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Dynamic Response and Oscillating Behaviour of
Fractionally Damped Beam
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Abstract: This paper presents the numerical solution of a viscoelastic continuous
beam whose damping behaviours are defined in term of fractional derivatives of ar-
bitrary order. Homotopy Perturbation Method (HPM) is used to obtain the dynamic
response with respect to unit impulse load. Obtained results are depicted in term of
plots. Comparisons are made with the analytic solutions obtained by Zu-feng and
Xiao-yan (2007) to show the effectiveness and validation of the present method.
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1 Introduction

In recent years, fractional calculus has been used to model physical and engineer-
ing problems such as in solid mechanics, fluid mechanics, biology, physics, and
other areas of engineering and science. Since, it is too difficult to obtain the ex-
act solution of fractional differential equation so, one may need a reliable and
efficient numerical technique for the solution of fractional differential equations.
Many important works have been reported regarding fractional calculus in the last
few decades. Relating to this field several excellent books have also been writ-
ten by different authors representing the scope and various aspects of fractional
calculus such as [Oldham and Spanier (1974); Kiryakov (1993); Miller and Ross
(1993); Samko et al. (1993); Podlubny (1999)]. These books also give an exten-
sive review on fractional derivative and fractional differential equations which may
help the reader for understating the basic concepts of fractional calculus. As re-
gards, many authors [Shukla et al. (2014); Wang et al. (2011, 2014); Ye and Ding
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(2009)]have developed various methods to solve fractional ordinary and partial dif-
ferential equations and integral equations of physical systems. Most commonly
used methods are Adomian Decomposition Method (ADM), Variational Iteration
Method (VIM), Differential Transform Method (DTM), etc. which are described
in [Momani (2005a, 2005b, 2007, 2008); Arikoglu and Ozkol (2007); Das (2008);
Gejji and Jafari (2009)] and the references mentioned therein. Chen et al. (2014a,
2014b)used Haar wavelet method for the numerical solution of fractional order dif-
ferential equations.
Some other related works are reviewed and cited here as follows for a better un-
derstanding of the present investigation. Half-order fractional derivative models of
viscoelastically damped structures has been studied by Bagley and Torvik (1983a,
1983b) in an excellent way. Laplace transform is considered in Bagley and Torvik
(1983b) to find the response characteristics. Also, Koeller (1984) has taken a frac-
tional model to describe creep and relaxation functions for viscoelastic materials.
In Gaul et al. (1989, 1991) Fourier transformation is used to analyse the damp-
ing description of impulse response function of oscillators with fractional deriva-
tive. Time domain finite element analysis of viscoelastic structures with fractional
derivative is clearly explained in Enelund and Josefson (1997). Eigenvector expan-
sion method is successfully implemented in Suarez and Shokooh (1997) to find the
solution of a dynamic systems containing fractional derivative. Various numerical
methods are applied in [Enelund and Josefson (1997); Gorenflo (1997); Enelund
and Olsson (1999); Shokooh and Suarez (1999); Yuan and Agrawal (2002)] to find
the responses of fractionally damped system.
Recently, homotopy perturbation method is found to be a powerful tool for analysing
this type of system involving fractional derivatives. The Homotopy Perturbation
Method (HPM) was first developed by He(1999, 2000, 2003, 2005, 2006) and
many authors applied this method to solve various linear and non-linear func-
tional equations of scientific and engineering problems. The solution is consid-
ered as the sum of infinite series, which converges rapidly to accurate solutions.
In the homotopy technique (in topology), a homotopy is constructed with an em-
bedding parameter which is considered as a "small parameter". Very recently ho-
motopy perturbation method has been applied to a wide class of physical problems
[Wang (2007, 2008); Yildirim (2009); Biazara and Eslamib (2011); Behera and
Chakravety (2013); Chakraverty and Behera (2013)]. Also very recently Chakraverty
and Tapaswini (2014) have used HPM for the uncertainty analysis of fuzzy frac-
tional Fornberg-Whitham equation.
In the present analysis, the homotopy perturbation method is used to handle the
dynamic analysis of a fractionally damped viscoelastic continuous beam. Same
problem is studied by Zu-feng and Xiao-yan (2007) by adomain decomposition
method. Damping factor is defined with fractional derivative of an arbitrary or-
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der. In the following sections preliminaries are first given. Then implementation of
HPM for fractionally damped viscoelastic beam is discussed. Next response anal-
ysis for unit impulse load is presented. Lastly numerical examples and conclusions
are given.

