
Copyright © 2014 Tech Science Press CMES, vol.99, no.6, pp.463-471, 2014

Ambarzumyan Type Theorem For a Matrix Valued
Quadratic Sturm-Liouville Problem
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Abstract: In this study, Ambarzumyan’s theorem for quadratic Sturm-Liouville
problem is extended to second order differential systems of dimension d ≥ 2. It is
shown that if the spectrum is the same as the spectrum belonging to the zero po-
tential, then the matrix valued functions both P(x) and Q(x) are zero by imposing a
condition on P(x). In scaler case, this problem was solved in [Koyunbakan, Lesnic
and Panakhov (2013)].
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1 Introduction

It is well known that Ambarzumyan’s theorem [Ambarzumyan (1929)] is about the
boundary value problem

−y′′+q(x)y = λy, y′(0) = y′(π) = 0 (1)

with the real potential function q ∈ L2 [0, π]. It was proved that if λn = n2, n≥ 0 is
the spectral set of (1), then q(x) = 0 on (0, π) . As an historical viewpoint, this is
known as the first result in inverse spectral theory associated with Sturm-Liouville
operators. Ambarzumyan’s theorem was extended to the second order differen-
tial systems of two dimensions in [Chakravarty and Acharyya (1988)], to Sturm-
Liouville differential systems of any dimension in [Chern and Shen (1997)], to the
Sturm-Liouville equation (which is concerned only with Neumann boundary condi-
tions) with general boundary conditions by imposing an additional condition on the
potential function in [Chern, Law and Wang (2001)], and to the multi-dimensional
Dirac operator in [C. F. Yang and X. P. Yang (2009)]. In addition, some different
results of Ambarzumyan’s theorem have been obtained by many authors [Carlson
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and Pvovarchik (2007); Horvath (2001); C. F. Yang and X. P. Yang (2011); Shen
(2007); C. F. Yang, Huang and X. P. Yang (2010)].

Ambarzumyan’s theorem was extended to the following boundary value problem
by imposing to a condition on p

−y′′+[2λ p(x)+q(x)] y = λ
2y, x ∈ [0, π] (2)

with the homogeneous Neumann boundary conditions

y′(0) = y′(π) = 0, (3)

where λ is a spectral parameter, p ∈W 2
2 [0, π] and q ∈W 1

2 [0, π] by [Koyunbakan,
Lesnic and Panakhov (2013)]. This problem is known as diffusion problem or
quadratic Sturm-Liouville problem. If p(x) = 0, the classical Sturm-Liouville op-
erator is obtained. Some versions of the eigenvalue problem (2), (3) were studied
extensively in [Hryniv and Pronska (2012); Gasymov and Guseinov (1981); Gu-
seinov (1985); Nabiev (2007); Koyunbakan and Yilmaz (2008); Panakhov and Sat
(2012); Koyunbakan (2011)].

Before giving the main results, we want to mention some physical properties of
quadratic equation. The problem of describing the interactions between colliding
particles is of fundamental interest in physics. It is interesting in collisions of t-
wo spinles particles, and it is supposed that the s−wave scattering matrix and the
s−wave binding energies are exactly known from collision experiments. For a ra-
dial static potential V (E, x) and s−wave, the Schrödinger equation is written as

y′′+[E−V (E, x)] y = 0,

where

V (E, x) = 2
√

E p(x)+q(x),

and we note that with the additional condition q(x) = −p2(x), the above equation
reduces to the Klein-Gordon s -wave equation for a particle of zero mass and energy√

E [Jaulent and Jean (1972)].

This paper is organized as follows; Section 2 is devoted to the some known re-
sults of matrix quadratic pencil. Section 3 is about some uniqueness theorems and
proofs.

2 Matrix Differential Equations

For simplicity, Ai j denotes entry of a matrix A at the i− th row and j− th column
and Id is a d×d identity matrix and 0d is a d×d zero matrix.
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We are interested in the eigenvalue problem

−φ
′′+[2λP(x)+Q(x)] φ = λ

2
φ (4)

Aφ(0)+Bφ
′(0) =Cφ(π)+Dφ

′(π) = 0, (5)

where P(x)= diag[p1(x), p2(x), ..., pd(x)] and Q(x) are d×d real symmetric matrix-
valued functions, and those d×d matrices A, B,C and D satisfy the following con-
ditions

DC∗ : Self-Adjoint (6)

BA∗ = 0 (7)

rank[A, B] = rank[C, D] = d. (8)

In this study, we consider the special case of the problem (4), (5) as A = C = 0d
and B = D = Id . Namely, we introduce the following matrix differential equation

−Y ′′+[2λP(x)+Q(x)] Y = λ
2Y, (9)

