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Numerical Simulation of Bubble Formation at a Single
Orifice in Gas-fluidized Beds with Smoothed Particle
Hydrodynamics and Finite Volume Coupled Method

F.Z. Chen1,2, H.F. Qiang1 and W.R. Gao1

Abstract: A coupled method describing gas–solid two-phase flow has been pro-
posed to numerically study the bubble formation at a single orifice in gas-fluidized
beds. Solid particles are traced with smoothed particle hydrodynamics, whereas
gas phase is discretized by finite volume method. Drag force, gas pressure gradi-
ent, and volume fraction are used to couple the two methods. The effect of injection
velocities, particle sizes, and particle densities on bubble growth is analyzed using
the coupled method. The simulation results, obtained for two-dimensional geome-
tries, include the shape and diameter size of a bubble as a function of time; such
results are compared with experimental data, previous numerical results, and other
approximate model predictions reported in the literature. Moreover, the flow pro-
files of gas and particle phases and the temperature distribution by the heat transfer
model around the forming bubble are also discussed. All results show that the cou-
pled method efficiently describes of the bubble formation in fluidized beds. The
proposed method is applicable for solving gas–solid two-phase flow in fluidization.

Keywords: coupled method, smoothed particle hydrodynamics, finite volume
method, bubble formation, heat transfer, fluidization.

1 Introduction

As a dense gas–particle two-phase flow, bubble formation at a single orifice, is
a characteristic phenomenon of fluidized bed. Bubble formation contains many
excellent properties of fluidized beds, such as mass and heat transfer. Therefore, an
accurate prediction of bubble characteristics is important to understand and design
fluidized beds.

Bubble formation at a single orifice in a two-dimensional gas-fluidized bed has
been studied experimentally, theoretically, and numerically by numerous scholars.
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Earlier researchers mainly focused on empirical and theoretical analyses. Several
approximate models have been presented in the literature to describe bubble growth
in gas-fluidized beds at a single orifice. Davidson and Schuler (1960) first presented
a theoretical solution using potential flow theory and Darcy’s law to solve the sin-
gle bubble rising in an unbounded fluidized bed. Harrsion and Leung (1961) corre-
lated the bubble volume at detachment to the gas flow rate through the orifice using
Davidson’s model. Nguyen and Leung (1972) and Rowe (1979) demonstrated a
considerable gas leakage into the emulsion phase during bubble formation. Sub-
sequently, Zens (1968), Yang (1984), and Caram and Hsu (1986) developed their
models based on the assumption that bubble grows because of the gas injection
through the orifice and gas exchange with the surrounding emulsion phase through
the bubble boundary. These models have focused on predicting bubble volume and
formation time.

With the development of computer hardware, numerical approaches based on com-
putational fluid dynamics have been widely used to determine the bubble behav-
ior in fluidized beds. Thus far, all simulations on fluidization flow are based
on two methods: two-fluid model (TFM) and discrete element/particle method
(DEM/DPM). The gas and discrete phases in TFM are considered to be contin-
uous and fully interpenetrating with similar conservation equation forms. Ding et
al. (1990), kuipers et al. (1992), Nieuwland et al. (1996), and Hernández–Jiménez
(2013) et al. characterized the interchange caused by gas advection between the
emulsion phase and the bubbles in fully bubbling beds using TFM. The effect of
wall on bubble shape, detachment time, and bubble trajectory was analyzed by Ku-
mar et al. (2013) with this model. Although the TFM approach is more feasible
for practical applications to complex multi-phase flows, the discrete profiles of the
particle phase, such as velocity and trajectory of an individual particle cannot be
obtained. Otherwise, false diffusion easily occurs in simulation and the particle
diameter variations in evaporation and combustion are difficult to be considered
using this model [Ravi (2013)].

The Euler–Lagrange approach DPM has been developed to overcome the limita-
tions of TFM and trace individual particle trajectory. In this model, gas is consid-
ered as a continuous medium, whereas the motions of discrete particles are traced
individually in Lagrange coordinate and solved using the Newtonian equations of
motion. The mechanism of particle–particle collisions can be described the soft or
hard-sphere model. Tsuji et al. (1993), Xu and Yu (1997), and Rong et al. (2012)
applied the soft-sphere model to present a bubble fluidized bed, where the velocity
distributions of both phases are demonstrated. Ouyang and Li (1999), Hoomans et
al. (1996), and Wu et al. (2009) predicted bubble shape with the hard-sphere model.
Tsukiji and Yamamoto (2005), Guo and Xu (2010), and Watanabe et al. (2011)
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have used this particle method to investigate the jet flow, flexible fiber motion in
compressible swirling airflow, and other gas-liquid two-phase flows. In contrast
to the continuum descriptions for particle phase, DPM can easily describe particle
motions, including particle rotations and particle–particle collisions. However, for
the hard-sphere model, the volume fractions of particles should be lower than 10%
on binary collision assumption, whereas for the soft-sphere model, time step is ex-
tremely small for particles with large stiffness coefficient. Moreover, the hard and
soft-sphere models require considerable computational effort to provide accurate
numerical results. Otherwise, the macro-characteristics of particle motions cannot
be predicted accurately using this approach.

