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Turbulent Inlet Conditions Modeling using Large-eddy
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Abstract: Turbulence is a phenomenon which presents peculiarities when it is
experimented or simulated. This occurs due to its complexity and high sensibility
to the inlet conditions of the turbulent flow fields, as well as the presence of a large
range of time and length scales. A simplification for this situation is obtained with
the use of approximations and turbulence models. In the present work, the Large-
eddy Simulations methodology was applied, aiming the modeling of the previously
mentioned complexity, which consists in using a filter to resolve the large scales
while the remaining scales were determined by classical and dynamic Smagorinsky
models. Three different approximations for the inlet conditions were applied: white
noise, Random Flow Generation (RFG) and Synthetic Eddy Method (SEM). It was
possible to realize that the use of the dynamic Smagorinky model and the RFG or
SEM methodologies resulted in a better characterization of the studied flow.
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1 Introduction

The turbulence phenomenon is a flow regime characterized by presenting peculiar-
ities on its numerical or material experimentation. This is due to its complexity
and, also, sensibility to the turbulent flows initial and boundary conditions. It is de-
fined by a wide range of time and length scales. The consequence is that a detailed
description of such flows is normally very complex.

The application of the Navier-Stokes equations for modeling laminar or turbulent
flows allows the characterization of these phenomena in a detailed and accurate
way. This sensibility generates difficulties for turbulence prediction, because these
equations describe all the velocity and pressure fields for all the scales of time and
length, as well as their nonlinear interactions. It is a wide amount of information
contained in these fields and, as consequence, the direct resolution of the related
system of equations for practical situations becomes impossible. In this context,
1 UFU, Uberlândia, MG, Brazil.



106 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.105-132, 2015

three main resolution methodologies can be applied: Direct Numerical Simula-
tions (DNS), Large Eddy Simulations (LES) and Reynolds Averaged Navier-Stokes
(RANS).

With the use of DNS methodology, all the turbulence scales are calculated using
the Navier-Stokes equations without an additional turbulence model. As a conse-
quence, a mesh refinement capable of picking up all the frequency spectrum, from
the largest structures until the Kolmogorov scale, is required. Due to the large
scales spectrum that appears in engineering situations, this methodology is hard to
be applied. However, it is very powerful for a detailed description of low Reynolds
number flows. Other methodologies appeared from the difficulty of using the DNS
to solve high Reynolds number flows. In this context, the turbulence scales decom-
position was proposed, using temporal averages or spatial filtrations.

The application of temporal averages results in a decomposition of the velocity into
mean and floating parts. The application of this methodology, known as RANS, re-
quires a complete modeling of the energy spectrum and, for this reason, very robust
models become necessary in order to calculate the additional tensor, which appears
due to the advective term of the Navier-Stokes equations, after the turbulence scales
decomposition.

The use of spatial and temporal filters, by the other hand, produces the filtered
Navier-Stokes equations, which are related to the LES methodology. The applied
filter, that is associated to the discretization mesh and to the time step, has the role
of separating the flow scales. This artifice allows the modeling of structures smaller
than the mesh used and the calculation of the remaining ones.

The RANS methodology requires a lower refinement, when compared to DNS or
LES. For this reason, it is applicable in high Reynolds flows. However, a significant
amount of informations is lost because all the energy spectrum is modeled. In other
words, the choice between the mentioned methodologies must be performed by the
researcher, relying on what kind of analysis is intended to be done.

Mariano, Moreira, Silveira-Neto, da Silva, and Pereira (2010) developed a numeri-
cal methodology combining Fourier pseudo-spectral and immersed boundary meth-
ods, named IMERSPEC. Such a numerical tool was created for the characteriza-
tion of fluid flows governed by the incompressible Navier-Stokes equations. With
the use of the referred computational code, Moreira, Mariano, and Silveira-Neto
(2011) showed the importance of turbulence modeling in the simulation of turbu-
lent flows with the use of the LES methodology. For this purpose, a homogeneous
isotropic turbulence in a periodic box was experimented by adding a body force to
the Navier-Stokes equations. Such modification was realized in order to model the
injection of energy at low wave numbers. An interesting result of this work was
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the obtainment of a Smagorinsky’s constant of CS = 0.18 as been the best value for
the characterization of the proposed phenomenon. This result is equivalent to what
was obtained by Lilly (1967), in an analytical procedure.

Based on the aforementioned studies, the present work is intended to compare the
use of two different turbulence models (Smagorinsky classical and dynamic mod-
els), as well as the application of different turbulent inlet conditions generation
methods in a LES approach, implemented in a computational code based on the
finite volumes methodology. The mathematical modeling for such approximations
is presented as follows.

2 Mathematical modeling

In the present work, an approach based on the filtered Navier-Stokes equations
was retained. This methodology separates the turbulent kinetic energy spectrum in
two parts: the first, located before the cut-off frequency of the filter, which will be
calculated, and the second, positioned after this frequency. The scales that compose
this part of the spectrum are named sub-grid scales. The non linear energy transfer
between these two parts of the spectrum is modeled using subgrid scales turbulence
models. The large scales, responsible for the global characterization of the flow and
the transport of most quantity of energy, are directly calculated, while the energy
transfer is modeled.