Y (0, λ ) = Id , Y ′(0, λ ) = 0d , (10)

Y ′(π, λ ) = 0d (11)

where λ is a spectral parameter, Y (x) = [yk(x)], k = 1, d is a column vector, P ∈
W 2

2 [0, π] and Q ∈W 1
2 [0, π] are two d×d real symmetric matrix-valued functions,

where W k
2 [0, π] (k= 1, 2) denotes a set whose element is a k− th order continuously

differentiable function in L2[0, π], µ2 = λ and µ = σ + it ∈ C . Then, λ is an
eigenvalue of (4), (5), if the matrix which is called characteristic function

W (µ) =CY (π, µ)+DY ′(π, µ)

is singular. In case of C = 0d and D = Id , the eigenvalues of the problem (9)-(11)
are zeros of W (µ) = Y ′(π, µ) = 0d .

In order to describe W (µ) explicitly, we must know how to express the solution
Y (x, µ). The solution Y (x, µ) of (9)-(10) can be expressed as [Yang (2012)]

Y (x, µ) = cos[λx−α(x)]+
x
∫
0

A(x, t)cos(λ t)dt +
x
∫
0

B(x, t)sin(λ t)dt (12)

where A(x, t) and B(x, t) are symmetric matrix-valued functions whose entries have
continuous partial derivatives up to order two respect to x and t. Now, we will give
following results that are crucial to obtain our main results. It is pointed out these
lemmas were given by [Yang (2012)].
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Lemma 2.1. [Yang (2012)] Let A and B be as in (12). Then, A and B satisfy
following conditions

∂ 2A(x, t)
∂x2 −2P(x)

∂B(x, t)
∂ t

−Q(x)A(x, t) =
∂ 2A(x, t)

∂ t2 (13)

∂ 2B(x, t)
∂x2 +2P(x)

∂A(x, t)
∂ t

−Q(x)B(x, t) =
∂ 2B(x, t)

∂ t2 (14)

A(0, 0) = 0d , B(x, 0) = 0d ,
∂A(x, t)

∂ t

∣∣∣∣
t=0

= 0d , (15)

with α(x) =
x
∫
0

P(t)dt. Moreover, there holds

2[cosα(x)A(x, x)+ sinα(x)B(x, x)] =
x
∫
0

T1(t)dt (16)

and

2[sinα(x)A(x, x)− cosα(x)B(x, x)] = P(x)−P(0)+
x
∫
0

T2(t)dt (17)

where

T1(x) = P2(x)+ cosα(x)Q(x)cosα(x)+ sinα(x)Q(x)sinα(x)

and

T2(x) = sinα(x)Q(x)cosα(x)− cosα(x)Q(x)sinα(x).

Also, it is well known that [Yang (2012)] the eigenvalues of the problem (9)-(11)
are

λn = n+
α j

π
, n = 0,±1,±2,±3, ..., j = 1, d and α j =

π

∫
0

p j(x)dx. (18)

3 Main Theorems

In this section, some uniqueness theorems are given for the problem (9)-(11). It
is shown that an explicit formula of eigenvalues can determine the functions both
Q(x) and P(x) be zero by imposing a condition on P(x) . Our method is based on
[Chern and Shen (1997);Yang (2012)].
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Consider a second matrix quadratic pencil of Schrödinger problem

−
∼′′
Y +

[
2λP(x)+

∼
Q(x)

] ∼
Y = λ

2 ∼Y , x ∈ [0, π] (19)

∼
Y (0, λ ) = Id ,

∼′
Y (0, λ ) = 0d (20)

∼′
Y (π, λ ) = 0d , (21)

where
∼
Q has the same properties of Q. Solution of this problem can be written as

∼
Y (x, µ) = cos[λx−α(x)]+

x
∫
0

∼
A(x, t)cos(λ t)dt +

x
∫
0

∼
B(x, t)sin(λ t)dt (22)

where
∼
A and

∼
B have the same properties of A and B.

The problems (9)-(11) and (19)-(21) will be denoted by L(P, Q) and
∼
L(P,

∼
Q) and

spectrums of these problems wil be denoted by σ(P, Q) and
∼
σ(P,

∼
Q), respectively.

Theorem 3. 1. Suppose that σ(P, Q) =
∼
σ(P,

∼
Q) and α(π) = 0, then

π

∫
0

[
Q(x)−

∼
Q(x)

]
dx = 0d

almost everywhere on [0, π].

