
Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

The Fundamentals Underlying the Computations of
Acceleration for General Dynamic Applications: Issues

and Noteworthy Perspectives

M. Shimada1, A. Hoitink1 and K. K. Tamma1,2

Abstract: To-date, with the exception of the Newmark method and the midpoint
rule, most computational algorithms under the umbrella of LMS methods, which
are predominantly employed in research and commercial software fail to prop-
erly evaluate acceleration computations accurately for conducting the numerical
dynamic simulations. Indeed, this is not trivial and a sound theoretical basis of
the fundamental underlying issues is described in detail. In this paper, we provide
a resolution and point-out several noteworthy perspectives to address the proper
evaluation of acceleration computations for structural dynamics applications with
focus on the class of LMS methods as an illustration.

1 Introduction

The present paper describes the accurate and precise evaluation of acceleration
computations which play an important role in general structural dynamics applica-
tions. Computational algorithms for time dependent problems are mostly designed
after the semi-discretization is done on the partial differential equations governing
the equations of motion. In particular, these computational algorithms are predom-
inantly the class of linear multi-step (LMS) methods that are widely used for gen-
eral engineering applications and most commercial software. Numerous research
efforts have been undertaken in designing computational algorithms over the past
fifty years or so starting with the Houbolt method, Newmark based methods and
the like. The two principal classes of algorithms are numerically non-dissipative
methods such as Newmark, the velocity based scheme, the classical midpoint rule,
and controllable numerical dissipative methods to control high frequency behavior
encountered in stiff dynamical systems. It is well known that numerous applica-
tion areas exist in science and engineering wherein acceleration calculations need

1 Department of Mechanical Engineering, University of Minnesota, 111 Church St. SE, Minneapo-
lis, MN, 55455, USA.

2 Corresponding Author. E-mail: ktamma@umn.edu

134 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

to be precise. Typical applications encompass determination of g-forces encoun-
tered in dynamical systems to include impact applications where it is extremely
useful to have a knowledge of the accelerations imparted at critical sections of
vehicle structures carrying sensitive electronics, in the evaluation of base accelera-
tions imparted due to missiles/torpedos and the like in the vicinity of ship structures
which is critical for assessments of ship dynamics, earthquake engineering appli-
cations involving base ground motion, and the like. The fundamental question that
is posed regarding all these developments to-date is: "are the accelerations that are
being computed accurate and proper"? Alternatively, this paper presents the exsit-
ing drawbacks and provides a fundamental resolution to the accurate and proper
computation of accelerations for both numerically non-dissipative and dissipative
methods with a clear resolution for the entire class of LMS methods. Consequently,
future developments can now accurately implement the proper dynamics for gen-
eral engineering applications precisely. For illustration, the focus of this paper is
on the class of LMS methods which are most popular in research and commercial
software.

Recently, Zhou and Tamma Tamma, Zhou, and Sha (2000); Tamma, Kanapady,
Zhou, and Sha (2000); Zhou and Tamma (2004b,a, 2006) described a unified the-
ory underlying computational algorithms for designing computational algorithms
for time dependent phenomenon. In particular, focusing attention on the class of
LMS methods for general structural dynamics applications which are the predom-
inant methods in most commercial software, Zhou and Tamma described a gen-
eral framework under the umbrella of generalized single step single solve [GSSSS]
family of algorithms. This novel framework encompasses most of the LMS meth-
ods that have been developed over the past fifty years or so, and also additionally
includes new and optimal methods that have not been available to-date that are
optimal for various applications in structural dynamics. A brief highlight of the
so-called big picture follows next so as to put into context the subtle issues and the
underlying resolution of the existing drawbacks and deficiencies prevalent in accel-
eration computations to-date. The GSSSS family of algorithms can be viewed as
the fully discretized time integration algorithms for the equation of motion which
contains most past and also new and recent computational developments. The nov-
elty of this framework is that a single precise time integration module is all that
is needed to be implemented which provides all possible algorithms as available
choices and options for the analyst to use. Basically, within this framework there
exist two distinct families of algorithms termed as constrained U (displacement-
overshoot aspects) and constrained V (velocity overshoot aspects) family of algo-
rithms. They simply characterize the overshoot behavior on the displacement or
the velocity fields of a particular algorithm. For example, the Newmark Newmark

The Fundamentals Underlying the Computations of Acceleration 135

(1959) algorithm which is a numerically non-dissipative method belongs to the
U0 family with particular additional characteristics termed as V0; that is it does
not have any overshoot behavior for the displacement or velocity. Alternately, the
so-called HHT-αHilber, Hughes, and Taylor (1977), is a numerically controllable
dissipative method that was introduced to control high frequency behavior and it
is a U0V1 algorithm belonging to the U0 family (same as Newmark), which is
characterized by no overshoot in displacement but inherits first order overshoot in
the velocity field. These overshoot characteristics play an important role in that
they enter the computations; consequently, higher overshoot behavior may cause
nonlinear iterations in implicit dynamics calculations to not converge. There exist
numerous algorithms that are contained within the GSSSS family including other
more recently developed optimal algorithms with and without controllable numer-
ical dissipation that are preferable for many engineering applications Zhou and
Tamma (2004b).

The GSSSS Family of Algorithms: Let the time interval of interest, T = tL− t0,
be divided into nt sub-intervals such that I =

⋃n̄−1
n=0[tn, tn+1], assuming t0 < t1 <

· · · < tn̄ ≡ tL. The time step size is defined as ∆t := tn+1− tn. Suppose the initial
conditions (q, q̇)(t0) = (q0,v0)

1 are given; then, we can compute the numerical
displacement (configuration) qn+1, velocity vn+1, and acceleration an+1 for n ∈
{0,1,2, · · · , n̄−1} from:

Mã = F(q̃, ṽ, tn+W1) (1)

where tn+W1 := (1−W1)tn +W1tn+1, and the algorithmic configuration, velocity,
and acceleration vectors are given by

q̃ = qn +W1Λ1vn∆t +W2Λ2an∆t2 +W3Λ3∆a∆t2
η2 (2)

ṽ = vn +W1Λ4an∆t +W2Λ5∆a∆tη1 (3)

ã = an +W1Λ6∆a (4)

And the corresponding updates are designed to be

qn+1 = qn +λ1vn∆t +λ2an∆t2 +λ3∆a∆t2
η3

vn+1 = vn +λ4an∆t +λ5∆a∆t

an+1 = an +∆a
(5)

The algorithmic scalar parameters are given by

W1 =W2 =W3 =
1

1+ρs
∞

, λ1 = Λ1 = λ4 = Λ4 = 1

1 �̇ denotes the time derivative of �. And �n denotes the numerical value, from the GSSSS family
of algorithms, at time tn. For example, vn is the numerical value of q̇(tn), the velocity q̇ at time tn,
i.e., vn ≈ q̇(tn).