Thereby, the variables present in the Navier-Stokes equations are separated in fil-
tered, f̄ (~x, t), and float or sub-grid scales, f ′(~x, t):

f (~x, t) = f̄ (~x, t)+ f ′(~x, t), (1)

where the filtered part is defined as:

f̄ (~x, t) =
∫
D

f (~x′, t)G(~x−~x′)d~x′. (2)

The filter function should be defined as a volumetric filter, for example:

G(~x) =
{

1/∆3 se |~x| ≤ ∆/2
0 se |~x|> ∆/2

, (3)

where ∆ denotes the filter length and, as a consequence, the cut-off wave number.

The application of this scale decomposition, as well as of this filtering process,
results in the Navier-Stokes filtered equations, as follows:
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Thereby, the generated system of equations consists of four variables and four equa-
tions, coupled with three additional tensors (τi j, Ci j and Li j). The addition of other
transport equations, for modeling these tensors, would result in the appearance of
higher order momentum, which is known as the turbulence closing problem. Such
an indetermination can be treated with the application of the Boussinesq’s hypoth-
esis, which proposes the calculation of the sub-grid Reynolds’ tensor τi j as being
proportional to the strain rate generated by the filtered velocity field and the turbu-
lent kinetic energy. In other words:

τi j =−νt

(
∂ui

∂x j
+

∂u j

∂xi

)
+

2
3

kδi j, (5)

where the turbulent viscosity νt is determined from closure models and the turbu-
lent kinetic energy k is incorporated to the pressure gradient term.

Shaanan, Ferziger, and Reynolds (1975) and Silveira-Neto, Grand, Metais, and
Lesieur (1993) showed that the Leonard’s and cross tensors (Li j and Ci j, respec-
tively) are not required to be modeled in a separated way of the sub-grid Reynolds’
stress tensors. Such a conclusion is due to the significant difference between the nu-
merical values of these tensors when they are compared to the sub-grid Reynolds’
stress tensor. Therefore, it is interesting to represent the filtered product uiu j by the
global Germano’s tensor [Germano, Piomelli, Moin, and Cabot (1991)]:

τi j = uiu j− ūiū j. (6)

It is interesting to emphasize that this global tensor incorporates all the aforemen-
tioned tensors: subgrid Reynolds tensor Leonard’s and cross tensors.

Most sub-grid models are based on turbulent viscosity. Among them, the classical
and dynamic Smagorinsky models are the most popular. Both were applied in the
present work.

The classical sub-grid model, proposed by Smagorinsky (1963), for the determi-
nation of the turbulent viscosity is given by Eq. 7, in which Cs represents the
Smagorinsky constant and ∆ is the length-scale related to the filter (mesh spacing).

νt = (CS∆)2
√

2Si jSi j. (7)

The constant CS must be adjusted, for each kind of flow, with numerical values nor-
mally between 0.05 and 0.30. For situations in which homogeneous and isotropic
turbulence are modeled, Lilly (1967) determined CS = 0.18, using an analytical
procedure.

An important issue related to the application of this turbulence model is its lack of
capability of performing precise calculations of the turbulent viscosity in parietal
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regions. For this reason, the appliance of a damping function becomes necessary. In
the present work, the van Driest damping function, proposed by van Driest (1956),
was applied:

CSA =CS(1− e−d∗/A+
)2z, (8)

where d∗ = duτ/ν denotes the distance from the wall, uτ =
√

τw/ρ is related to
the shear velocity, τw corresponds to the shear stress close to the wall, A+ = 25
is a constant determined by Ferziger and Perić (2002) and CS is the Smagorinsky
constant, previously mentioned.

The Smagorinsky dynamic model, proposed by Germano, Piomelli, Moin, and
Cabot (1991), is based on a function capable of adjusting itself to the flow in time
and space and in the application of two filters with different characteristic lengths.
Thereby, this methodology is oriented by the informations of the energy levels con-
tained in the smallest resolved scales, located between both filters, for modeling
the energy transfer between the resolved and modeled scales. Both filtered Navier-
Stokes equations are shown in Eq. 9 and Eq. 10:
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where τi j = uiu j− ūiū j denotes the Germano’s global tensor and Ti j = ˆuiu j− ûiû j

corresponds to the subtest tensor.

The determination of the function responsible for the generation of the dynamic
coefficient of this proposition is obtained from the use of the Germano’s identity,

Li j = ûiu j− ûiû j = Ti j− τ̂i j, and Mi j = ∆̂
2
|Ŝi j|Ŝi j− â, where â = ∆

2|Si j|Si j. The
function previously mentioned is presented as follows:

c(~x, t) =
1
2

Li jMi j

Mi jMi j
. (11)

The capability of this function of adjusting itself to the flow in time and space
is an important improvement. However, it is expected that better results can be
achieved with the application of more realistic inlet conditions. In this context,
two methodologies were studied in the present work: the Random Flow Generation
(RFG), proposed by Smirnov, Shi, and Celik (2001) and the Synthetic Eddy Method
(SEM), presented by Jarrin, Benhamadouche, Laurence, and Prosser (2006).
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2.1 Random Flow Generation

The RFG is a modified version of the technique presented by Kraichnan (1970). It
can be defined as orthogonal and scaling transformations applied to a continuous
flow field, generated by a superposition of harmonic functions.