Proof: Since σ(P, Q) =
∼
σ(P,

∼
Q), it follows that λn ∈ σ(P, Q) =

∼
σ(P,

∼
Q) . Then we

can write from (11) that

Y ′(π, λn) =− (λn−P(π)) sin [λnπ−α(π)]+A(π, π)cos(λnπ)

+B(π, π)sin(λnπ)+
π

∫
0

Ax(π, t)cos(λnt) dt +
π

∫
0

Bx(π, t)sin(λnt) dt

and similarly for the problem (19)-(21), we can write

∼′
Y (π, λn) =− (λn−P(π)) sin [λnπ−α(π)]+

∼
A(π, π)cos(λnπ)

+
∼
B(π, π)sin(λnπ)+

π

∫
0

∼
A
x
(π, t)cos(λnt) dt +

π

∫
0

∼
B
x
(π, t)sin(λnt) dt.

By substracting Y ′(π, λn) and
∼′
Y (π, λn),

0d =
[
A(π, π)−

∼
A(π, π)

]
cos(λnπ)+

[
B(π, π)−

∼
B(π, π)

]
sin(λnπ)

+
π

∫
0

[
Ax(π, t)−

∼
Ax(π, t)

]
cos(λnt) dt +

π

∫
0

[
Bx(π, t)−

∼
Bx(π, t)

]
sin(λnt) dt.
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By using Riemann-Lebesque lemma and for λn→ ∞ in (18), we obtain A(π, π) =
∼
A(π, π). On the other hand by Lemma 2.1., we know the following equalities,

2
d
dx

[cosα(x)A(x, x)+ sinα(x)B(x, x)] = P2(x)+Q(x) (23)

and similarly

2
d
dx

[
cosα(x)

∼
A(x, x)+ sinα(x)

∼
B(x, x)

]
= P2(x)+

∼
Q(x). (24)

After substracting (23), (24) and integrating, we get

π

∫
0

[
Q(x)−

∼
Q(x)

]
dx = 2

{[
A(π, π)−

∼
A(π, π)

]
cosα(π)+

[
B(π, π)−

∼
B(π, π)

]
sinα(π)

}
or
π

∫
0

[
Q(x)−

∼
Q(x)

]
dx = 0d . So, this completes the proof.

Theorem 3. 2. Let P(x) = diag[p1(x), p2(x), ..., pd(x)] and Q(x) are two d×d real
symmetric matrix-valued functions, and α(π) = 0. If {0}∪

{
m j : j = 1, 2, ...

}
is

a subset of the spectrum of the d−dimensional problem

−Y ′′+[2λP(x)+Q(x)] Y = λ
2Y, Y ′(0) = Y ′(π) = 0d (25)

where 0 is the first eigenvalue of (25), m j is a strictly ascending infinite sequence of
positive integers, and 0 and m j are multiplicity of n , then P(x) = Q(x) = 0d almost
everywhere on (0, π).

Proof: Suppose for the (25) Neumann problem, then we have infinitely many
eigenvalues of the form m j, m j are positive integers, j = 1, 2, ... and each m j

is of multiplicity n. Then, we get

Y ′(π, m j) = 0d . (26)

On the other hand, by (12), we have

Y ′(x, λn) =− (λnId−P(x)) sin [λnx−α(x)]+A(x, x)cos(λnx)+B(x, x)sin(λnx)

+
x
∫
0

Ax(x, t)cos(λnt) dt +
x
∫
0

Bx(x, t)sin(λnt) dt.

(27)

Equations (26) and (27) imply

A(π, π)cos(m jπ)+
π

∫
0

Ax(π, t)cos(λnt) dt +
π

∫
0

Bx(π, t)sin(λnt) dt = 0d . (28)
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We have from (28) and Riemann Lebesque lemma that A(π, π) = 0d . Then, by
integration of

Q(x)+P2(x) = 2
d
dx

[cosα(x)A(x, x)+ sinα(x)B(x, x)] ,

we get

cosα(x)A(x, x)+ sinα(x)B(x, x) =
1
2

x
∫
0

[
Q(t)+P2(t)

]
dt.

or by α(π) = 0 , we have

1
2

π

∫
0

[
Q(t)+P2(t)

]
dt = A(π, π) = 0d

and

π

∫
0

Q(x)dx =−
π

∫
0

P2(x)dx. (29)

By using the reality of 0 being the ground state of the eigenvalue problem (25),
we may find d− linearly independent constant vectors corresponding to the same
eigenvalue 0 by the variational principle and denote them by ϕ j, j = 1, 2, ..., d.
Since they should satisfy the equation

−ϕ
′′
j +[2λ0P(x)+Q(x)] ϕ j = λ

2
0 ϕ j,

we obtain

Q(x)ϕ j = 0, 0≤ x≤ π.

Thus Q(x)= 0d . If we consider (29) and diagonally property of P, we get P(x)= 0d .
This completes the proof.
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