As a Lagrange particle method, smoothed particle hydrodynamics (SPH) [Lucy
(1977); Gingold (1977)] easily traces the material interface and particle trajectory
and thus has been widely used in astrophysics problems [Thacker (1998); Ross-
wog (2009)], multi-phase flows [Hu (2007); Adams (2010); Qiang (2011)], and
explosion and shock [Randles (1996); Liu (2003); Zhang (2011)] simulations. Vi-
gnjevic (2001) provided an overview of different types of kernel interpolation used
in the SPH method: conventional SPH, normalised SPH (NSPH), corrected ker-
nel SPH (CSPH) and normalised corrected kernel SPH (NCSPH). Finite volume
method (FVM), as an Euler gird-based method, has more advantages in solving gas
turbulence, large deformation, and chemical reaction of fluid. Considering the ad-
vantages of SPH in solving material movement, Xiong et al. (2011) and Deng et al.
(2013) used SPH to solve the pseudo fluid model for discrete phase, whereas parti-
cle or grid-based method for gas phase to simulate gas–solid fluidization. However,
this model does not contain a one-to-one correspondence between the SPH and ac-
tual particles. The experimentally verified correlations was used to close the solids
stress terms rather than the kinetic theory of granular flow (KTGF) [Lun (1984)].
As a result, simulations and experiments have some deviations. Otherwise, the heat
transfer between gas and particles and their energy are not considered. To overcome
the limitations of the existing approaches, we presented a complete novel method
based on KTGF called as coupling SPH–FVM for simulating bubble formation at
a single orifice in gas-fluidized beds. This method with the imported heat trans-
fer and evaporation model can be used for gas–particle two-phase flows involving
particle evaporation, combustion, heat transfer, and flow processes. Moreover, the
SPH–FVM coupling framework is illustrated and compared with other models. By
contrast to traditional SPH, its properties are improved to suit the discrete phase
named as smoothed particle hydrodynamics (SDPH); some new physical quantities
characterized by one SPH particle are added to traditional SPH parameters. The
quantities of SPH particle maintain a one-to-one correspondence with those of the
actual particles. With this approach, each individual particle can be traced, its infor-
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mation can be obtained, and computational cost can be reduced. In this paper, we
first describe the coupled method based on the pseudo-fluid model, including the
heat transfer and evaporation model. Subsequently, the method is used to simulate
bubble formation caused by a single jet pulse in two-dimensional coarse-particle
fluidized beds. Bubble shape and diameter are compared with the experiments, as
well as other simulation and theoretical results. Flow profiles, temperature distri-
bution, and characteristics of a single particle are then discussed.

2 SPH–FVM coupling framework

Each individual particle in gas phase exhibits the properties of discrete particles.
However, the whole system composed of large number of particles demonstrates
the macro mechanical properties similar to gas dynamics. As a hydrodynamic
method, SPH is used to determine the mathematic model of the continuum phase.
SPH was first invented to solve astrophysical problems in three-dimensional open
space [Lucy (1977); Gingold (1977)], including formation and collapse of galax-
ies, supernova explosion, collisions between planets, and evolution of the universe.
The discrete stars in these problems are considered as the continuum model on
macroscopic scale. An equation similar to the ideal gas equation of state is used
to obtain pressure which represents the pseudo-fluid particles. Therefore, on the
basis of the pseudo-model, we can couple SPH and FVM when the particle phase
is treated as a pseudo-fluid. Subsequently, SPH is used to solve the pseudo-fluid
model using one SPH particle to represent a specific number of discrete particles.
KTGF [Lun (1984)] connects microscopic molecular dynamics with macroscopic
fluid dynamics and supplies a path to implement the method. The coupling frame-
work of the three different methods is shown in Fig.1. Particle density is described
by the volume fraction in the Euler–Euler coupled approach, in which individual
particle information cannot be easily obtained. In the Euler–Lagrange approach,
the discrete phase is directly displaced with particles and particle collision is calcu-
lated through probabilistic model. Contact forces are calculated from the deforma-
tion contact history for the soft-sphere model, which results in large computation
capacity. The interactions between particles are assumed to be pair-wise additive
and instantaneous for the hard-sphere model, which then limits the application of
volume fraction. In our new method, SPH is imported to represent a set of discrete
particles with a diameter distribution property; this SPH differs from that of the
traditional, which has been improved to SDPH for solving the discrete phase. In
this model, particulate phase pressure and viscous stress depends on the fluctuating
velocity of the particles, which is measured with a pseudo-temperature. By con-
trast to the Euler–Euler TFM, the particle distribution state can be obtained. The
macro fluid dynamics properties cannot only be maintained in the particle phase,
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but the differences between the particles can also reappear through Lagrange par-
ticle method. Otherwise, computational cost can be drastically reduced because
discrete particles can be represented by a small quantity of SPH particles. Thus,
this method can effectively simulate the gas–particle multi-phase flows in practical
applications.

Figure 1: Schematic description of coupling framework.

Parameters such as mass, velocity, position, and pressure of the fluid on SPH par-
ticles, as well as granular profiles, including particle average diameter, diameter
variance, pseudo temperature, volume fraction, and particle number represented
by one SPH particle, are provided to the particles in SDPH. In traditional SPH
method, the continuum fluid is discretized with a set of SPH particles and each par-
ticle occupies a geometry position. Correspondingly, numerous discrete particles
are discretized with a set of SPH particles in SDPH and each particle character-
izes a number of discrete particles with a specific diameter distribution. Here SPH
applications can be expanded by increasing the physical quantities of SPH repre-
sentation. Comparison of characteristics of SDPH and transitional SPH is shown
in Fig.2. In this paper, particle average diameter, diameter variance, and particle
numbers are used to represent the particle diameter distribution.

Granular pseudo-temperature, which is equivalent to the thermodynamic tempera-
ture for gases, can be introduced to determine the energy of the fluctuating velocity
of the particles. Pseudo-temperature differs from the actual temperature of the dis-
crete particles. The granular temperature (Lun, 1984) is defined as:

Ts =
1
3

v′2 (1)

where v′ is the particle fluctuating velocity. Thus, granular temperature is also
considered as a parameter on SPH particles. The granular temperature conservation
equation is showed in the next section.
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Figure 2: Comparing of characteristics of SPH particles in SDPH with traditional
SPH.