2 Preliminaries

In this section, we present some notations, definitions and preliminary facts which
are used further in this paper [Oldham and Spanier (1974); Samko et al. (1993);
Kiryakov (1993); Miller and Ross (1993); Podlubny (1999); Behera and Chakravety
(2013); Chakraverty and Behera (2013)].

Definition 1 Riemann-Liouville fractional integral:

There are several definitions of fractional integral. The most commonly used def-
inition is of Riemann-Liouville and Caputo [Podlubny (1999)]. The Riemann-
Liouville integral operator Jα of order α ≥ 0, is defined by

Jα f (t) =
1

Γ(α)

t∫
0

(t− τ)α−1 f (τ)dτ, t > 0.

Definition 2 Caputo derivative:
The fractional derivative of f (t) in the Caputo sense is defined as

Dα f (t) = Jm−αDm f (t)

=

 1
Γ(m−α)

t∫
0

f (m)(τ)dτ

(t−τ)α+1−m , m−1 < α < m,m ∈ N

dm

dtm f (t), α = m,m ∈ N

where, the parameter α is the order of the derivative and it is allowed to be real or
even complex. In this paper, only real and positive α will be considered. For the
Caputo’s derivative we have

DαC = 0, C is a constatnt

Dαtβ =

{
0, (β ≤ α−1)

Γ(β+1)
Γ(β−α+1) t

β−α , (β > α−1)

Similar to integer-order differentiation, Caputo’s fractional differentiation is linear
operation:

Dα (λ f (t)+µg(t)) = λDα f (t)+µDαg(t),
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where λ ,µ are constants and satisfies so called Leibnitz rule:

Dα(g(t) f (t)) =
∞

∑
k=0

(
α

k

)
g(k)(t)Dα−k f (t),

if f (τ) is continuous in [0, t] and g(τ) has n+1 continuous derivative in [0, t].

Definition 3 Mittage-Leffer function:
A two-parameter function of the Mittage-Leffer type is defined by the series expan-
sion [Podlubny (1999)] as

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
,(α > 0,β > 0).

3 Application of HPM [He (1999, 2000)] to fractionally damped viscoelastic
beam

To develop numerical schemes for a fractionally damped viscoelastic beam [Zu-
feng and Xiao-yan (2007)] let us consider a linear differential equation which de-
scribes the dynamics of the system with the damping as arbitrary fractional deriva-
tive of order α

ρA
∂ 2v
∂ t2 + c

∂ αv
∂ tα

+EI
∂ 4v
∂x4 = F(x, t) (1)

where ρ,A,c,E and I represents the mass density, cross sectional area, damping
coefficients per unit length, Young’s modulus of elasticity and moment of inertia
of the beam. F(x, t) is the externally applied force and v(x, t) is the transverse
displacement. ∂ α

∂ tα is the fractional derivative of order α ∈ (0,1) of the displacement
function v(x, t). Initial conditions are considered as v(x,0) = 0 and v̇(x,0) = 0].
Homogeneous initial conditions are taken here to compare the solution obtained by
the present HPM with the solution of [Zu-feng and Xiao-yan (2007)].
Eq. (1) can be written as

∂ 2v
∂ t2 +

c
ρA

∂ αv
∂ tα

+
EI
ρA

∂ 4v
∂x4 =

F(x, t)
ρA

(2)

According to HPM, we may construct a simple homotopy for an embedding pa-
rameter p ∈ [0,1] as follows

(1− p)
∂ 2v
∂ t2 + p

(
∂ 2v
∂ t2 +

c
ρA

∂ αv
∂ tα

+
EI
ρA

∂ 4v
∂x4 −

F(x, t)
ρA

)
= 0, p ∈ [0,1]. (3)
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or

∂ 2v
∂ t2 + p

(
c

ρA
∂ αv
∂ tα

+
EI
ρA

∂ 4v
∂x4 −

F(x, t)
ρA

)
= 0 (4)

Here, p is considered as a small homotopy parameter 0 ≤ p ≤ 1. For p = 0, Eqs.
(3) and (4) become a linear equation i.e. ∂ 2v

∂ t2 = 0, which is easy to solve.For p = 1,
Eqs. (3) and (4) turns out to be same as the original Eq. (1) or (2). This is called
deformation in topology. ∂ 2v

