4 The Yamabe equation

We consider eqs. (4) and (5) and use the following transformation:

v(x) = u(x)− c+1. (86)

Therefore, the Yamabe problem is transformed to the following problem:

u′′(x) =
1−m

x
u′(x)+u(x)− c+1−λ (u(x)− c+1)n, (87)

u′(0) = 0, u(1) = c. (88)

Then, we convert Eqs. (87) and (88) to the following system:

u′1(x) = u2(x), (89)

u′2(x) = f (x,u1,u2), (90)

u2(0) = 0, u1(1) = c, (91)

where

f (x,u1,u2) =
1−m

x
u′(x)+u(x)− c+1−λ (u(x)− c+1)n. (92)

Now, consider the following equation:

u′1(x) = u2(x), (93)

u′2(x) = F(x,u1,u2), (94)

u1(−1) = c, u1(1) = c, (95)
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where

F(x,u1,u2) =


f (x,u1,u2), 0≤ x≤ 1,

f (−x,u1,−u2), −1≤ x≤ 0,
(96)

is a symmetric extension of Eq. (90). As explained in previous section we can
apply LGSM for Eqs. (93)-(96) on [−1,1], but in practical numerical calculations
we only need to calculate the above equations from x = −1 to x = 0, where we
adjust the slope u2(−1) = A by the method in 3.4. If the target equation u′(0) = 0
is satisfied then we obtain the numerical solution by merely mapping the solution
into the interval of 0≤ x≤ 1.

4.1 Numerical results

The Yamabe equation has the exact solution v(x) = 1 for λ = 1. we consider
u2(−1) = A < 0 for cases λ < 1 and u2(−1) = A > 0 for cases λ > 1 and apply
the Lie group shooting method. In order to avoid overflow in computations we can
select a suitable c for different λ . In the Tables Tab. 1 and Tab. 2 are shown the pa-
rameters used in the Lie group shooting method for λ = 0.1, λ =−1, λ = 2, λ = 4
and various m. In the Figure Fig. 1 we show two examples for error mis-maching
plot respect to r. We show the solutions obtained for the Yamabe equation using the
Lie group shooting method for λ = 0.1, λ =−1, λ = 2, λ = 4 and various m in the
Figures Fig. 2 and Fig. 3. Figure Fig. 4 show the residual error of solution Eqs. (4)
and (5) for λ = 0.1 and λ = 2 and different m . We should point out that we use of
v′′(xi)' (v′(xi+1)−v′(xi−1))/2∆x in Eq. (4) for obtain the residual error that v′(xi)
calculated by LGSM. In Figure Fig. 5 we show symmetric radial solutions of the
Yamabe respect to v(x) = 1 and that whenever the parameter m becomes large the
solution converges to v(x) = 1. Finally, in the Tables Tab. 3-Tab. 8 we compared
results obtained for v(x) and v′(x) through LGSM for λ = −1 and λ = 4 with the
MIDRICH (midpoint method with Richardson extrapolation [L. Lapidus and J.H.
Seinfeld (1971)]) that is a powerful method for solving the singular problems. This
comparison shows the accuracy of LGSM.

5 Conclusions

In this paper we obtain solutions for the Yamabe equation for different values of
λ via the Lie group shooting method. Lie-group shooting method was developed
to derive algebraic equations to find the missing initial condition. Furthermore, by
adjusting the boundary conditions from the one of un-equal boundary-value to the
one with equal boundary-value, the present approach can provide a closed-form
formula to calculate the missing initial condition without need of any iteration.
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Figure 1: Plot of u′(0)− 0 respect to r for λ = 0.1 and m = 3 (left), λ = 2 and
m = 4 (right).
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Figure 2: Numerical solutions obtained using LGSM for λ = 0.1 (left) and λ =−1
(right).
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Table 1: Parameters used for λ = 0.1 (up) and λ =−1 (down).

m c ∆x r ε

3 1 0.0001 0.882147796469 2×10−9

4 1 0.001 0.914317329532 3×10−8

6 1 0.005 0.944591577888 7×10−8

m c ∆x r ε

3 10 0.0001 0.873285360792 6×10−8

4 10 0.001 0.892809997425 4×10−8

6 10 0.005 0.922926007352 2×10−7

Table 2: Parameters used for λ = 2 (up) and λ = 4 (down).

m c ∆x r ε

4 1 0.001 0.880650585250 6×10−10

6 1 0.005 0.944044641065 4×10−8

8 1 0.01 0.960964387295 3×10−6

m c ∆x r ε

6 10 0.005 0.903135356042 2×10−7

8 10 0.01 0.935530255437 4×10−6

10 10 0.01 0.950318540055 6×10−4
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Figure 3: Numerical solutions obtained using LGSM for λ = 2 (left) and λ = 4
(right).
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Figure 4: Residual error obtained using LGSM for λ = 0.1 (left) and λ = 2 (right).
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Figure 5: Plot of the radial symmetric solutions to the Yamabe equation for λ =−1
and λ = 4 and also limm→∞ vm,λ (x) = vm,1(x) = 1.
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Table 3: Comparison of numerical results obtained by LGSM and MIDRICH for
λ =−1,m = 3.