136 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

λ2 = Λ2 =
1
2
, λ3 = Λ3 =

1
(1+ρmin

∞)(1+ρmax
∞)

W1Λ6 =
2+ρmin

∞ +ρmax
∞ +ρs

∞−ρmin
∞ ρmax

∞ ρs
∞

(1+ρmin
∞)(1+ρmax

∞)(1+ρs
∞)

,

λ5 = Λ5 =
3+ρmin

∞ +ρmax
∞ −ρmin

∞ ρmax
∞

2(1+ρmin
∞)(1+ρmax

∞)

for the U0 family-based schemes, and

W1 =
3+ρmin

∞ +ρmax
∞ −ρmin

∞ ρmax
∞

2(1+ρmin
∞)(1+ρmax

∞)
, λ1 = Λ1 = λ4 = Λ4 = 1

W2 =W3 =
2

(1+ρmin
∞)(1+ρmax

∞)
, λ2 = Λ2 =

1
2

λ3 = Λ3 =
1

2(1+ρs
∞)

, λ5 = Λ5 =
1

1+ρs
∞

W1Λ6 =
2+ρmin

∞ +ρmax
∞ +ρs

∞−ρmin
∞ ρmax

∞ ρs
∞

(1+ρmin
∞)(1+ρmax

∞)(1+ρs
∞)

for the V0 family-based schemes. The additional algorithmic parameters ηi (for
i= 1,2,3) govern the various features of the corresponding explicit members within
this general algorithmic framework for second-order systems. For the implicit case
(ηi = 1 for i = 1,2,3), the roots must satisfy the following relation:

0≤ ρ
s
∞ ≤ ρ

min
∞ ≤ ρ

max
∞ ≤ 1 (6)

For linear dynamical systems, the right-hand side of Eq. (1) may yield

F(q̃, ṽ, tn+W1) =−Cṽ−Kq̃+ f(tn+W1) (7)

where C and K denote the damping and stiffness matrices, respectively; and f(t)
denotes the time-dependent external load vector.

The Issue: While the displacement and velocity vectors are indeed evaluated pre-
cisely at the time level t = tn+1, the acceleration computations that are reported
in the literature and the like, are, in general, not accurately determined and/or are
being misinterpreted by the research and commercial computational community at
large. For example while it is true (actually happens to be true) for the implicit
Newmark method that an+1 indeed is accurately computed at time level n+ 1, for
most of the other methods this is not the general case. As a demonstration, Fig.

The Fundamentals Underlying the Computations of Acceleration 137

1 shows convergence plots using the traditional (misinterpreted) method for the
single degree of freedom problem described later in the numerical examples. We
see that for the implicit Newmark method and the classical midpoint rule (numeri-
cally non-dissipative methods) that the order of convergence for all three variables
is indeed two. For these two special cases, it is indeed true that the accelerations
resulting from the algorithm falls at the time n+ 1. However, for the particular
numerically non-dissipative velocity based scheme Tamma and Namburu (1990) in
the sense of LMS methods, this is not true (the acceleration comes out to be first
order only). For all other algorithms, including the numerically non-dissipative ve-
locity based scheme shown, the acceleration time level resulting from the algorithm
is "shifted" from displacement and velocity time levels, and thus incorrectly yields
only first order accurate results.

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

(a) U0V0(1,1,0): Implicit Newmark

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

(b) U0V0/V0U0(1,1,1): MPR-EPA

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 1

u
v
a

(c) V0U0(1,1,0): MPR-MPA

Figure 1: Traditional convergence of algorithms without dissipation (Notice that
the acceleration is incorrectly shown to come out to be first-order for the MPR-
MPA algorithm)

138 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

It is also routinely shown in the literature that for algorithms which include con-
trollable numerical dissipation, the order of accuracy in the acceleration is less than
two. Fig. 2 illustrates just one example of this using for example, the U0V1 opti-
mal scheme, which is identical to the so-called three parameter optimal method or
its equivalent, namely, the generalized-α method (and is taken from Ref. Erlicher,
Bonaventura, and Bursi (2002)).

There exists a fundamental misconception in the use and interpretation of the term
"acceleration and the time level at which it is interpreted and computed;" and this
paper provides a deep insight and a resolution to the issue, within the entire LMS
class of algorithms chosen simply for illustration of the basic ideas.

Figure 2: Figures from Ref Erlicher, Bonaventura, and Bursi (2002) showing the
displacement and velocity second order time accurate, but the acceleration is only
cited to be first order time accurate using the U0V1 optimal scheme, which is identi-
cal to the three parameter optinal method or its equivalent, namely, the generalized-
α method

The Fundamentals Underlying the Computations of Acceleration 139

Understanding the time level at which the acceleration is computed in general, for
the class of computational algorithms in the sense of the LMS methods is the key
to showing proper accuracy. Again, the fundamental concept is that, in the general
case of computational algorithms, the acceleration is strictly not being calculated at
time level tn+1. How and where the acceleration time level is calculated and how to
describe an accurate convergence plot which shows correct accuracy is discussed
at length below based for the framework of generalized single step single solve
(GSSSS) algorithms developed by Zhou and Tamma Zhou and Tamma (2004b)
for the entire class of LMS methods that are predominant in most research and
commercial software.