The relationship between the profiles of SPH particles and that of the discrete par-
ticles is also presented. The effective density of the particle phase ρs,e f f for the
granular pseudo-fluid is:

ρs,e f f = αsρs = ρSPH (2)

where αs is the volume fraction, ρs is the density of the particle phase, and ρSPH is
the density of SPH particles.

Otherwise the mass of one SPH particle is equal to the total mass of the particle
group; the density is the effective density of the discrete particles; and velocity,
pseudo-temperature, and pressure are the average values of the discrete particles.
Particle size distribution characters, including average diameter, variance and quan-
tity of single particles are represented by one SPH particle.

3 Dynamic model

Mass, momentum, energy, and granular temperature transport equations for each
phase are listed in Tab.1. Heat transfer and drag force between the phases are also
presented.

Table 1: Model equations used for each phase in the SPH-FVM coupled method.
Mass equations
Gas phase: ∂

∂ t (αgρg)+∇ · (αgρgvg)=Sg (T1-1)
Discrete phase: ∂

∂ t (εsρs)+∇ · (εsρsvs)=Ss (T1-2)
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Momentum equations
Gas phase: ∂

∂ t (αgρgvg)+∇ · (αgρgvgvg)=−αg∇P+∇ · τττg+Fgs+αgρgg (T1-3)
Discrete phase: ∂

∂ t (αsρsvs)+∇ · (αsρsvsvs) (T1-4)
=−αs∇P−∇Ps +∇ · τττs+εsρsg+Fsg+Fliq,s+Fvm,s

Where τττg=− 2
3 (ρgαgkg+ρgαgµt,g∇ ·vg)I+ρgαgµt,g(∇vg+∇vT

g) (T1-5)
τττs = αsµs(∇vs +∇vT

s )+αs(λs− 2
3 µs)∇ ·vsI (T1-6)

Turbulent viscosity

µt,g = ρgCµ

k2
g

εg
(T1-7)

k− ε model ∂

∂ t (αgρgkg)+∇ · (αgρgvgkg) (T1-8)
= ∇ · (αg

µt,g
σk

kg)+αgGk,g−αgρgεg +αgρgΠk,g
∂

∂ t (αgρgεg)+∇ · (αgρgvgεg) (T1-9)
= ∇ · (αg

µt,g
σk

∇εg)+αg
εg
kg
(C1Gk,g−C2ρgεg)+αgρgΠε,g

Drag force [Gidaspow (1992)]
Fgs =−Fsg = βgs (vg−vs) (T1-10)

βgs=

{
βErgun=150 α2

s µg
αgd2

s
+1.75 αsρg

ds
|vg−vs| , αg < 0.8

βWen−Yu=
3
4CD

αsαgρg
ds
|vg−vs|α−2.65

g , αg ≥ 0.8
(T1-11)

CD=

{
24

αgRes
[1+0.15(αgRes)

0.687] Res < 1000
0.44 Res ≥ 1000

, (T1-12)

Res =
ρgds|vg−vs|

µg

The switch function
ϕgs =

arctan[150×1.75(0.2−αs)]
π

+0.5 (T1-13)
βgs = (1−ϕgs)βErgun +ϕgsβWen−Yu (T1-14)

Energy equations
Gas phase: ∂

∂ t (αgρghg)+∇ · (αgρghgvg) (T1-15)
=−∇ ·αg ·qg+ε(Ts−Tg)+τg ·∇ ·vg+αg[

∂

∂ t p+vg∇p]
Discrete phase: ∂

∂ t (αsρshs)+∇ · (αsρshsvs) (T1-16)
=−∇ ·αs ·qs+ε(Tg−Ts)+τs ·∇ ·vs+αs[

∂

∂ t p+vs∇p]
Where hi =

∫ T
Tre f

cs,idTi, q =−κi∇Ti (T1-17)
Volumetric heat transfer coefficient

ε =
6(1−αg)αg

ds
εgs (T1-18)

Nusselt number [Gunn (1978)]

Nu=
εgsds

kg
=(7−10αg+5α2

g )
[
1+0.7(αgRes)

0.2(Pr)1/3
]

(T1-19)

+(1.33−2.40αg+1.20α2
g )(αgRes)

0.7(Pr)1/3

Prandtl number Pr = cs,gµg
kg

(T1-20)
Granular temperature conservation equation [Lun (1984)]

3
2 [

∂

∂ t (ρsasTs)+∇ · (ρsasvsTs)] (T1-21)
= (−psI+ τs) : ∇vs +∇ · (kTs ∇Ts)− γTs +φgs
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Diffusion coefficient kTs =
25ρsds

√
(Tsπ)

64(1+ess)g0,ss
[1+ 6

5 asg0,ss(1+ ess)]
2

[Gidaspow (1992)] +2ρsα
2
s ds(1+ ess)g0,ss

√
(Ts

π
) (T1-22)

Collisional dissipation of energy [Lun (1984)]

γTs =
12(1−e2

ss)g0,ss
ds
√

π
ρsasT

3/2
s (T1-23)

The transfer of the kinetic energy
φgs =−3βgsTs (T1-24)

The pseudo fluid pressure [Lun (1984)]
ps = asρsTs +2ρs(1+ ess)a2

s g0,ssTs, g0,ss =
s+ds

s (T1-25)
Solids shear viscosity µs = µs,col +µs,kin +µs, f r (T1-26)
Collisional viscosity [Lun (1984)]