This methodology requires an anisotropic velocity correlation tensor

ri j = ũiũ j (12)

and the determination of an orthogonal transformation tensor, ai j, to diagonalize
ri j:

amian jri j = δmnc2
n (13)

aikak j = δi j (14)

There by, ai j and cn becomes known functions in space. The variable cn represents
the velocity fluctuations in the new coordinates system, produced by the transfor-
mation tensor ai j. Hereafter, a transient flow field is generated in a three dimen-
sional domain using the Kraichnan’s modified method:

vi(~x, t) =

√
2
N

N

∑
n=1

[pn
i cos(k̃n

j x̃ j +ωnt̃)+qn
i sen(k̃n

j x̃ j +ωnt̃)]. (15)

Finally, orthogonal and scaling transformations are applied to the previously gen-
erated field vi, in order to obtain a new field ui:

wi = civi,

ui = aikwk. (16)

This procedure results in a transient field ui(~x, t) with correlation functions uiu j

equivalent to ri j. It is a divergence-free field for any situation involving homo-
geneous turbulence and, for non-homogeneous turbulence cases, it presents high
convergence orders.

2.2 Synthetic Eddy Method

The Synthetic Eddy Method - SEM [Jarrin, Benhamadouche, Laurence, and Prosser
(2006)], is based on the characterization of turbulence as a superposition of coher-
ent structures. Thereby, these eddies should be generated at the domain inlet plane
of the studied physical domain and defined by a function responsible for carrying
the spatial and temporal characteristics of this phenomenon.
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This methodology can be better explained from an unidimensional case, in which
one unique velocity component will be generated on the interval [a,b]. The vari-
able fσ (x) denotes a shape function of a turbulent spot, which presents a compact
support on [−σ ,σ ] and satisfies the normalization condition

1
∆
=

∆/2∫
−∆/2

f 2
σ (x)dx = 1, (17)

where ∆ = b−a+2σ . Each turbulent spot has a position xi, a length scale σ and
receives a signal εi. Thus, the contribution ui(x) of a turbulent spot to the velocity
field, is defined as:

ui(x) = εi fσ (x− xi), (18)

where εi represents a binary random variable, of value −1 or +1 and xi is drawn
randomly on the interval [a−σ ,b+σ ]. The synthetic eddies are generated on an
interval larger than [a,b], in order to guarantee that the boundary points can be sur-
rounded by eddies. The velocity signal at any point is the sum of the contributions
of all synthetic eddies on the domain:

u(x) =
1√
N

N

∑
i=1

εi fσ (x− xi), (19)

in which N denotes the quantity of synthetic eddies.

For 2d situations, the eddies are now 3d structures with compact three-dimensional
supports on [−σx,σx;−σy,σy;−σz,σz], satisfying a three-dimensional normaliza-
tion condition of the same type as presented in Eq. 17. The inlet plane is located
at x = 0 and it has dimensions [0,Lz]× [0,Ly]. The position (xi,yi,zi) of a synthetic
eddy i is drawn randomly on [−σx,σx]× [−σy,Ly +σy]× [−σz,Lz +σz]. The ed-
dies are convected through the inlet plane with a reference velocity scale U0, using
Taylor’s frozen turbulence hypothesis:

xi(t +dt) = xi(t)+U0dt (20)

In case xi(t)> σx, the synthetic eddie will be reallocated at x =−σx, in order to be
convected again. Thus, the synthetic velocity signal is defined as:

u′j(x, t) =
1√
N

N

∑
i=1

εi j f j(x− xi(t)), (21)

in which εi j denotes the sign of vortex i on component j and are independent ran-
dom steps of values −1 or +1.
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The independence of εi j ensures that the generated inflow signal satisfies the con-
dition uiu j = δi j. Thus, the availability of the Reynolds’ stress tensor, Ri j and
of the mean velocity profile, ūi, obtained from previous experiments, allows the
transformation of the generated signal, in order to perform a more accurate charac-
terization [Lund, Wu, and Squires (1998)]. The final velocity field ui is, therefore,
reconstructed from a synthetic field u′i, a mean velocity profile and a Cholesky’s
decomposition, obtained from the provided Reynolds’ stress tensor:

ui = ūi +ai ju′j, (22)

in which ai j is related to the Cholesky’s decomposition:

aij =


√

R11 0 0

R21/a11

√
R22−a2

21 0

R31/a11 (R32−a21a31)/a22

√
R33−a2

31−a2
32

 . (23)

3 Results

The computational code used in the present work, named Fluids3D, was developed
by Vedovoto, Silveira-Neto, Mura, and Silva (2011), is based on the finite volumes
method, composed by staggered variables three dimensional fields and is, also, con-
servative. A centered differences scheme is applied for denoting the diffusive and
advective contributions of the transport equations and a fully implicit approxima-
tion is adopted. The resultant linear system is solved using the MSIP - Modified
Strongly Implicit Procedure [Schneider and Zedan (1981)] for the velocity compo-
nents. The mesh is cartesian, structured and uniform.