2 Time Level Analysis of the GSSSS Family of Algorithms

Both the U0 and V0 based-family of algorithms shown above have been particu-
larly designed to be of second-order time accuracy in the displacement, velocity,
and external load vectors; however, we get only first-order accuracy in the acceler-
ation vector if we assume an ≈ q̈(tn) and an+1 ≈ q̈(tn+1). In order to guarantee the
second-order time accuracy in all the variables, one must be aware of the correct
time level of approximations for q, q̇, and q̈ as

qn ≈ q(tn) and qn+1 ≈ q(tn+1)

vn ≈ q̇(tn) and vn+1 ≈ q̇(tn+1)

an ≈ q̈(tn−φ) and an+1 ≈ q̈(tn+1−φ)

(8)

where φ :=W1(Λ6−1) ∈ R.

Theorem 1 (Time Level of Acceleration)
In the U0 and V0 based-family of algorithms, the second-order time accuracy in q̈,
i.e.,

an+1− q̈(tn+1−φ) = O(∆t2) with φ :=W1(Λ6−1) (9)

is obtained for a solution satisfying

qn−q(tn) = O(∆t2) and qn+1−q(tn+1) = O(∆t2)

vn− q̇(tn) = O(∆t2) and vn+1− q̇(tn+1) = O(∆t2)
(10)

if an− q̈(tn−φ) = O(∆t2) is guaranteed.

Proof. In this proof, we only consider the V0 family-based algorithms since the
proof for the U0 family-based algorithms is more straightforward, and we get the

140 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

same result as stated in the theorem above. The V0 family-based algorithms can be
cast into

Mã+Cṽ+Kq̃ = f̃ (11)

where the algorithmic q̈, q̇, q, and f are given by

ã = (1−W1Λ6)an +W1Λ6an+1 (12)

ṽ = vn +W2(vn+1−vn)+∆t(W1−W2)an (13)

q̃ = qn +W2(qn+1−qn)+∆t(W1−W2)vn (14)

f̃ = (1−W1)fn +W1fn+1 (15)

Using Equation (10), we get

ṽ = q̇(tn)+W2[q̇(tn+1)− q̇(tn)]+∆t(W1−W2)q̈(tn−φ)+O(∆t p)

= q̇(tn)+∆tW1q̈(tn)+O(∆t p) (16)

where p = 2 and p = 1 for s≥ 2 and s = 1, respectively, in an− q̈(tn−φ) = O(∆ts).
Similarly,

q̃ = q(tn)+W2[q(tn+1)−q(tn)]+∆t(W1−W2)q̇(tn−φ)+O(∆t2)

= q(tn)+∆tW1q̇(tn)+O(∆t2) (17)

and

f̃ = f(tn)+W1[f(tn+1)− f(tn)]+O(∆t2) = f(tn)+∆tW1ḟ(tn)+O(∆t2) (18)

Since the Taylor series expansions about time t = tn yields

q̈(tn+1−φ) = q̈(tn)+(1−φ)∆t
...q(tn)+O(∆t2)

q̈(tn−φ) = q̈(tn)−φ∆t
...q(tn)+O(∆t2)

(19)

we get

(1−W1Λ6)q̈(tn−φ)+W1Λ6q̈(tn+1−φ) = q̈(tn)+∆t(W1Λ6−φ)
...q(tn)+O(∆t2) (20)

From Equations (11)-(20) with q̈(t) =−M−1[Cq̇(t)+Kq(t)− f(t)],

(1−W1Λ6)[an− q̈(tn−φ)]+W1Λ6[an+1− q̈(tn+1−φ)]

= ∆t(W1−W1Λ6 +φ)
...q(tn)+O(∆t p)

(21)

Hence, an+1− q̈(tn+1−φ) = O(∆t2) is obtained when an− q̈(tn−φ) = O(∆ts) with
s≥ 2 for φ =W1(Λ6−1).

The Fundamentals Underlying the Computations of Acceleration 141

Remark 2.1 (Theorem 1)
1. Choosing the initial value of q̈ as a0 = q̈(t0) = −M−1[Cq̇(t0) +Kq(t0)−

f(t0)], actually still yields the second-order accuracy in q̈.

2. It is important to note that an ≈ q̈(tn−φ) and an+1 ≈ q̈(tn+1−φ) are not the
approximations of q̈ at time t = tn and t = tn+1, respectively. Therefore, to
plot the true acceleration time history, one must use

q̈(t1)≈
1

1−φ
a1−

φ

1−φ
a0 =: â1 (22)

at the first time step and

q̈(tn+1)≈ (1+φ)an+1−φan =: ân+1 (23)

for n ∈ {1,2, · · · ,nt −1}. This is illustrated in Fig. 3.

3. The spectral condition V0{1.0,1.0,ρs
∞} with ρs

∞ in the V0 family-based al-
gorithms leads to

Mã+C
[

vn +
∆t
2

ã
]
+K

[
qn +

∆t
2

vn +
∆t2

4
ã
]
= f̃ (24)

with

qn+1 = qn +∆tvn +
∆t
2

ã

vn+1 = vn +∆tã
(25)

where

ã = an +
1

1+ρs
∞

(an+1−an) (26)

Note that we have

W1 =
1
2

and φ =
1−ρs

∞

2(1+ρs
∞)

(27)

for V0:{(ρmin
∞ ,ρmax

∞ ,ρs
∞) = (1.0,1.0,ρs

∞)} with ρs
∞. We call U0/V0:

{(ρmin
∞ ,ρmax

∞ ,ρs
∞) = (1.0,1.0,1.0)}, i.e., an+1 ≈ q̈(tn+1), and

V0:{(ρmin
∞ ,ρmax

∞ ,ρs
∞) = (1.0,1.0,0.0)}, i.e., an+1 ≈ q̈(tn+1/2), the midpoint

rule with the endpoint acceleration (MRP-EPA), which is the classical mid-
point rule, and the new midpoint rule with the midpoint acceleration (MRP-
MPA), respectively. Notice that the difference between MPR-EPA and MPR-
MPA is

vn+1−vn

∆t
= ã =

{
an+1/2 ≈ 1

2 [q̈(tn+1)+ q̈(tn)] for MPR-EPA
an+1 ≈ q̈(tn+1/2) for MPR-MPA

(28)

142 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

Note that the information regarding the acceleration at the previous time step
is not required to evaluate the current acceleration, and consequently, the new
MPR-MPA provides a a more robust computational algorithm for general
dynamics applications in contrast to the classical MPR-EPA. In contrast to
the single field form shown above, by eliminating the acceleration, Eq. (24)-
Eq.(26) can be readily reduced to the two-field form version of the classical
symplectic midpoint rule which takes the form

M
vn+1−vn

∆t
+C

vn+1 +vn

2
+K

qn+1 +qn

2
= f̃

vn+1 +vn

2
=

qn+1−qn

∆t

(29)

where f̃ = f(tn+1/2) can be used for the algorithmic time-dependent external
force instead of f̃ = (fn + f)/2 since f(tn+α)− fn+α = O(∆t2) for α ∈ [0,1].