µs,col =
4
5 asρsdsg0,ss(1+ ess)(

Ts
π
)1/2 (T1-27)

Kinetic Viscosity [Gidaspow (1992)]
µs,kin =

10ρsds
√

Tsπ

96as(1+ess)g0,ss
[1+ 4

5 g0,ssas(1+ ess)]
2 (T1-28)

Frictional Viscosity [Schaeffer (1987)]
µs, f r =

ps sinφ

2
√

I2D
(T1-29)

Bulk Viscosity [Lun (1984)]
λs =

4
3 asρsdsg0,ss(1+ ess)(

Ts
π
)1/2 (T1-30)

Droplet vaporization law is applied to predict vaporization from a discrete-phase
particle. After reaching the vaporization temperature Tvap the particle temperature
continues to increase until the boiling point Tbp is reached or until the volatile frac-
tion is completely consumed:

Tvap ≤ Ts ≤ Tbp and ms > (1− fv,0)ms,0 (3)

The mass of the droplet is reduced:

dms

dt
=−NiAsMw,i (4)

where Mw,i is the molecular weight of the species i, ms is the mass of the particle,
and As is the surface area of the particle. The rate of vaporization Ni is governed by
gradient diffusion, and the flux of droplet vapor into the gas phase is related to the
gradient of the vapor concentration between the droplet surface and the bulk gas:

Ni = ki (Ci,s−Ci,g) (5)

where Ci,s is the vapor concentration on the particle surface, Ci,g is the vapor con-
centration in the bulk gas. Thus,

Ci,s =
psat (Ts)

RTs
, Ci,g = Xi

pop

RTg

(6)
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where Xi is the local bulk mole fraction of the species i, pop is the local absolute
pressure, and Tg is the local bulk temperature in the gas. The mass transfer coeffi-
cient ki in Eq.5 is calculated from the Sherwood number correlation [Ranz (1952)]:

ShAB =
kids

Di,m
= 2.0+0.6Re1/2

d Sc1/3 (7)

where Di,m is diffusion coefficient of the vapor in the bulk, Sc is the Schmidt num-
ber: Sc = µ

/
ρDi,m, and ds is the particle diameter.

Particle vaporization can alter momentum and energy, and the changes are added
to their equations as source terms. Momentum transfer is

dvi

dt
=

dms,i

dt
vi (8)

Latent heat transfer is

dhi

dt
=

dms,i

dt
h f g (9)

where h f g is the latent heat.

Species mass is added to the species transport equations as a mass source.

∂

∂ t
(ρYi)+∇ · (ρvYi) =−∇Ji +Ri +Si (10)

where Yi is the local mass fraction of the species i, Ri is the net production rate of
the species i provided by the chemical reaction, Si is the creation rate added from
the dispersed phase Eq.4, and Ji is the diffusion flux of species.

4 Numerical method

4.1 FVM for gas phase

Gas phase is solved with FVM [Parankar (1980)]. The discretized schemes of con-
vective fluxes, diffusive fluxes, and unsteady terms are of second-order accuracy.
The Semi-implicit method for pressure-linked equations (SIMPLE) algorithm is
used to deal with the pressure-velocity coupling. When the residual errors of ve-
locity and pressure are lower than 10−5, the computation is considered to be con-
verged.

4.2 SDPH for particle phase

SPH formation is divided into two key steps [Liu (2004)]. The first step is the in-
tegral representation or the so-called kernel approximation of field functions. The
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second step is the particle approximation. In the first step, the integral representa-
tion of a function f (x) in the volume Ωis

〈 f (x)〉=
∫

Ω

f
(
x′
)
W (x−x′,h)dx′ (11)

and in the second step, the function f (x) and its derivative are given by

〈 f (xi)〉=
N

∑
j=1

m j

ρ j
f (x j)Wi j (12)

〈∇ · f (xi)〉= ∑
j

m j

ρ j
f (x j) ·∇iWi j (13)

where m j,ρ j,x j are the mass, density, and position vector of the particle j, re-
spectively. Moreover, N is the number of particles within the support domain of
the particle i. The angle bracket 〈〉 represents the kernel approximation operator.
The smoothing function is Wi j = W (xi−x j,h) where h is the smoothing length
that defines the effect or support area of the smoothing function W and the gradi-
ent ∇iWi jin the equation is evaluated at the particle i. The smoothing length W is
defined as a third order B-spline in this paper [Monaghan (2005)]. The SPH for-
mulation for pseudo-fluid conservation equations: (T1-2), (T1-4) , (T1-16), and
(T1-21) are

dρi

dt
=

N

∑
j=1

m jvi j ·∇iWi j +Si (14)

dvi

dt
=−

N

∑
j=1

m j

(
σi

ρ2
i
+

σ j

ρ2
j
+Πi j

)
∇iWi j−

∇P
ρs

+g+ fi,gs +
fi,bp

ρi
(15)

dhs,i

dt
=−∑

b

4m j

ρiρ j

αs,ikiαs, jk j

αs,iki +αs, jk j
(Ti−Tj)

ri j ·∇iWi j(
r2

i j +η2
) +

ε(Tg−Ts)

αsρs
(16)

dTsi

dt
=

2
3
(
1
2

N

∑
j=1

m jv ji

(
σi

ρ2
i
+

σ j

ρ2
j
−Πi j

)
∇iWi j

+
N

∑
j=1

m j

(
kTs(∇Ts)i

ρ2
i

+
kTs(∇Ts) j

ρ2
j

)
∇iWi j− γTsi−ϕgs)

(17)

where sum is calculated for all the SPH particles in the support domain. Stress is
σ =−pp