This computational code adopts an approximation based on the pressure, as a
consequence, an algorithm for the pressure-velocity coupling becomes necessary.
Thereby, a projection method based on the fractional steps technique is applied,
resulting in a Poisson’s equation composed by variable coefficients, which is re-
solved with the solver BICGSTAB - Bi-Conjugate Gradient Stabilized [van der
Vorst (1981) and Norris (2001)].

Such numerical tool was used, in the present work, to analyze two distinct exper-
iments: a low-Reynolds flow occurring on a backward-facing step (computational
code validation) and a study of the influence of different turbulence models and
inlet conditions in a high-Reynolds flow characterization. These situations were
simulated and the obtained results were compared with published references.

3.1 Validation of the Computational Code Fluids 3D

Lee and Mateescu (1998) performed some experimentations of flows occurring on
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a backward-facing step. These experiments were based on distinct sudden expan-
sions, created by controlling the domain inlet step height, H. A schematic illustra-
tion of such experiment is shown in Fig. 1:

Figure 1: Schematic illustration of the experiment realized by Lee and Mateescu
(1998).

The validation of the computational code used was performed with numerical sim-
ulations of one situation studied by Lee and Mateescu (1998). The calculations
were realized in only one computer, composed by a Intel i5-750 CPU running at
2.67 GHz, with four processing cores and 4 Gb of RAM memory.

The results achieved were compared with the experiment realized by Lee and Ma-
teescu (1998) and with the numerical simulations performed by Mariano (2011).
The last reference presented simulations of the studied experiment realized in an-
other computational code, named IMERSPEC [Mariano, Moreira, Silveira-Neto,
da Silva, and Pereira (2010)], which is based on a spectral methodology for resolv-
ing the differential equations which characterize the studied situation.

The simulated experiment was composed by a domain length L = 34.44 m, a do-
main height Hd = 1.0 m and a step height H = 0.5 m. This flow experiments a
Reynolds number Re = 400 and its inlet mean velocity profile is defined as:

u(z) =
{
−24(Hd− z)(H− z) if H < z≤ Hd ,
0 if 0≤ z≤ H,

(24)

in which an advective boundary condition was applied at the end of the domain and
a no slip condition was applied into the inferior and superior limits of the domain
in z-direction, aiming to achieve the no-slipping boundary condition.

Three different mesh refinements were used (1024x32, 2048x64 e 4096x128 vol-
umes), without the appliance of turbulence models. The obtained results were re-
lated to a time period of 400 physical seconds. The mean velocity profiles obtained
in the present work, evaluated in vertical stations located at x = 7 m and x = 14 m of
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the domain, are presented in Fig. 2. The analysis of the aforementioned figure sug-
gests a good accordance between the results achieved in the present work and the
experimentation performed by Lee and Mateescu (1998) and, also, the calculations
realized by Mariano (2011).

(a) (b)
Figure 2: Mean velocity situated at the following vertical stations: (a) x = 7m and
(b) x = 14m.
� Lee and Mateescu (1998) ♦ Mariano (2011) — present work (1024x32)
- - - present work (2048x64) · · · present work (4096x128)

One interesting analysis, when backward-facing steps are observed, is the com-
parison between the recirculation lengths generated due to the sudden expansion.
In the present work, the distances between the sudden expansion beginning and
the inferior and superior recirculations end are defined as xr and xrs, xs is related
to the distance between the beginnings of the sudden expansion and the superior
recirculation. In this context, the Tab. 1 shows data related the aforementioned
lengths, obtained from the numerical simulations performed in the present work
and in the calculations realized by Mariano (2011). These results were determined
by the analysis of the flow stream lines. The relative deviations of these results,
when compared with the experimental data obtained by Lee and Mateescu (1998)
are also presented.

The analysis of the obtained data suggests that, since the second mesh refinement,
the recirculation lengths become quite close to the results determined experimen-
tally and numerically, which guarantees the validation of the developed computa-
tional code. The mesh independence is also observed starting from the second mesh
refinement. Such an independence is observed due to the insignificant changes on
results with the mesh refinement increase.
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Table 1: Characteristic recirculation lengths in a backward-facing step flow.
Work xr/H Deviance xs/H Deviance xrs/H Deviance

Lee and Mateescu (1998) 12.90 — 10.30 — 20.5 —
Mariano (2011) - 4096x128 12.19 5.5% 9.94 3.5% 20.7 0.97%

Present work - 1024x32 12.05 6.59% 9.6 6.80% 20.2 1.46%
Present work - 2048x64 12.3 4.65% 9.8 4.85% 20.65 0.73%
Present work - 4096x128 12.25 5.04% 9.8 4.85% 20.7 0.97%

Another analysis was performed, in order to compare both differential equations
resolution methodologies (finite volumes and spectral methods): the processing
time required to conclude the aforementioned simulations. For this purpose, the
calculations were realized in a single CPU, presenting almost the same charac-
teristics (except the differential equations resolution methodology). The analysis
was performed by a performance evaluation of the computational codes FLUIDS
3D (based on finite volumes) and IMERSPEC (implemented with Fourier pseudo-
spectral method) developed, respectively, by Vedovoto, Silveira-Neto, Mura, and
Silva (2011) and Mariano (2011). The results are shown in Tab. 2 and Fig. 3.