4. In the derivation of the GSSSS family of algorithms, the conditions of the
second-order time accuracy were imposed following the algorithms by de-
sign concept; see Zhou and Tamma (2004b). From the truncation error anal-
ysis for Eqs. (1)-(5), the necessary and sufficient conditions of the second-
order time accuracy for the displacement and velocity are given as:

λ1 = λ4 = 1,

λ2 =
1
2 , λ5 =

1
2 +W1(Λ6−Λ4)

(30)

and Λ1 = Λ4 for a homogeneous case (f = 0), and Λ1 = Λ4 = 1 for a non-
homogeneous case (f 6= 0). Notice that the above conditions (for the non-
homogeneous case) are a priori for the U0 and V0 family-based algorithms.
In addition to the conditions, Eq. (30), we must introduce φ :=W1(Λ6−1) to
guarantee the second-order time accuracy not only of the displacement and
velocity, but also of the acceleration. Note that we can never obtain the sec-
ond order-time accuracy of the acceleration if we break the conditions, Eq.
(30), and the orders of accuracy of the displacement and velocity are always
dependent upon each other in this algorithmic framework. However, the sec-
ond order-time accuracy of the acceleration is not the necessary condition for
the second order-time accuracy of the displacement and velocity.

Theorem 2 (Time Level Consistency)
In order to guarantee the second-order time accuracy in all time-dependent vari-
ables, such as q(t), q̇(t), q̈(t), and f(t), in the discrete equation of motion, they
must be evaluated at the same time level t = t∗ = tn+W1 as

0 = Mã+Cṽ+Kq̃− f̃+O(∆t2) = Mq̈(t∗)+Cq̇(t∗)+Kq(t∗)− f(t∗) (31)

The Fundamentals Underlying the Computations of Acceleration 143

Time

Figure 3: Illustration of the true acceleration history (red line).

Proof. By using the Taylor series expansions about time t = tn, we get

ã = (1−W1Λ6)q̈(tn−φ)+W1Λ6q̈(tn+1−φ)+O(∆t2)

= q̈(tn)+∆tW1
...q(tn)+O(∆t2)

= q̈(tn+W1)

(32)

when an− q̈(tn−φ) = O(∆t2). Similarly, we get

ṽ = q̇(tn)+∆tW1q̈(tn)+O(∆t2) = q̇(tn+W1) (33)

q̃ = q(tn)+∆tW1q̇(tn)+O(∆t2) = q(tn+W1) (34)

f̃ = f(tn)+∆tW1ḟ(tn)+O(∆t2) = f(tn+W1) (35)

Therefore, the discrete equation of motion is evaluated at the time level t = tn+W1

where the second-order time accuracy in q, q̇, q̈, and f are guaranteed. The time
level t∗ = tn+W1 is called the algorithmic time level. If the algorithmic balance
equation is satisfied at the time level t∗ = tn+W1 with the error O(∆t2), the accelera-
tion, velocity, and configuration are of second-order time accuracy. The algorithmic
time level consistency at time t = tn+W1 in the balance equation is illustrated in Fig.
4.

Remark 2.2 (Theorem 2)
1. Extension to nonlinear systems: The time level consistency theorem plays

a fundamental role when we extend and apply the GSSSS family of algo-
rithms to nonlinear dynamical systems. The basic strategy is that we develop

144 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

Shift Shift

Time

a~

v~

q~

f
~

na

nq

nv

nf

1na

1nv

1nq

1nf

nt 1nt1ntnt

t
t

“Algorithmic Time Level”

1Wnt

Figure 4: Illustration of the algorithmic time level

time integration schemes which satisfy the algorithmic time level consistency
theorem at time level of tn+W1 in order to guarantee the second order-time ac-
curacy in all variables appear in discrete balance equations. See Shimada and
Tamma (2012, 2013); Har and Tamma (2012) for detailed discussions.

2. First order systems: The time level consistency theorem still holds for first-
order systems generally represented as q̇ = F(q, t) ∀t ∈ I with given initial
condition q0 = q(t0). That is, we discretize the balance equation with the
algorithms by design concept such that the time level consistency at time
t = tn+W1 is guaranteed as follows:

0 = ṽ−F(q̃, tn+W1)+O(∆t2) = q̇(tn+W1)−F(q(tn+W1), tn+W1) (36)

where q̃ and ṽ = vn+W1Λ6 := (1−W1Λ6)vn+W1Λ6vn+1 in the above equation
denote the algorithmic q and v for the first-order system. The time level of vn

must satisfy vn ≈ q̇(tn−φ) for n ∈ {1,2, · · · , n̄} with φ =W1(Λ6−1). The re-
sulting algorithm is known as the GSSSS-1 (or GS4-1) family of algorithms;
see Masuri, Sellier, Zhou, and Tamma (2011) for the detailed derivations and
applications to linear transient first-order systems.