¯̄I+ ¯̄τp, fi,gs is the drag force that acts on SPH particles per unit mass (intro-
duced in section 4.4), fi,bp is the boundary force, and Πi j is the artificial viscosity
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that prevents unphysical oscillations [Liu (2004)]. Moreover, ρi is the density of
the SPH particle i (i.e. the effective density of discrete particles) and ρs is the
actual density of discrete particles. Velocity vector is vi j = vi− v j, whereas the
pseudo-temperature gradient (∇Ts)i is written as

(∇Ts)i = mi

N

∑
j=1

Ts j−Tsi

ρi j
∇iWi j (18)

4.3 SPH–FVM coupling approach

The particle quantities of heat, mass, and momentum is gained or lost under the
effect of drag force, pressure and heat transfer from the gas. These quantities are
also reacted on the continuum phase. When particle temperature reaches the va-
porization temperature, the mass exchange between gas and particle occurs. The
continuous phase affects the discrete phase, whereas the discrete phase also reacts
in the continuous phase. This two-way coupling is accomplished by alternately
solving the discrete and continuous phase equations until their solutions remain
constant.

The solution procedure for the SPH–FVM coupling algorithm containing the heat
transfer and evaporation model is shown in Fig.3. First, the gas velocity, pressure
gradient, and temperature on meshes are interpolated to the SPH particle positions
to obtain the virtual values of the gas. Subsequently, these values are used to deter-
mine the effect of drag force, pressure, and heat convection on SPH particles by the
gas. These parameters are added to the momentum and energy equations as source
terms to update the velocity and temperature of SPH particles. Second, the updated
velocity and temperature of SPH particles are interpolated to the meshes using the
same method. These values are used to calculate the drag force and heat convection
from the particles to gas and then to update the velocity and temperature of the flow
field. During this iteration, the velocity and temperature of flow field is updated at
any moment, whereas the particle velocity and temperature obtained through inter-
polation remain constant until convergence. At Tem > Temsat , the particles start
to evaporate. The volatilized quantity of each particle is calculated with the SPH
program and then used to update the SPH mass, momentum and energy equations.
The diameter distribution of the particles represented by SPH and the volume frac-
tion of each phase are also improved. The volatilized species content is obtained
through each particle evaporation and particles property in each mesh. The result is
used to calculate the species transport equations and obtain the spatial distribution
of each gas species.

The drag force that functions on a particle in gas–particle systems can be repre-
sented by the product of the momentum transfer coefficient βgs and the slip velocity
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Figure 3: Solution procedure for SPH-FVM coupling algorithm.

vg−vs between the two phases (Eq.T1-10). The drag force on one discrete particle
per unit mass is

fgs =
βgs (vg−vs)

asρs
(19)

One SPH particle represents a series of discrete particles with different diameters.
Thus, the drag force on one SPH particle per unit mass should be expressed by

fgs,SPH =
Fgs,SPH

mSPH
=

N
∑
k

Fgs,k

N
∑
k

mk

, and mk = ρs

(
πd2

s

4

)
for 2D. (20)

where Fgs,k is the drag force on the discrete particlek, and N is the number of
granule within one SPH particle.
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Another important parameter is the volume fraction of gas αp, which is computed
by SPH. As introduced in Sec.2, the density of SPH particle is similar to the effec-
tive density of discrete particles. Thus, the volume fraction of the discrete particle
i is

αsi =
ρSPH

ρs
(21)

and the gas volume fraction at the same position is

αgi = 1− ρSPH

ρs
(22)

The obtained volume fraction is used to calculate the gas volume fraction at the
center of the grid through interpolation.

The data between SPH particles and FVM meshes are exchanged with the method
of kernel function interpolation. The kernel function is

f (rs) = ∑
g

mg

ρg
f (rg)Wsg(rs− rg,h) (23)

This function is similar to the SPH interpolation function (Eq.12). To improve the
particle inconsistency that resulted from truncation of the smoothing function by
the boundary, we used a normalization formulation derived by Randles and Liber-
sky (1996)

f (rs) =

∑
g

mg
ρg

f (rg)Wsg(rs− rg,h)

∑
g

mg
ρg

Wsg(rs− rg,h)
(24)

Fig.4 represents the interpolation strategy of the velocity between meshes and par-
ticles. Temperature, pressure gradient and volume fraction are interpolated using
similar method.

4.4 Boundary conditions

(1) SPH boundary conditions

For SPH method, the enforcement of contact condition is difficult due to the lack
of a finite element like Kronecker delta condition. Thus, we use a penalty function
[Li (2002)] to obtain the interaction force through the nodal integration from the
variation of penalty potentials. The kinematics contact condition is enforced by a
penalty potential ∏ defined as

∏ =
ε

2

∫
Γ

(~vvv f ·~nnn−~vvvr ·~nnn)2dΓ (25)
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Temperature, pressure gradient and volume fraction are interpolated using similar method. 

,g iv i
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Grid Center

Support domain

  

,s kv
SPH Particle

Grid Center
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(a) 
,g iv  interpolated from the meshes       (b) 

,s kv  interpolated from the particles 

Figure 4: Interpolation strategy between meshes and particles 

4.4  Boundary conditions 

(1) SPH boundary conditions 

Rigid

Interface

n

 

bpf

SPH Particles

 

Figure 5: SPH particles and rigid interaction 

For SPH method, the enforcement of contact condition is difficult due to the lack of a finite element 

like Kronecker delta condition. Thus, we use a penalty function (Li, 2002) to obtain the interaction 

force through the nodal integration from the variation of penalty potentials. The kinematics contact 

condition is enforced by a penalty potential defined as 

2

f r( )
2

v n v n d



                     (25) 

where   the is penalty parameter and   is the interface. The variation of the Eq.(22) is written 

as 

 
f f r

ˆ ( )v n v n v n d


                         (26) 

Figure 4: Interpolation strategy between meshes and particles.