A significant difference is observed between the processing time required by both
codes. FLUIDS3D required a smallest quantity of computational time to perform
similar calculations. However, it is important to mention that the IMERSPEC code
presents high accuracy against the code based on finite volumes.

The validation of FLUIDS 3D allowed the realization of numerical simulations of
more complex flows. As follows, results related to simulations of turbulent nonre-
active flows occurring inside a combustion chamber will be presented.

Table 2: Amount of iterations and time required for the proposed calculations.

Mesh Computational Amount of Processing
refinement code iterations time (h)

1024x32
FLUIDS3D 23910 1.044
IMERSPEC 22400 3.009

2048x64
FLUIDS3D 47940 6.19
IMERSPEC 44800 28.2

4096x128
FLUIDS3D 95960 44.11
IMERSPEC 89600 264.68

3.2 Turbulence modeling

Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) performed experiments with



116 Copyright © 2015 Tech Science Press CMES, vol.104, no.2, pp.105-132, 2015

Figure 3: Processing time required by the studied computational codes.
— Fluids 3D - - - Imerspec

Figure 4: Schematic illustration of the experiment performed by Moreau, Tanguy,
Gicquel, Poirot, and Sauzin (1996).

and without reactions in a combustion chamber, called A3C. A schematic figure of
the used experimental stand is shown in Fig. 4. The data related to the longitudinal
mean velocity fields ū and its rms fluctuations u′rms were taken, by the mentioned
authors, using laser velocimetry.

The main characteristics of this experiment were the following: its length, height
and width were, respectively, L= 0.9 m, Hd = 0.1 m and W = 0.1 m. The backward-
facing step was composed by the following height, length and width: H = 0.035 m,
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zH = 0.1 m and the same width of the chamber. The flow experimented Re = 48750
and the inlet mean velocity profile, fitted from the experimental data, was given by:

u(z) =


U

1−

z−
(

Hu

2
+H

)
Hu

2


ψ if H < z≤ Hd

0 if 0≤ z≤ H,

(25)

where U = 55 m/s, Hu = 0.065 m, ψ = 10 and H = 0.035 m.

Since the studied situation was a turbulent flow, its calculations required larger
amounts of computational resources. For this reason, the simulations were per-
formed in a SGI Altix XE 1300 system. It consisted of a cluster composed by 30
computational nodes, in which four of them were composed by two Intel Xeon
E5540 processors, running at 2.53 GHz and 16 processing cores. The remaining
nodes had two processors Intel Xeon E5650, running at 2.67 GHz and 24 pro-
cessing cores. This computational infrastructure resulted in 688 processing cores,
interconnected by an Infiniband QDR net. With this equipment, it was possible to
perform numerical simulations of the mentioned experiment, using two different
turbulence models and three distinct turbulent inlet generation methods. A brief
description of the experiments realized in the present work is presented in Tab. 3:

Table 3: Numerical simulations performed in the present work.

Mesh Quantity of Turbulence Inlet conditions
refinement processors model generation method
450x50x50 80 Smagorinsky White noise
450x50x50 80 Dynamic White noise

450x50x50 100 Dynamic
Random Flow Generation

(1000 Fourier modes)

450x50x50 36 Dynamic
Synthetic Eddy Method

(10000 eddies)

450x50x50 100 Dynamic
Synthetic Eddy Method

(100000 eddies)

At first, it was performed a comparison between two different 3D simulations of
the mentioned situation: the use of the classical turbulence model, proposed by
Smagorinsky (1963), with CS = 0,18, and the use of the Smagorinsky dynamic
model, proposed by Germano, Piomelli, Moin, and Cabot (1991). The obtained
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results were compared to the experimental data of Moreau, Tanguy, Gicquel, Poirot,
and Sauzin (1996).

Both simulations were performed using 80 processors, with a mesh refinement of
450x50x50 volumes. When the Smagorinsky classical model was applied, the
calculations were realized until a time of 3.55 physical seconds, which required
322,800 iterations. It was necessary 233.54 hours of computational time to finish
this numerical simulation. The application of the Smagorinsky dynamic model re-
quired different conditions. The calculations were performed until the simulation
achieved 4.82 physical seconds, which required 447,740 iterations. In this case, it
was required 318.48 hours to complete the numerical simulation.

The achieved results are presented in Fig. 5, which shows the mean velocity profiles
determined in the present work and the experimental data obtained by Moreau,
Tanguy, Gicquel, Poirot, and Sauzin (1996).

(a) (b)
Figure 5: Mean velocity profiles obtained from the application of the Smagorinsky
classical and dynamic models: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — Smagorinsky classical
model - - - Smagorinsky dynamic model

The mean velocity profiles were better represented when the Smagorinsky dynamic
model was applied. This affirmation can be proven by the analysis of the flow oc-
curring close to the inferior wall. After that position, it is noticeable that this ap-
proximation was capable of following the tendency of the data obtained by Moreau,
Tanguy, Gicquel, Poirot, and Sauzin (1996). However, the calculated values were
far from the experimental data achieved by the adopted reference.