The Fundamentals Underlying the Computations of Acceleration 145

3 Implications of a Shifted Acceleration Time Level

U0 Family-based Algorithms: To gain a physical interpretation of acceleration
time level shift denoted by φ , note that φ needs to be viewed separately for each of
the U0 and V0 families of algorithms due to the fact that values of W1 and Λ6 are
not the same. For the case of the family of U0 algorithms we have:

W1 =
1

1+ρs
∞

(37)

Λ6 =
2+ρmin

∞ +ρmax
∞ +ρs

∞−ρmin
∞ ρmax

∞ ρs
∞

(1+ρmin
∞)(1+ρmax

∞)
; (38)

Therefore, φ :=W1(Λ6−1) can be written in terms of the roots as

φU0 =
1−ρmax

∞ ρmin
∞

(1+ρmax
∞)(1+ρmin

∞)
(39)

Notice that φU0 does not depend on ρs
∞. Recall that φ was defined to be the offset

of acceleration from time level tn. As such, the resulting values of acceleration for
a given time step between tn and tn+1 are actually at time tn−φ+1. Fig. 5a shows
this time level vs. ρmin

∞ and ρmax
∞ . We see that for the family of U0 algorithms the

calculated accelerations occur at a time between tn and tn+1. In current practice it
is being assumed by all researchers, that what all algorithms yield is the value of
acceleration at time tn+1; this results in a maximum possible error in time of ∆t, as
demonstrated later.

V0 Family-based Algorithms: In a similar fashion to the U0 family of algo-
rithms, a physical interpretation of φ can also be shown by considering the associ-
ated possible range of values. For the V0 family of algorithms we have:

W1 =
3+ρmin

∞ +ρmax
∞ −ρmin

∞ ρmax
∞

2(1+ρmin
∞)(1+ρmax

∞)
(40)

Λ6 =
2(2+ρmin

∞ +ρmax
∞ +ρs

∞−ρmin
∞ ρmax

∞ ρs
∞)

(1+ρs
∞)(3+ρmin

∞ +ρmax
∞ −ρmin

∞ ρmax
∞)

; (41)

Hence, we have:

φV0 =
1−ρs

∞

2(1+ρs
∞)

(42)

Notice that φV0 depends on ρs
∞ only. From Eq. 42 we see that it is possible to

describe and construct a plot of acceleration time level vs. ρs
∞ (see Fig. 5b). Notice

146 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

that in the case of V0, the acceleration resulting from a single time step between tn
and tn+1 is located between tn+ 1

2
and tn+1 resulting in a maximum possible error in

time of ∆t
2 , as demonstrated later.

Optimal Algorithms: From Eq. (39) or Eq. (42), we can obtain φ for the
U0V0/V0U0 optimal family of algorithms, i.e., U0V0/V0U0(ρ∞,1,ρ∞) where ρ∞ :=
ρmin

∞ = ρs
∞, as2

φU0V0/V0U0opt
=

1−ρ∞

2(1+ρ∞)
(43)

Notice that φ for the V0U1 optimal family of algorithms, i.e., algorithms given by
setting ρ∞ := ρmin

∞ = ρmax
∞ = ρs

∞ in the V0 family of algorithms, has the same φ

as shown in Eq. (44). On the other hand, φ for the U0V1 optimal family of algo-
rithms, i.e., algorithms given by setting ρ∞ := ρmin

∞ = ρmax
∞ = ρs

∞ in the U0 family
of algorithms, which is identical to the Generalized-α method, has the following
φ :

φU0V1opt =
1−ρ2

∞

(1+ρ∞)2 (44)

These φ in terms of ρ∞ ∈ [0,1] are shown in Fig. 5c.

Note that only U0V0(1,1,ρs
∞) family of algorithms yields φ = 0 within the im-

plicit GSSSS family of algorithms. Also note that numerically dissipative implicit
schemes in either U0 or V0 families possess φ 6= 0 in general. For the explicit
GSSSS family of algorithms (η1 = η2 = 0), V0(ρmin

∞ ,ρmax
∞ ,1) family of algorithms

as well as U0V0(1,1,ρs
∞) family of algorithms yield φ = 0 since the relation given

in Eq. (6) is no longer required to be satisfied for explicit schemes.

To fully understand the impact of the above, consider the hypothetical situation of
running a simulation to an end time of 0.5 sec (assume t0 = 0) with a time step size
∆t = 0.1 sec with a numerically dissipative algorithm U0V0(0,1,0)≡U0(0,1,0)
which yields φ = 0.5. The output of this hypothetical simulation would result in
values of displacement, velocity, and acceleration at times seen in the following
table.
2 Algorithms within the U0 family and V0 family are generally expressed as U0(ρmin

∞ ,ρmax
∞ ,ρs

∞) and
V0(ρmin

∞ ,ρmax
∞ ,ρs

∞), respectively.
If ρmax

∞ = 1, any algorithms within the GSSSS family possess zero-th order overshoots in both
displacement and velocity; therefore, U0(ρmin

∞ ,1,ρs
∞) ≡ U0V0(ρmin

∞ ,1,ρs
∞) and V0(ρmin

∞ ,1,ρs
∞) ≡

V0U0(ρmin
∞ ,1,ρs

∞).
If ρmax

∞ 6= 1, the U0 and V0 family of algorithms possess first-order overshoots in the ve-
locity and displacement, respectively; that is, U0(ρmin

∞ ,ρmax
∞ ,ρs

∞) ≡ U0V1(ρmin
∞ ,ρmax

∞ ,ρs
∞) and

V0(ρmin
∞ ,ρmax

∞ ,ρs
∞)≡ V0U1(ρmin

∞ ,ρmax
∞ ,ρs

∞).