Figure 5: SPH particles and rigid interaction.
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where ε the is penalty parameter and Γ is the interface. The variation of the Eq.
(22) is written as

δ ∏ = ε

∫
Γ

δ v̂vv f ·~nnn(~vvv f ·~nnn−~vvvr ·~nnn)dΓ (26)

where the test function δ v̂vv f is given by δ v̂vv f = ∑
i

δ~vvv fW and the community part

∑
i

δ~vvv f can be deleted on the Galerkin formulation of SPH. Derivation process can

be obtained in the literature [Gallati (2002)]. Using nodal integration, the face f bp
i

at the interface particle i of fluid is

f bp
i =−ε ∑

j∈B

(
(~vvvi−~vvvB

j ) ·~nnn jWi jA j~nnn j

)
(27)

where ε is the penalty parameter, B is the set of particles from the rigid surface and
the superscript B denotes the interface between fluid and structure. The boundary
weight A j is associated with the boundary particle j.

The penalty parameter is important in this method because of it directly affects
the condition number of the resulting system. System condition worsens when the
values for the parameter increases. Therefore, penalty parameter is designed to
change with the relative distances to maintain algorithm stability and to select the
parameters easily. We replace ε by ε(2h)

/
|r| and 2h is the searching field of the

nearest neighbor particles. The force formulation is written as

~fff
bp
i =

 −ε2hi ∑
j∈B

(
1
|~rrri j|(~vvvi−~vvvB

j ) ·~nnn jWi jA j~nnn j

)
~vvvi ·~nnn j < 0

0 ~vvvi ·~nnn j ≥ 0
(28)

In this formulation, interaction occurs when the particles of fluid and rigid are close
to each other but vanishes when the particles are far from each other. This formation
maintains the dynamics contact condition. Moreover, the interaction between SPH
particles and rigid is shown in Fig.5.

In addition, the initial solid velocity in the bed is zero.

(2) FVM boundary conditions

Along the wall, no-slip condition is assumed for the gas phase ugx = ugy = ugz = 0.

At the entrance, the gas is injected along the axial direction. At the outlet, an
outflow boundary condition is provided, in which the velocity gradient is zero, i.e.,
∂ux
/

∂x = 0.
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5 Problem description

Fig.6 shows the initial and boundary conditions used for the numerical simula-
tion of bubble formation in gas-fluidized beds with one central orifice (Nieuwland,
1996). The wall of the bed is modeled as a non-slip rigid wall for both phases. At
the center of the bed the gas is insufflated to the beds through the orifice. At the
top of the bed, outflow boundary is assumed for fluid and particle phases. A free-
board with a height similar to that of the initial bed is provided for bed expansion.
In accordance with the experimental condition, minimum fluidization is prescribed
as the initial condition for numerical calculations. At zero time, the velocity of
the gas injected through the central orifice increases instantaneously from the min-
imum fluidization velocity vm f to the required orifice velocity vin j. Three orifice
velocities (i.e., 10, 15, and 20m/s) are considered in this study. SPH particles are
distributed in the bed, whereas FVM grids are placed in the whole field with quadri-
lateral elements as shown in Fig.6(b). The parameters in this simulation are listed
in Tab.2.

central orifice increases instantaneously from the minimum fluidization velocity 
mfv  to the 

required orifice velocity 
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Figure 6: Geometry of the bed and numerical grids and particles 

 

Table 2: Parameters for bubble simulation 

Parameters Description Value 

3( / )g kg m  Gas density 1.225 

( )g Pa s   Gas viscosity 1.7895E–05 

3( / )p kg m  Solid density 3060 

( )pd mm  Particle diameter 0.285 

p  Packing volume fraction 0.55 

( )injr mm  Orifice width 15 

( / )injv m s  Injection velocity 5.0, 10.0, 15.0 

( / )mfv m s  Minimum fluidization velocity 0.08 

n  Particles number represented  

by one SPH particle 

220 

( )avd mm  Particles average diameter  

represented by one SPH particle 

0.285 

( )sphx mm  SPH particle distance 5.7 

( )h mm  SPH smoothing length 8.55 

3( / )SPH kg m  SPH particle density 1683 

( )x y mm   FVM grid spacing 11.4×11.4 

( )FVMT s  FVM time step 5×10
–5

 

Figure 6: Geometry of the bed and numerical grids and particles.

6 Results and discussion

We use B-spline kernel [Monaghan (2005)] as the weighted function, list neigh-
bor searching method [Liu (2004)], and leap-frog method to update the physical
variables of SPH particles in all cases. Artificial viscosity parameters are α = 0.1
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Table 2: Parameters for bubble simulation.
Parameters Description Value
ρg(kg/m3) Gas density 1.225
µg(Pa · s) Gas viscosity 1.7895E–05
ρp(kg/m3) Solid density 3060
dp(mm) Particle diameter 0.285
αp Packing volume fraction 0.55
rin j(mm) Orifice width 15
vin j(m/s) Injection velocity 5.0, 10.0, 15.0
vm f (m/s) Minimum fluidization velocity 0.08
n Particles number represented

by one SPH particle
220

dav(mm) Particles average diameter
represented by one SPH particle

0.285

∆xsph(mm) SPH particle distance 5.7
h(mm) SPH smoothing length 8.55
ρSPH(kg/m3) SPH particle density 1683
∆x×∆y(mm) FVM grid spacing 11.4×11.4
∆TFV M(s) FVM time step 5×10−5

and β = 0.2. Smoothing length is 1.5 times higher than particle diameter. Penalty
parameter is ε = 103.