The results related to the mean velocity fluctuations, presented in Fig. 6, suggest
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that a better fit to the experimental data was also achieved when the approximation
proposed by Germano, Piomelli, Moin, and Cabot (1991) was used. The use of a
function for the dynamic sub-grid scale turbulence model, which fits to the flow in
time and space instead of a constant, as performed when the Smagorinky’s classical
model is used, is the main reason to what was presented before. However, there is
still a noticeable deviance between the numerical results and the experimental data.

(a) (b)
Figure 6: Mean velocity fluctuations, obtained from the application of the
Smagorinsky classical and dynamic models: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — Smagorinsky classical
model - - - Smagorinsky dynamic model

The significant difference between the calculated results and the experimental data
boosted us to study and apply more realistic inlet conditions to the numerical sim-
ulations, aiming the investigation of the influence of them on the studied flow.

Therefore, two distinct turbulent inlet conditions generation methods were applied
to the following numerical simulations. At first, the methodology proposed by
Smirnov, Shi, and Celik (2001), named Random Flow Generation, was applied.
It consists of Fourier decompositions with coefficients calculated from spectral
data obtained in different positions along the domain. Then, the approximation
named Synthetic Eddy Method, proposed by Jarrin, Benhamadouche, Laurence,
and Prosser (2006) was used. It is based on the creation of a box of eddies at the
domain inlet.

The application of the RFG methodology on the studied problem was performed
with 100 processors with a mesh refinement of 450x50x50 volumes. The calcula-
tions were realized until a time of 7.45 physical seconds, which required 502,180
iterations. It was necessary 166.12 hours of computational time to conclude this
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simulation.

In Fig. 7 it is possible to observe a better fitting when the calculated mean velocity
profiles are compared with the experimental data obtained by the adopted reference.
This statement can be evaluated by observing a more accurate characterization of
this flow in regions closer to the inferior wall.

(a) (b)
Figure 7: Mean velocity profiles obtained from the application of the Smagorinsky
dynamic model and the RFG method for the inlet turbulent conditions: (a) xm =
0.08 m and (b) xm = 0.10 m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — Smagorinsky dynamic
model - - - Smagorinsky dynamic model with RFG.

The analysis of the mean velocity fluctuations profiles, presented by Fig. 8, sug-
gests a significant improvement to the quality of the obtained results, when these
are compared to the adopted reference. It is noteworthy that the results obtained
in the present work behave similarly to the experimental data and these are more
consistent in regions further from the sudden expansion.

After concluding the calculations presented before, studies concerning the method-
ology proposed by Jarrin, Benhamadouche, Laurence, and Prosser (2006) were
performed. The Synthetic Eddy Method was firstly implemented in a computa-
tional code dedicated to evaluate its performance. Such a numerical code uses
Reynolds’ stress tensors experimental data and a mean velocity profile, along with
the mentioned method, in order to create a turbulent velocity field at the domain
inlet.

This methodology depends on the local turbulence characteristic length which is
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(a) (b)
Figure 8: Mean velocity fluctuations obtained from the application of the
Smagorinsky dynamic model and the RFG method for the inlet turbulent condi-
tions: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — Dynamic Smagorinsky
model - - - Dynamic Smagorinsky model with RFG.

determined, according to Pope (2000), using Eq. 26:

L =
k3/2

ε
, (26)

where k =
u′2 + v′2 +w′2

2
However, it is well known that it is hard to obtain data representing the dissipation
rate of a flow, which complicates the determination of the necessary characteristic
length. For this reason, some attempts were realized and studied using the compu-
tational code mentioned earlier.

The influence of both number of eddies applied and performed iterations was eval-
uated from a set of numerical simulations, with 10,000 and 100,000 iterations with
six different quantities of eddies and a constant time step of 0.000036 s. These
evaluations were based on a comparison between the Reynolds’ stress tensors ex-
perimented by the adopted reference and the results obtained in the present work.

At first, a characteristic length with a constant value of L = 0.035 m was used. The
proposed simulations are presented in Tab. 4.

The other set of simulations was based on a proposition performed by Pope (2000),
in which the dissipation rate was equivalent to the product between the kinematic
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Table 4: Numerical simulations performed in order to evaluate the Synthetic Eddy
Method, using a constant characteristic length.

Case Iterations Number of eddies Characteristic length

A 10,000

100

L = 0.035 m

500
1000
2000
10000
50000

B 100,000

100
500
1000
2000
10000
50000

viscosity and the strain rate, as defined by Eq. 27:

ε ≡ 2νSi jSi j. (27)

It was possible to determine the dissipation rate from the kinematic viscosity, mean
velocity and step height, all obtained from the studied flow. This formulation is
presented by Eq. 28:

ε = 2ν

(
∂ui

∂x j

)(
∂ui

∂x j

)
≈ 2ν

U2

H2 . (28)

As the dissipation rate was obtained, it was possible to realize the proposed simu-
lations, which are shown in Tab. 5:

The obtained R11 Reynolds’ stress tensor components were compared with the ex-
perimental data by the L2 norm (Eq. 29). The achieved results are presented in Tab.
6 and Fig. 9.