Nodes LGSM MIDRICH
v(x) v′(x) v(x) v′(x)

0 0.785535 5.33891×10−8 0.785556 0
0.1 0.787347 0.036260 0.787367 0.036262
0.2 0.792812 0.073161 0.792830 0.073164
0.3 0.802027 0.111385 0.802043 0.111389
0.4 0.815162 0.151704 0.815177 0.151709
0.5 0.832472 0.195044 0.832486 0.195049
0.6 0.854314 0.242567 0.854326 0.242573
0.7 0.881180 0.295805 0.881190 0.295810
0.8 0.913741 0.356857 0.913748 0.356861
0.9 0.952917 0.428724 0.952921 0.428723
1 1 0.515876 1 0.515868

Table 4: Comparison of numerical results obtained by LGSM and MIDRICH for
λ =−1,m = 4.

Nodes LGSM MIDRICH
v(x) v′(x) v(x) v′(x)

0 0.808748 3.6322×10−8 0.808941 0
0.1 0.810439 0.033527 0.810616 0.033540
0.2 0.815504 0.067558 0.815666 0.067581
0.3 0.824019 0.102612 0.824167 0.102643
0.4 0.836114 0.139252 0.836247 0.139287
0.5 0.851980 0.178105 0.852098 0.178143
0.6 0.871873 0.219897 0.871974 0.219933
0.7 0.896129 0.265487 0.896211 0.265517
0.8 0.925179 0.315923 0.925238 0.315941
0.9 0.959571 0.372509 0.959603 0.372508
1 1 0.436909 1 0.436876
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Table 5: Comparison of numerical results obtained by LGSM and MIDRICH for
λ =−1,m = 6.

Nodes LGSM MIDRICH
v(x) v′(x) v(x) v′(x)

0 0.854891 1.87684×10−7 0.855624 0
0.1 0.856279 0.026477 0.856948 0.026506
0.2 0.860329 0.053231 0.860934 0.053284
0.3 0.867079 0.080539 0.867623 0.080608
0.4 0.876603 0.108688 0.877084 0.108767
0.5 0.888998 0.137987 0.889415 0.138067
0.6 0.904399 0.168766 0.904747 0.168842
0.7 0.922970 0.201395 0.923245 0.201455
0.8 0.944919 0.236283 0.945113 0.236318
0.9 0.970496 0.273897 0.970599 0.273893
1 1 0.314773 1 0.314714

Table 6: Comparison of numerical results obtained by LGSM and MIDRICH for
λ = 4,m = 6.

Nodes LGSM MIDRICH
v(x) v′(x) v(x) v′(x)

0 1.40991 −1.42957×10−7 1.40842 0
0.1 1.40421 −0.108274 1.40300 −0.108075
0.2 1.38787 −0.212333 1.38694 −0.212051
0.3 1.36151 −0.308428 1.36085 −0.308166
0.4 1.32609 −0.393453 1.32568 −0.393291
0.5 1.28286 −0.465145 1.28264 −0.465135
0.6 1.23323 −0.522177 1.23314 −0.522336
0.7 1.17867 −0.564147 1.17867 −0.564463
0.8 1.12069 −0.591468 1.12074 −0.591906
0.9 1.06071 −0.605214 1.06075 −0.605726
1 1 −0.606924 1 −0.607454
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Table 7: Comparison of numerical results obtained by LGSM and MIDRICH for
λ = 4,m = 8.

Nodes LGSM MIDRICH
v(x) v′(x) v(x) v′(x)

0 1.24105 −3.68056×10−6 1.23887 0
0.1 1.23796 −0.055933 1.23608 −0.055779
0.2 1.22934 −0.110699 1.22775 −0.110447
0.3 1.21536 −0.163232 1.21406 −0.162939
0.4 1.19629 −0.212563 1.19527 −0.212279
0.5 1.17251 −0.257851 1.17174 −0.257618
0.6 1.14445 −0.298413 1.14390 −0.298262
0.7 1.11261 −0.333739 1.11226 −0.333691
0.8 1.07755 −0.363505 1.07735 −0.363567
0.9 1.03982 −0.387562 1.03974 −0.387732
1 1 −0.405933 1 −0.406199

Table 8: Comparison of numerical results obtained by LGSM and MIDRICH for
λ = 4,m = 10.

Nodes LGSM MIDRICH
v(x) v′(x) v(x) v′(x)

0 1.17726 −5.1712×10−4 1.17559 0
0.1 1.17510 −0.039218 1.17363 −0.039139
0.2 1.16905 −0.077876 1.16778 −0.077743
0.3 1.15918 −0.115451 1.15812 −0.115289
0.4 1.14564 −0.151452 1.14478 −0.151286
0.5 1.12861 −0.185434 1.12793 −0.185283
0.6 1.10830 −0.217001 1.10780 −0.216885
0.7 1.08499 −0.245824 1.08464 −0.245756
0.8 1.05896 −0.271640 1.05875 −0.271630
0.9 1.03052 −0.294260 1.03042 −0.294312
1 1 −0.313565 1 −0.313680
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Therefore, we can determine r very quickly through only a few trials. From the nu-
merical results, it is clear that for values λ < 1 solutions are ascending and for val-
ues λ > 1 are descending but whenever the parameter m becomes large the solution
converges to v(x) = 1 (exact solution for λ = 1). Compared with other numerical
methods, the new approach is shown to be accurate.

Acknowledgement: We thank the anonymous reviewers for helpful comments,
which lead to definite improvement in the manuscript.
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