6.1 Bubble formation

The comparisons of bubble shape during its formation using the new method with
TFM and experimental results are shown in Fig.7. As the time increases, the bubble
is formed gradually from the orifice. At 0.2s the bubble grows to its maximum size.
Subsequently, the bubble is detached from the bottom of the bed and the bubble
wake follows. The pictures shows that the shape of the bubble is qualitatively
consistent with the results of TFM and previous experiments [Nieuwland (1996)].

To determine the bubble diameters from the numerically calculated porosity dis-
tributions, we define the bubble contour as a void fraction of 0.85 in the present
study. This particular selection defines the bubble boundary as a contour with very
strong porous gradients, particularly near the bubble base. The contour is defined
as the diameter of a circle with similar area to the numerical simulating area S with
αg > 0.85 for two-dimensional geometry. The expression for the equivalent bubble
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diameters in two-dimensional case is:

De =

√
S

0.25π
(29)

These curves characterize these relationships, as shown in Fig.8. The theoretically
calculated bubble size from the SPH-FVM coupled method is consistent with the
experimental data, and its accuracy is higher than other traditional computational
models. A total of 220 solid particles are characterized by one SPH particle; thus,
the computational cost is significantly reduced.

6.2 Effect of jet velocity and particle properties

To investigate the effect of jet velocity, we select three different injection rates
(vin j = 10,15,20m/s) for comparisons. Fig.9 shows the comparison of the equiva-
lent bubble diameter with these three different injection rates. It can be seen a high
injection rate results in large bubble diameter.

Fig.10 demonstrates the variations in the equivalent bubble diameter for different
particle properties, including diameter and density. The main parameters for case
simulations are listed in Tab.3. Case A and B have similar curves, in which a
similar minimum fluidization velocity is used. Thus, the effect of the minimum flu-
idization velocity on this process is related to the effect of particle size and particle
density on bubble formation. This result is consistent with the conclusion reported
by Nieuwland et al. (1996). Moreover, the result demonstrates that a low minimum
fluidization velocity results in large bubble size using a constant jet velocity.

Table 3: Particle properties.

Cases Particle diameter (mm) Particle density
(kg/m3)

Minimum fluidization
velocity (m/s)

A 285 3060 0.080
B 460 1435 0.096
C 140 2920 0.019

6.3 Gas and particle flow field

The velocity vector and the stream-tracers for the gas phase at different time steps
during bubble formation are shown in Fig.11. Bubble necking stars when the bub-
ble grows and the neck width decreases with the increasing time step. During neck
formation, the surrounding fluid rushes to the detachment point and creates a strong
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Figure 7: Experimentally observed (Nieuwland, 1996) and numerical calculated bubble growth at a 

single orifice in a two-dimensional gas-fluidized bed with SDPH and TFM method. 

SDPH

TFM
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Figure 7: Experimentally observed (Nieuwland, 1996) and numerical calculated
bubble growth at a single orifice in a two-dimensional gas-fluidized bed with SDPH
and TFM method.
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and other phenomenological models.

Figure 9: Equivalent bubble diameter for beds with different jet velocities.
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Figure 10: Equivalent bubble diameter for beds with different particle properties.

localized velocity of the gas phase at the trailing edge of the bubble. The gas phase
begins to slide down along the bubble periphery toward the bottom of the bubble.
Thus, the onset of wake begins earlier than the detachment of the bubble. Fig.12
shows the vector plots of the particles around the forming bubble. As bubble forms,
the particles move gradually to the bottom of the bubble. Simultaneously, a dilute
particle layer with finite thickness covers the surface of the bed. In this layer, the
particle interspaces are evidently large; hence, the outer particles of this layer are
exposed to less interference and move faster than the inner particles.
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Figure 11: Stream-tracer and vector plots of the gas phase around the forming bubble for gas 

injection rate of 10m/s 
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Figure 12: Vector plots of the particles around the forming bubble for gas injection rate of 10m/s 

6.4  Comparison of temperature distribution in both phases 

Fig.13 and 14 show the temperature distribution of gas and particle phases at different times during 

the bubble formation. As the high-temperature gas is injected into the bed, the gas temperature 

gradually increases, whereas the particle temperature evidently increase after absorbing heat from 

the gas phase for the convective heat transfer between the phases. The gas temperature in the center 

area of the bubble can reach 345K, whereas the particle temperature in the edge of the bubble can 

reach 289.5K. The effect of heat transfer between particles constantly exists except for the interface 

heat transfer. Thus, an elevated temperature area exists for the particle phase at the edge of the 

bubble. The obtained result is consistent with that of the TFM. Moreover, the result of the 

temperature distribution of gas and particle phases is consistent using SDPH but differs from each 

other using TFM. Analysis shows that this difference is possibly related to the convergence of the 

approach which is analyzed and validated in the next step. 
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Figure 11: Stream-tracer and vector plots of the gas phase around the forming
bubble for gas injection rate of 10m/s.
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Figure 12: Vector plots of the particles around the forming bubble for gas injection rate of 10m/s 
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Figure 12: Vector plots of the particles around the forming bubble for gas injection
rate of 10m/s.