L2 =

√
1
N

N

∑
i=1

(R(i)
11calc
−R(i)

11exp
)2, (29)

where N denotes the quantity of points in the domain.

It is noteworthy that there is a significant variance between the L2 norm values,
according to the quantity of generated eddies. The best results were achieved when
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Table 5: Numerical simulations performed in order to evaluate the Synthetic Eddy
Method, using a characteristic length calculated using Eq. 26 and Eq. 28.

Case Iterations Number of eddies Characteristic length

C 10,000

100

L =
k3/2

ε
, ε ≈ 2ν

U2

H2

500
1000
2000
10000
50000

D 100,000

100
500
1000
2000
10000
50000

the cases B and D were simulated, in this situations, a larger quantity of iterations
was used. In the aforementioned cases it is also perceptible that the increase of the
quantity of eddies resulted in better values of the analyzed norm.

The influence of the quantity of generated eddies and the characteristic length de-
termination proposition in the CPU time required by the proposed methodology is
presented in Tab. 7 and Fig. 10.

It is possible to note that increasing the quantity of generated eddies in this method-
ology, results in a linear increase of required computational time. As expected, the
cases with larger amount of iterations (B and D) required more computational re-
sources. At last, it is worth to note that the application of the first proposition,
which was based on the application of a constant characteristic length, was the
most expensive among the studied cases, while the use of the second proposition,
based on Eq. 27, required less computational resources.

The results obtained with the appliance of the Synthetic Eddy Method were very
promising, presenting turbulent kinetic energy distributed in a −5/3 scope along
the flow frequencies, when this variable spectrum is evaluated. For this reason, this
methodology was implemented in the FLUIDS 3D code, developed by Vedovoto,
Silveira-Neto, Mura, and Silva (2011) and it was used to characterize the flow
experimented by Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996). For this
purpose, four numerical simulations were performed.

At first, the study of the influence of the quantity of generated eddies in the determi-
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Table 6: L2 norm obtained by the comparison between the Reynolds’ stress tensors
experimented by the adopted reference and calculated in the present work, using
the Synthetic Eddy Method.

Quantity L2
of Norm

eddies A B C D
100 3.84 0.79 4.52 1.44
500 2.97 0.33 4.18 1.69

1000 1.10 0.37 4.05 0.91
2000 1.14 0.69 5.65 2.15
10000 1.36 0.78 2.12 1.77
50000 2.27 0.57 2.64 1.20

Table 7: CPU time obtained with the application of the turbulent inlet boundary
conditions generation method proposed by Jarrin, Benhamadouche, Laurence, and
Prosser (2006).

Quantity Processing
of time (s)

eddies A B C D
100 1.19 11.80 1.11 11.00
500 2.5 26.34 2.16 21.39
1000 4.11 43.81 3.47 34.46
2000 7.41 77.38 6.08 60.70

10000 33.52 353.25 26.80 265.14
50000 164.03 1774.21 131.31 1378.04

nation of the mean velocity and fluctuation profiles was performed. This analysis
was done with two different numerical simulations. In the first simulation, 10,000
eddies were generated and 36 processors were used with a mesh refinement of
450x50x50 volumes. The calculations were performed until a time of 1.22 phys-
ical seconds, which required 87,180 iterations. It was necessary 71.88 hours of
computational time to finish this requirements. In the second one, by the other
hand, 100,000 eddies were generated and 100 processors were used with the same
mesh refinement. The calculations were performed until a time of 2.20 physical
seconds, which required 155,360 iterations. It was necessary 94.51 hours of com-
putational time to finish this requirements. The achieved results are shown in Fig.
11 and Fig. 12.
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Figure 9: Influence of both quantity of generated eddies and characteristic length
determination in the processing time required by the proposed methodology.
— case A - - - case B - · - case C ||| case D

From the analysis of the mean velocity profiles, presented by Fig. 11, it is possible
to observe that there is no difference between the application of 10,000 or 100,000
eddies. A larger amount of eddies is responsible for an improvement to what was
obtained when the RFG method was used.

From the evaluation of the mean velocity fluctuation profiles, presented in Fig. 12,
it is possible to reinforce what was commented over the last paragraph. A larger
amount of generated eddies was also responsible for a better characterization of the
studied flow. For this reason, the situation in which the larger amount of generated
eddies is used was applied to the last numerical simulations performed, which differ
solely in the characteristic length calculation methodology.

The simulation in which the calculation of the characteristic length was performed
via Eq. 27, required 114.4 hours of computational time for the numerical simulation
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Figure 10: Influence of the quantity of generated eddies and the characteristic
length determination proposition in the processing time required by the proposed
methodology.
— case A - - - case B - · - case C · · · case D

of 2.14 physical seconds and 151,570 iterations. When a constant characteristic
length was applied, 167.7 hours were needed to perform 350,880 iterations and
4.95 physical seconds. The mean velocity and mean velocity fluctuation profiles
are shown in Fig. 13 and Fig. 14.