The Fundamentals Underlying the Computations of Acceleration 147

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ρ∞
minρ∞

max

φ

(a) U0 Family

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ∞
s

φ

(b) V0 Family

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ∞

φ

U0V0/V0U0 Optimal Scheme
U0V1 Optimal Scheme

(c) U0V0/V0U0 and U0V1 Optimal Families

Figure 5: Time level of the resulting acceleration over time step tn to tn+1

n Time [sec] Displacement Velocity Acceleration True Acceleration
0 0.0 q0 = q(0.0) v0 = q̇(0.0) a0 = q̈(0.00) â0 = q̈(0.0)
1 0.1 q1 ≈ q(0.1) v1 ≈ q̇(0.1) a1 ≈ q̈(0.05) â1 = 2a1−a0 ≈ q̈(0.1)
2 0.2 q2 ≈ q(0.2) v2 ≈ q̇(0.2) a2 ≈ q̈(0.15) â2 = 1.5a2−0.5a1 ≈ q̈(0.2)
3 0.3 q3 ≈ q(0.3) v3 ≈ q̇(0.3) a3 ≈ q̈(0.25) â3 = 1.5a3−0.5a2 ≈ q̈(0.3)
4 0.4 q4 ≈ q(0.4) v4 ≈ q̇(0.4) a4 ≈ q̈(0.35) â4 = 1.5a4−0.5a3 ≈ q̈(0.4)
5 0.5 q5 ≈ q(0.5) v5 ≈ q̇(0.5) a5 ≈ q̈(0.45) â5 = 1.5a5−0.5a4 ≈ q̈(0.5)

An outcome of this shift in the acceleration time level is that the notation implied
(naively) in the selected algorithm leads to an interpretation that is somewhat mis-
leading. The algorithm in the a-form solves for ∆a = an+1− an ≈ q̈(tn+1−φ)−
q̈(tn−φ), and then uses the updates to obtain values of vn+1 ≈ q̇(tn+1) and qn+1 ≈
q(tn+1). As a result, what would be considered the output/results are actually val-
ues of qn+1 and vn+1 at time t = tn+1 = t0 + (n+ 1)∆t over the duration of the

148 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

run-time and values of a at time t = tn+1−φ = t0 +(n+1−φ)∆t, even though over
the duration of the run-time the equation of motion was satisfied consistently at the
same time level. As such, any algorithm that does not satisfy φ = 0 produces data
that is very easily misrepresented. The current understanding before the findings of
this paper was that all time integration algorithms simply returned values of qn+1,
vn+1, and an+1 at time tn+1. This is strictly not not the case, in general. Therefore,
the correct time history of qn+1, vn+1, and an+1 should in fact appear with accel-
erations misaligned with displacements and velocities. To reiterate, if the goal of
the hypothetical simulation described above was to obtain numerical values of q,
q̇, and q̈ at time t = 0.5 sec, in general any of the algorithms which yield φ 6= 0 will
not provide all three quantities correctly. This concept has extremely important im-
plications about the manner in which numerically dissipative algorithms, as well as
some non-dissipative methods, are used with respect to accelerations for the class
of LMS methods.

4 Interpretation and Description of a Consistent Convergence Plot

Following the discussion and illustration of the algorithmic time level concept, we
now are able to address the fact that in general, for numerically dissipative algo-
rithms, to-date one is not able to demonstrate that the accelerations are second order
time accurate but do obtain second order time accuracy for both displacements and
velocities. For numerically non-dissipative algorithms such as the velocity based
scheme, this also happens to be the case. To understand the resulting consequences
of the shift in the time level which the algorithm returns on a convergence plot, we
first must focus on how the plot is produced.

To construct a converge plot (notice here that convergence is always meant to mean
convergence in time, not convergence of the spatial discretization), the same prob-
lem is run multiple times with only a change in the time step size. The time step is
gradually reduced and the slope of the result yields the order of time accuracy of the
variable. An end time of the simulation is chosen and the resulting displacement,
velocity, and acceleration are compared to values of the exact solution at that time.
If, as in most practical problems, there is no exact known analytic solution, then the
simulation is run with a time step which is very small in comparison to the others
and this run is considered to be the benchmark solution. The log of the error in the
numerical solution is then plotted versus the log of the time step size used in the
solution. The slope of the line generated by these points is then the convergence
rate of the algorithm.

To visualize how the final step of the simulations used to generate the acceleration
convergence plot looks like, Figs. 6 are provided for illustration. The assumption
is the simulation will be run using several different time step sizes, for example:

The Fundamentals Underlying the Computations of Acceleration 149

∆t1 = ∆t, ∆t2 = 2∆t, ∆t3 = 3∆t, and ∆t4 = 4∆t. Without properly accounting for the
acceleration offset, the results will show second order time accuracy for all three
quantities only if φ = 0, and otherwise will show second order time accuracy for
the displacement and velocity, and only first order time accuracy in the acceleration
as reported in the literature Erlicher, Bonaventura, and Bursi (2002). If the time
step sizes are chosen as to properly align accelerations, then the comparison of the
numerical solutions to the exact solution are occurring at the same time level. It is
then, that these normally misrepresented accelerations can be readily proven to be
second order time accurate.

To properly describe the convergence plot in which the value of acceleration from
the numerical simulations are compared with the acceleration of the exact solution
at precisely the same time, very close attention must be paid to the selection of
the time step size for each simulation used in generating the plot. As an example,
assume that the convergence plot will have 4 data points meaning that one has 4
numerical solutions which are being compared to an exact solution. Instead of
defining 4 different time step sizes, let us define the total number of steps for each
of the 4 solutions that we will use. Then calculate the corresponding time step size
as follows:

∆ti =
T

n̄i +φ
=

tL− t0
n̄i +φ

(45)

where n̄i denotes the total number of time steps with correspondence with ∆ti (the
acceleration convergence rate with ∆ti is plotted at time tL).

It is shown below in the different numerical examples that using this procedure in
fact results in properly obtaining second order accurate accelerations, thereby vali-
dating the assumption of the offset in the acceleration time level. The first example
problem is a simple linear dynamic single degree of freedom problem for which
we have an exact solution. The next example is a multi-DOF dynamic problem
with nonlinear strain definition (Green strain). For illustration, a general purpose
dynamic research code was developed to simulate any combination of springs and
masses. Having tested the current assertions on codes ranging from single DOF to
multi-DOF and both linear and non-linear dynamic problems, we have great confi-
dence that the current work will advance the field of general numerically dissipative
(and numerically non-dissipative as well) LMS class of algorithms. This will be of
benefit in future ither developments and advances.