∂ t2 and c
ρA

∂ α v
∂ tα + EI

ρA
∂ 4v
∂x4 − F(x,t)

ρA are called homotopic.
Next, we can assume the solution of Eq. (3) or (4) as a power series expansion in p
as

v(x, t) = v0(x, t)+ pv1(x, t)+ p2v2(x, t)+ p3v3(x, t)+ · · · , (5)

where vi(x, t) for i = 0,1,2, . . . are functions yet to be determined. Substituting Eq.
(5) into Eq. (3) or (4), and equating the terms with the identical power of p we can
obtain a series of equations of the form

p0 :
∂ 2v0

∂ t2 = 0, (6)

p1 :
∂ 2v1

∂ t2 +
c

ρA
∂ αv0

∂ tα
+

EI
ρA

∂ 4v0

∂x4 −
F(x, t)

ρA
= 0, (7)

p2 :
∂ 2v2

∂ t2 +
c

ρA
∂ αv1

∂ tα
+

EI
ρA

∂ 4v1

∂x4 = 0, (8)

p3 :
∂ 2v3

∂ t2 +
c

ρA
∂ αv2

∂ tα
+

EI
ρA

∂ 4v2

∂x4 = 0, (9)

p4 :
∂ 2v4

∂ t2 +
c

ρA
∂ αv3

∂ tα
+

EI
ρA

∂ 4v3

∂x4 = 0, (10)

and so on.

Choosing initial approximation v0(x,0) = 0 and applying the operator L−1
tt (which

is the inverse of the operator Ltt =
∂ 2

∂ t2 ) on both sides of Eqs. (6) to (10) one may
obtain the following equations

v0(x, t) = 0, (11)

v1(x, t) = L−1
tt

(
− c

ρA
∂ αv0

∂ tα
− EI

ρA
∂ 4v0

∂x4 +
F(x, t)

ρA
= 0
)
, (12)

v2(x, t) = L−1
tt

(
− c

ρA
∂ αv1

∂ tα
− EI

ρA
∂ 4v1

∂x4

)
, (13)
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v3(x, t) = L−1
tt

(
− c

ρA
∂ αv2

∂ tα
− EI

ρA
∂ 4v2

∂x4

)
, (14)

v4(x, t) = L−1
tt

(
− c

ρA
∂ αv3

∂ tα
− EI

ρA
∂ 4v3

∂x4

)
, (15)

and so on.

Now substituting these terms in Eq. (5) with p→ 1 one may get the approximate
solution of Eq. (1) as follows.

v(x, t) = v0(x, t)+ v1(x, t)+ v2(x, t)+ v3(x, t)+ v4(x, t)+ · · ·

The solution series converge very rapidly. The rapid convergence means that only
few terms are required to get the approximate solutions.

4 Response analysis

Similar to [Zu-feng and Xiao-yan (2007)] the external applied force is considered
as

F(x, t) = f (x)g(t),

where, F(x, t) is a specified space dependent deterministic function and g(t) is time
dependent process. In this section we consider response subject to a unit impulsive
load g(t) = δ (t), where δ (t) is the unit impulse function. By using HPM we have

v0(x, t) = 0, (16)

v1(x, t) =
f

ρA
t, (17)

v2(x, t) =−
c f

ρ2A2
t3−α

Γ(4−α)
− EI f (4)

ρ2A2
t3

Γ(4)
, (18)

v3(x, t) =
c2 f

ρ3A3
t5−2α

Γ(6−2α)
+

2cEI f (4)

ρ3A3
t5−α

Γ(6−α)
+

E2I2 f (8)

ρ3A3
t5

Γ(6)
, (19)

v4(x, t) =−
c3 f

ρ4A4
t7−3α

Γ(8−3α)
− 3c2EI f (4)

ρ4A4
t7−2α

Γ(8−2α)
− 3cE2I2 f (8)

ρ4A4
t7−α

Γ(8−α)

− E3I3 f (12)

ρ4A4
t7

Γ(8)
,

(20)
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and so on where f i = ∂ i f
∂xi .

In the similar manner the rest of the components can be obtained. Therefore, the
solution can be written in the general form as

v(x, t) =
B

ρA

∞

∑
r=0

(−1)r

r!

(
EI
ρA

)r

f (4r)t2(r+1)
∞

∑
j=0

(
−c
ρA

) j ( j+ r)!t(2−α) j

j!Γ((2−α) j+2r+2)

(21)

Eq. (21) can be rewritten as follows

v(x, t) =
1

ρA

∞

∑
r=0

(−1)r

r!