6.4 Comparison of temperature distribution in both phases

Fig.13 and 14 show the temperature distribution of gas and particle phases at differ-
ent times during the bubble formation. As the high-temperature gas is injected into
the bed, the gas temperature gradually increases, whereas the particle temperature
evidently increase after absorbing heat from the gas phase for the convective heat
transfer between the phases. The gas temperature in the center area of the bubble
can reach 345K, whereas the particle temperature in the edge of the bubble can
reach 289.5K. The effect of heat transfer between particles constantly exists except
for the interface heat transfer. Thus, an elevated temperature area exists for the
particle phase at the edge of the bubble. The obtained result is consistent with that
of the TFM. Moreover, the result of the temperature distribution of gas and particle
phases is consistent using SDPH but differs from each other using TFM. Analysis
shows that this difference is possibly related to the convergence of the approach
which is analyzed and validated in the next step.

6.5 Particle trajectory and temperature rising curve

To analyze the properties of each single particle and trace the movement, distortion,
and heat transfer of some special particles, we select two single particles at differ-
ent positions of the bed. Particle A is obtained at the top of the bubble, whereas
particle B at the left of the bubble. These particles are shown in Fig.6(b), whereas
Fig.15(a) shows the trajectory of particle A. The particles located on both sides of
the bubble gradually deviate from the center to the sport as the bubble is formed.
After reaching the top of the bubble transverse, the particles start to move reversely
close to its initial position. The particles continue to move from the bottom of the
bed upward with the growing bubble. Finally a circular trajectory is formed. How-
ever, the particles at the top of the bubble maintain an upward trend with the bubble
growing until it bursts, as shown in Fig.16(a). Fig.15(b) and Fig.16(b) demonstrate
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Figure 13: Comparison of temperature distribution of the gas phase during the bubble formation 
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Figure 14: Comparison of temperature distribution of the particle phase during the bubble formation 
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Figure 13: Comparison of temperature distribution of the gas phase during the bubble formation 
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Figure 14: Comparison of temperature distribution of the particle phase during the bubble formation 
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the temperature rising curve of particles A and B. The temperature of the particles
located on both sides of the bubble increasing gradually caused by the effect of heat
transfer from the gas phase as the bubble increases. After 0.2s the bubble deviates
from the bed bottom, and its gas inside is in a closed state. The temperature of the
particles and gas in the bubble gradually reach an equilibrium state, whereas the
particle temperature remains constant. However, the temperature of the particles at
the top of bubble keep still increase because of heated gas injected in the orifice.

6.5  Particle trajectory and temperature rising curve 

To analyze the properties of each single particle and trace the movement, distortion, and heat 

transfer of some special particles, we select two single particles at different positions of the bed. 

Particle A is obtained at the top of the bubble, whereas particle B at the left of the bubble. These 

particles are shown in Fig.6(b), whereas Fig.15(a) shows the trajectory of particle A. The particles 

located on both sides of the bubble gradually deviate from the center to the sport as the bubble is 

formed. After reaching the top of the bubble transverse, the particles start to move reversely close to 

its initial position. The particles continue to move from the bottom of the bed upward with the 

growing bubble. Finally a circular trajectory is formed. However, the particles at the top of the 

bubble maintain an upward trend with the bubble growing until it bursts, as shown in Fig.16(a). 

Fig.15(b) and Fig.16(b) demonstrate the temperature rising curve of particles A and B. The 

temperature of the particles located on both sides of the bubble increasing gradually caused by the 

effect of heat transfer from the gas phase as the bubble increases. After 0.2s the bubble deviates 

from the bed bottom, and its gas inside is in a closed state. The temperature of the particles and gas 

in the bubble gradually reach an equilibrium state, whereas the particle temperature remains 

constant. However, the temperature of the particles at the top of bubble keep still increase because 

of heated gas injected in the orifice.   
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Figure 15: The trajectory and temperature rising curve of particle A Figure 15: The trajectory and temperature rising curve of particle A.
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Figure 16: The trajectory and temperature rising curve of particle B 

7  Conclusion 

An efficient SPH–FVM coupled model, including heat transfer and evaporation for bubble 

formation in gas-fluidized bed has been presented. SPH is used for discrete phase to trace the 

movement of each individual particle, whereas FVM for continue phase to compute the turbulent 

fluids. To represent a set of discrete particles with diameter distribution property, we improved the 

traditional SPH to be SDPH for solving the discrete phase. The coupling framework between the 

two methods is built using KTGF. Subsequently, the bubbling fluidized bed is simulated in the 

industrial fluidized bed. The results includes the shape and diameter size of the bubble as a function 

of time; such results are consistent with experimental data, previous numerical results and other 

approximate models reported in the literature. Moreover, a high injection rate results in large bubble 

diameter and for a constant jet velocity, low minimum fluidization velocity causes a larger bubble 

size. In addition, the trajectory and temperature rising processes are captured with this new method. 

Thus, the proposed method can predict the macro-characteristic parameters of particles and has 

advantages in tracing single particle properties. 
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7 Conclusion

An efficient SPH–FVM coupled model, including heat transfer and evaporation for
bubble formation in gas-fluidized bed has been presented. SPH is used for discrete
phase to trace the movement of each individual particle, whereas FVM for con-
tinue phase to compute the turbulent fluids. To represent a set of discrete particles
with diameter distribution property, we improved the traditional SPH to be SDPH
for solving the discrete phase. The coupling framework between the two methods
is built using KTGF. Subsequently, the bubbling fluidized bed is simulated in the
industrial fluidized bed. The results includes the shape and diameter size of the
bubble as a function of time; such results are consistent with experimental data,
previous numerical results and other approximate models reported in the literature.
Moreover, a high injection rate results in large bubble diameter and for a constant
jet velocity, low minimum fluidization velocity causes a larger bubble size. In ad-
dition, the trajectory and temperature rising processes are captured with this new
method. Thus, the proposed method can predict the macro-characteristic parame-
ters of particles and has advantages in tracing single particle properties.
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