The analysis of the presented mean velocity profiles is sufficient to observe that
the appliance of a constant characteristic length was capable to generate a better
description of the flow, when a comparison with the other results is performed.

From the evaluation of the mean velocity fluctuations, it is noteworthy that, among
the application propositions of the SEM, the use of Eq. 26 and Eq. 28 was
the methodology which resulted in a better characterization of the studied flow.
However, the best description was obtained using the methodology proposed by
Smirnov, Shi, and Celik (2001).
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(a) (b)
Figure 11: Mean velocity profiles obtained from the application of the Smagorin-
sky dynamic model and the use of SEM and RFG methods for the turbulent inlet
conditions: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — RFG - - - SEM (10,000
eddies) - · - SEM (100,000 eddies)

(a) (b)
Figure 12: Mean velocity fluctuations obtained from the application of the
Smagorinsky dynamic model and the use of SEM and RFG methods for the in-
let turbulent conditions: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — RFG - - - SEM (10,000
eddies) - · - SEM (100,000 eddies)
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(a) (b)
Figure 13: Mean velocity profiles obtained from the application of the Smagorin-
sky dynamic model and the use of SEM and RFG methods for the turbulent inlet
conditions: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — RFG · · · SEM (case B)
- · - SEM (case D)

(a) (b)
Figure 14: Mean velocity fluctuations obtained from the application of the
Smagorinsky dynamic model and the use of SEM and RFG methods for the in-
let turbulent conditions: (a) xm = 0.08m and (b) xm = 0.10m.
� Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996) — RFG · · · SEM (case B)
- · - SEM (case D)
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A comparison between the computational costs required by both turbulent inlet
conditions generators is shown in Tab. 8.

Table 8: Computational cost required by the turbulent inlet conditions proposed by
Smirnov, Shi, and Celik (2001) and Jarrin, Benhamadouche, Laurence, and Prosser
(2006).

Inlet conditions Physical time Processing Quantity of
generation method simulated (s) time (h) Iterations

Random Flow Generation
2.10

67.05 141,820
Synthetic Eddy Method - case 1 64.95 149,060
Synthetic Eddy Method - case 2 112.48 148,550

From the analysis of this table, it is worth to observe that, when an equal amount
of physical time simulated is analyzed, the application of a constant characteristic
length with the methodology proposed by Jarrin, Benhamadouche, Laurence, and
Prosser (2006) was the simulation which required the less computational resources.
The method proposed by Smirnov, Shi, and Celik (2001) needed the least quantity
of iterations to achieve the same goal. Finally, the appliance of Eq. 26 and Eq. 27
for the determination of the characteristic length in SEM required a larger amount
of computational time and iterations to perform the proposed calculations.

Conclusions

The realization of this work was motivated to study the influence of turbulent inlet
boundary conditions in numerical simulations of flows in the context of large-eddy
simulations.

The aforementioned studies were performed with a computational code developed
by Vedovoto, Silveira-Neto, Mura, and Silva (2011), which was validated by com-
parisons with an experiment realized by Lee and Mateescu (1998) and numerical
simulations, of the same problem, performed by Mariano (2011). In the mean-
time, the processing time required by both codes (FLUIDS3D and IMERSPEC)
was evaluated. It was noteworthy that the Fluids 3D code, based on the finite vol-
umes technique, required less computational resources to perform the same calcu-
lations.

After validating the aforementioned computational code, numerical simulations in-
volving combinations of turbulence modeling and turbulent inlet conditions gener-
ation methods were realized. The obtained results were compared with experiments
performed by Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996). These experi-
ments denoted a turbulent flow occurring inside a combustion chamber.
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At first, the appliance of the classical and dynamic Smagorinky’s turbulence model
was compared. From the analysis of these simulations, it was possible to realize
that the dynamic Smagorinky’s turbulence model gave a better flow characteriza-
tion, when compared with the classical model. The presence of a function capable
of self-adapting, instead of the Smagorinsky model, to simulate the flow in time
and space was the main motive for this improvement.

The application of more realistic turbulent inlet conditions generation methods re-
sulted in even better results, mainly when the mean velocity fluctuation profiles
were analyzed. This fact is due to a better distribution of the turbulent kinetic en-
ergy, presenting the larger amount of energy in possession of the larger eddies.

Interesting results were obtained with the application of the Synthetic Eddy Method.
This methodology achieved the best flow description when the mean velocities
were analyzed. However, the mean velocity fluctuation profiles were better charac-
terized by Random Flow Generation method.

From an exclusive analysis of the results obtained with the application of the SEM,
it is noticeable that the use of a larger amount of eddies resulted in a better char-
acterization of the mean velocity fluctuation profiles. It was observed, also, that
the hypothesis in which the dissipation rate was equivalent to the product between
the kinematic viscosity and the strain rate achieved the best description of the flow
experimented by Moreau, Tanguy, Gicquel, Poirot, and Sauzin (1996).

Another important conclusion is related to the computational cost of each method-
ology. When an equal period of time was simulated, it was noticeable that the
application of a constant characteristic length in the SEM was the methodology
which required the least amount o computational time. On the other hand, the least
quantity of iterations was needed when the RFG method was applied.
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