150 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

1t

t L

Lt

1n
a

2n
a

3n
a

4n
a

1n
q

2n
q

3n
q

4n
q

1n
v

2n
v

3n
v

4n
v

2t

t L

3t

t L

4t

t L

Time

(a) φ = 0.5

1t

t L

Lt

1n
a

2n
a

3n
a

4n
a

1n
q

2n
q

3n
q

4n
q

1n
v

2n
v

3n
v

4n
v

2t

t L

3t

t L

4t

t L

Time

(b) φ = 0.0

Figure 6: Examples of the final time steps used in creating a convergence plot when
(a) φ = 0.5 and (b) φ = 0.0. For (a), the acceleration time level shift is required.

5 Numerical Illustrations

5.1 Single Degree of Freedom (SDOF) Example

Consider a single degree of freedom problem, q̈(t)+ 0.25q̇(t)+ 10q(t) = 0 with
given initial conditions q0 = q(0) = 2 and v0 = q̇(0) = 2. For this system it was
shown in Fig. 1c for the V0U0(1,1,0) algorithm (MPR-MPA algorithm), the accel-
eration appears to be only first order accurate. Using the concepts described above,
we are now able to understand why: the φ value for the V0U0(1,1,0) algorithm is
0.5. This means that the accelerations resulting from the algorithm do not align
with the displacement and velocity, and care must be taken to properly represent
the converge rate. Fig. 7 shows the resulting convergence plot taking into account
this shift; notice that now all three primary variables show the expected order of
time accuracy.

To demonstrate that the above procedure indeed yields expected second order time
accurate accelerations over the entire range of φ , four common algorithms which
which include numerical dissipation in the U0 family of algorithms were selected
as shown in Table 2.

For each of the four algorithms described above, convergence plots are shown using
4 numerical solutions. Two convergence plots were generated for each algorithm:

The Fundamentals Underlying the Computations of Acceleration 151

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

Figure 7: V0U0(1,1,0): MPR-MPA method - acceleration aligned convergence plot
(see improvement and compare to Fig. 1c)

Table 1: Selected algorithms from the U0 family for Figs. 8 and 9 and Figs. 11 and
12

Algorithm Family(ρmin
∞ ,ρmax

∞ ,ρs
∞) Common family name Acceleration time level

U0V1(0,0,0) ∈WBZ an+1 ≈ q̈(tn)
U0V0/V0U0(0.25,1,0.25) ∈ U0V0/V0U0-optimal an+1 ≈ q̈(tn+0.7)
U0V1(0.5,0.5,0.5) ∈ U0V1-optimal an+1 ≈ q̈(tn+0.6667)
U0V1(0.8,0.8,0.125) ∈ HHT-α an+1 ≈ q̈(tn+0.8889)

Table 2: Selected algorithms from the V0 family for Figs. 13 and 14

Algorithm Family(ρmin
∞ ,ρmax

∞ ,ρs
∞) Family name Acceleration time level

V0U1(0,0,0) ∈ V0-based WBZ an+1 ≈ q̈(tn+0.5)
V0U0/U0V0(0.25,1,0.25) ∈ V0U0/U0V0-optimal an+1 ≈ q̈(tn+0.7)
V0U1(0.5,0.5,0.5) ∈ V0U1-optimal an+1 ≈ q̈(tn+0.8333)
V0U1(0.8,0.8,0.125) ∈ V0-based HHT-α an+1 ≈ q̈(tn+0.6111)

152 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 1

u
v
a

(a) U0V1(0,0,0)

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 1

u
v
a

(b) U0V0/V0U0(0.25,1,0.25)

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 1

u
v
a

(c) U0V1(0.5,0.5,0.5)

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 1

u
v
a

(d) U0V1(0.8,0.8,0.125)

Figure 8: SDOF U0 family traditional convergence plots showing poor understand-
ing

one without accounting for acceleration offset and one in which accelerations were
aligned via Eq. 45.

It is consistently shown in Figs. 8 and 9 that in the traditional convergence plot the
slopes of the displacement and velocity are 2.0 while the slope of the acceleration
is 1.0. Once aligned correctly, the proper convergence plots now indeed show the
acceleration has a precise slope of 2.0.

5.2 Nonlinear Tetrahedral Spring-mass System Example

Consider another example, which is a tetrahedral spring-mass system depicted
in Fig. 10a constructed of six springs and four masses. Each spring has ini-
tial length of 1 m, stiffness of 103 N/m, and mass 1 kg. The spring is charac-

The Fundamentals Underlying the Computations of Acceleration 153

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

(a) U0V1(0,0,0)

10
−3

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

(b) U0V0/V0U0(0.25,1,0.25)

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

(c) U0V1(0.5,0.5,0.5)

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

E
rr

or
)

 Slope: 2

 Slope: 2

u
v
a

(d) U0V1(0.8,0.8,0.125)

Figure 9: SDOF U0 family acceleration aligned convergence plots showing im-
proved understanding of fundamentals

terized by geometrically nonlinear strain (Green strain). The initial position of
the four nodes are [0.5,30.5/2,0,0,0,0,1,0,0,0.5,1/(2∗30.5),(2/3)0.5]T [m] with
given initial displacement of [0,0.5,0.2,0,0,0,0,0.8,0,0,0,0]T [m] and initial ve-
locity of [0,0,6,0,0,0,0,0,0,1,3,2]T [m/s]. The dynamic responses of the system
over a 5 sec time span with a time step size ∆t = 0.1 sec can be seen in Fig. 10b.
Figs. 11 and 12 show the misaligned and aligned results that accurately describe
the correct evaluation of accelerations, using the selected algorithms from the U0
family as shown in Table 1. Similarly, Figs. 13 and 14 show the misaligned and
aligned results that accurately describe the correct evaluation of accelerations, us-
ing the selected algorithms from the V0 family as shown in Table 2. Note that
U0V0 optimal schemes and V0U0 optimal schemes are identical each other.