(
EI
ρA

)r

f (4r)t2r+1E(r)
2−α,αr+2

(
−c
ρA

t2−α

)
(22)

In Eq (22), Er
λ ,µ(y) is called the Mittage-Leffler function of two parameters λ and

µ. Where,

Er
λ ,µ(y)≡

dr

dyr Eλ ,µ(y)

=
∞

∑
j=0

( j+ r)!y j

j!Γ(λ j+λ r+µ)
, for r = 0,1,2, . . .

For impulse response λ = 2−α and µ = αr+2.

5 Results and Discussions

As discussed above, here unit impulse function response have been considered for
the present analysis. Computed results are depicted in term of plots.

Eq. (21) or (22) provides the desired expressions for the considered loading condi-
tion. The results obtained by HPM are similar to the analytical solution presented
in Zu-feng and Xiao-yan (2007). In order to show the responses in a precise way,
some numerical results are presented in this section. As we have considered a sim-
ply supported beam, hence one may have the expression for the force distribution
for single degree freedom idealization as f (x) = sin(πx

L ).

Here the numerical computation has been done by truncating the infinite series (21)
or (22) to a finite number of terms. For numerical simulations, let us denote c/m
and EI/ρA as 2ηω3/2 and ω2 respectively where, ω is the natural frequency and
η is the damping ratio. The values of the parameters are taken as ρA = 1, L = π

and m = 1.

Fig. (1) gives effect of displacement on time for various values of α(= 0.2,0.5,0.8).
In this computation x and η are taken as 1/2. Figs. 1(a) and 1(b) present the plot
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(a)

(b)
Figure 1: Impulse responses along x = 1/2 with natural frequency (a) ω = 5rad/s,
(b) ω = 10rad/s and damping ratio η = 0.5.
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(a)

(b)
Figure 2: Impulse responses along x = 1/2 with natural frequency (a) ω = 5rad/s,
(b) ω = 10rad/s and damping ratio η = 0.05.



220 Copyright © 2015 Tech Science Press CMES, vol.104, no.3, pp.211-225, 2015

(a)

(b)
Figure 3: Impulse responses along x = 1/2 with natural frequency (a) ω = 5rad/s,
(b) ω = 10rad/s and α = 0.2.
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(a)

(b)
Figure 4: Impulse responses along x = 1/2 with natural frequency (a) ω = 5rad/s,
(b) ω = 10rad/s and α = 0.5.
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for ω = 5rad/s and ω = 10rad/s respectively. Similar simulation has been done
for damping ratio η = 0.05 and obtained results are depicted in Fig. 2. Next for
different values of η(= 0.05,0.5,1) dynamic responses versus time are given in
Fig. 3. In this computation α = 0.2 and x = 1/2 are considered. Again Figs. 3(a)
and 3(b) depict the plot for ω = 5rad/s and 10rad/s respectively. Finally Fig. 4
cites the results as above with α = 0.5.

It is interesting to note from Figs. (1) and (2) that if we increase the order of
the fractional derivative α. This means that the beam suffers more oscillations for
smaller value of α. Similar observations may be made by keeping the order of the
fractional derivative constant and varying the damping ratios as shown in Figs. (3)
and (4). It may clearly be seen that increase of the value of the damping ratios
decrease the oscillations.

6 Conclusions

Homotopy perturbation method has successfully been applied to the solution of a
fractionally damped viscoelastic beam, where the fraction derivative is considered
as of arbitrary order. The impulse response functions with homogeneous initial
conditions are chosen to illustrate the proposed method. The performance of this
method is shown and its result are compared with analytical solution obtained by
Zu-feng and Xiao-yan (2007). From the present results it is interesting to note that
by increasing the order of the fractional derivative the beam suffers less oscillation.
Similar observations have also been made by keeping the order of the fractional
derivative constant and varying the damping ratios. Though the solution by HPM
is of the form of an infinite series, it can be written in a closed form in some cases.
The main advantage of HPM is the capability to achieve exact solution and rapid
convergences with few terms. It is interesting to note that the results obtained by
present method exactly matches with the analytical solution of Zu-feng and Xiao-
yan (2007). One may also considered uncertainty in the initial condition or in
system parameters in term of fuzzy to have the bounds of variations in responses.
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in both the quality and clarity of the paper.
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