154 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

(a) Geometry

0 0.5 1 1.5 2 2.5 0

2

4

6

0

2

4

6

8

10

12

y

x

z

Node 1
Node 2
Node 3
Node 4

(b) Dynamic Response

Figure 10: Tetrahedral spring-mass problem

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 1.99

u
v
a

(a) U0V1(0,0,0)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(b) U0V0(0.25,1,0.25)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(c) U0V1(0.5,0.5,0.5)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(d) U0V1(0.8,0.8,0.125)

Figure 11: Tetrahedral spring-mass U0 family traditional convergence plots show-
ing poor understanding

The Fundamentals Underlying the Computations of Acceleration 155

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 1.99

u
v
a

(a) U0V1(0,0,0)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(b) U0V0(0.25,1,0.25)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(c) U0V1(0.5,0.5,0.5)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(d) U0V1(0.8,0.8,0.125)

Figure 12: Tetrahedral spring-mass U0 family acceleration aligned convergence
plots showing improved understanding of fundamentals

6 Conclusion

This paper described the accurate and precise evaluation of acceleration computa-
tions useful for structural dynamic simulations. The focus was upon the class of
LMS methods which are predominantly used in most commercial and research soft-
ware. They include numerically non-dissipative and numerically dissipative meth-
ods. An underlying theory regarding the time levels at which these computations
need to take place precisely to achieve the desired order of time accuracy which is
targeted at second order for the class of LMS methods was presented. The literature
to-date lacks a theoretical basis on how to evaluate these acceleration computations
accurately and precisely. The LMS methods have been developed under the um-
brella of GSSSS algorithms which encompass most of the developments to-date

156 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 1.99

u
v
a

(a) V0U1(0,0,0)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(b) V0U0(0.25,1,0.25)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(c) V0U1(0.5,0.5,0.5)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(d) V0U1(0.8,0.8,0.125)

Figure 13: Tetrahedral spring-mass V0 family traditional convergence plots show-
ing poor understanding

and contain both numerically non-dissipative and numerically dissipative methods.
The fundamental problem is that with the exception of the standard Newmark and
midpoint rule, the acceleration computations of all the others are not trivial and
the resulting computations to achieve second order accuracy are not strictly at time
level n+ 1. In this regard, we described the subtle issues and some noteworthy
perspectives to accurately obtain the acceleration computations for general algo-
rithms and the precise time levels that underlie their basic developments. We have
provided a theoretical basis and an in-depth understanding to estimate accurately
the accelerations and to ensure that they are all second order time accurate. Several
simple numerical examples demonstrated the basic ideas.

The Fundamentals Underlying the Computations of Acceleration 157

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 1.99

u
v
a

(a) V0U1(0,0,0)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(b) V0U0(0.25,1,0.25)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(c) V0U1(0.5,0.5,0.5)

10
−4

10
−3

10
−2

10
−8

10
−7

10
−6

10
−5

Log(Δt)

Lo
g(

er
ro

r)

 Slope: 2.00

u
v
a

(d) V0U1(0.8,0.8,0.125)

Figure 14: Tetrahedral spring-mass V0 family acceleration aligned convergence
plots showing improved understanding of fundamentals

Acknowledgement: Other related support in form of computer grants from the
Minnesota Supercomputer Institute (MSI), Minneapolis, Minnesota is also grate-
fully acknowledged.

References

Erlicher, S.; Bonaventura, L.; Bursi, O. S. (2002): The Analysis of the
Generalized-α Method for Nonlinear Dynamic Problems. Computational Me-
chanics, vol. 28, pp. 83–104.

Har, J.; Tamma, K. K. (2012): Advances in Computational Dynamics of Parti-
cles, Materials and Structures. John Wiley, Chichester,UK.

158 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.133-158, 2015

Hilber, H. M.; Hughes, T. J. R.; Taylor, R. L. (1977): Improved Numerical
Dissipation for Time Integration Algorithms in Structural Dynamics. Earthquake
Engineering and Structural Dynamics, vol. 5, pp. 283–292.

Masuri, S. U.; Sellier, M.; Zhou, X.; Tamma, K. K. (2011): Design of Order-
preserving Algorithms for Transient First-order Systems with Controllable Numer-
ical Dissipation. Int. J. Num. Methods in Engr., vol. 88, pp. 1411–1448.

Newmark, N. M. (1959): A Method of Computation for Structural Dynamics.
Journal for American Society of Civil Engineers, vol. 1, pp. 67–94.

Shimada, M.; Tamma, K. K. (2012): Conserving/Dissipative Algorithms and
Designs for a System of N Particles: Total Energy Framework and Single-Field
Form. Computers and Structures, vol. 112-113, pp. 380–405.

Shimada, M.; Tamma, K. K. (2013): Implicit Time Integrators and Designs
for Nonlinear Second-Order Transient Systems: Elastodynamics. Encyclopedia of
Thermal Stresses, vol. 5, pp. 2409–2416.

Tamma, K. K.; Kanapady, R.; Zhou, X.; Sha, D. (2000): Recent Advances in
Computational Structural Dynamics Algorithms. In Seventh Int-Conf. on Recent
Advances in Structural Dynamics ISVR, Southampton, UK.

Tamma, K. K.; Namburu, R. R. (1990): Applicability and Evaluation of An
Implicit Self-Starting Unconditionally Stable Methodology for Dynamics of Struc-
tures. Computers and Structures, vol. 34, pp. 835–842.

Tamma, K. K.; Zhou, X.; Sha, D. (2000): The Time Dimension: A Theory of
Development/Evolution, Classification, Characterization and Design of Computa-
tional Algorithms for Transient/Dynamic Applications. Archives in Computational
Mechanics, vol. 7, no. 2, pp. 67–290.

Zhou, X.; Tamma, K. K. (2004): A New Unified Theory Underlying Time De-
pendent Linear First-Order Systems: A Prelude to Algorithms by Design. Inter-
national Journal for Numerical Methods in Engineering, vol. 60, pp. 1699–1740.

Zhou, X.; Tamma, K. K. (2004): Design, Analysis, and Synthesis of Gener-
alized Single Step Single Solve and Optimal Algorithms for Structural Dynamics.
International Journal for Numerical Methods in Engineering, vol. 59, pp. 597–668.

Zhou, X.; Tamma, K. K. (2006): Algorithms by Design with Illustrations to
Solid and Structural Mechanics/Dynamics. International Journal for Numerical
Methods in Engineering, vol. 66, pp. 1738–1790.

