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A Novel Semi-Analytic Meshless Method for Solving Two-
and Three-Dimensional Elliptic Equations of General
Form with Variable Coefficients in Irregular Domains

S.Yu. Reutskiy1

Abstract: The paper presents a new meshless numerical method for solving 2D
and 3D boundary value problems (BVPs) with elliptic PDEs of general form. The
coefficients of the PDEs including the main operator part are spatially dependent
functions. The key idea of the method is the use of the basis functions which sat-
isfy the homogeneous boundary conditions of the problem. This allows us to seek
an approximate solution in the form which satisfies the boundary conditions of the
initial problem with any choice of the free parameters. As a result we separate ap-
proximation of the boundary conditions and approximation of the PDE inside the
solution domain. Numerical experiments are carried out for accuracy and conver-
gence investigations. A comparison of the numerical results obtained in the paper
with the exact solutions and with the data obtained with the use of other numerical
techniques (Kansa’s method, the method of particular solutions) is performed.

Keywords: Elliptic PDE, Variable coefficients, Irregular domain, Meshless method,
Radial basis functions.

1 Introduction

In this paper we present a novel semi-analytic meshless method for numerical solv-
ing 2D and 3D elliptic PDEs of the general form:

d

∑
i=1

[
ai (x)

∂ 2u
∂x2

i
+bi (x)

∂u
∂xi

]
+ c(x)u = f (x) , (1)

x ∈Ω⊂ Rd , d=2,3.

Here the coefficients ai (x) , bi (x) , c(x) , f (x) are smooth enough functions, ai (x)
provide the elliptic type of the PDE and Ω⊂ Rd is the domain of a general form.
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We supplement (1) with the boundary condition:

B [u] = g(x) , x ∈ ∂Ω, (2)

where the boundary operator B [...] will be defined separately in each case.

Such problems often arise in many branches of applied science. Thus, during the
last decades many numerical techniques have been developed in this field. In par-
ticular, there has been an increasing interest in the idea of meshless or mesh-free
numerical methods for solving partial differential equations (PDEs). These meth-
ods are nowadays the main stream in numerical computations, as strongly advo-
cated by many researchers, for example, Zhu, Zhang and Atluri (1998a,b); Atluri
and Zhu (1998a,b); Atluri, Liu, and Kuo (2009); Atluri and Shen (2002); Cho, Gol-
berg, Muleshkov, and Li (2004); Jin (2004); Li, Lu, Huang and Cheng (2007); Liu
(2007a,b); Tsai, Lin, Young and Atluri (2007); Young, Chen, Chen and Kao (2007)

In [Tsai, Liu and Yeih (2010)] the fictitious time integration method (FTIM) previ-
ously developed by Liu and Atluri (2008a,b) is combined with the method of fun-
damental solutions and the Chebyshev polynomials to solve Poisson-type PDEs.

In this connection we should also note the MLPG method reviewed by Sladek,
Stanak, Han, Sladek and Atluri (2013) which is a fundamental base for the deriva-
tion of many meshless formulations. In the last decade, a broad community of
researchers and scientists contributed to the development and implementation of
the MLPG method in a wide range of scientific disciplines.

For the past two decades radial basis functions (RBFs) have played an important
role in the development of meshless methods for solving PDEs: Kansa (1990a,b);
Kansa and Hon (2000); Golberg and Chen (1997); Golberg, Chen and Bowman
(1999); Power (2002); Larsson and Fornberg (2003); Li, Cheng and Chen (2003);
Cheng and Cabral (2005). A significant place among these techniques is taken up
by methods based on the use of particular solutions.

In this approach, RBFs have been used to approximate the particular solution cor-
responding to the given f and the original inhomogeneous PDE has been convert-
ed into a homogeneous one, so that one can apply the MFS or other boundary
methods developed by Golberg and Chen (1997); Golberg, Chen and Bowman
(1999); Cheng (2000). This is the so-called two-stage scheme: f ' ∑

N0
i=1 piϕ (ri),

L[Φ(ri)] = ϕ (ri) , u = uh+∑
N0
i=1 piΦ(ri) ,L[uh] = 0. Note that similar technique has

been developed with the use of the Chebishev polynomials instead of the RBFs by
Cheng (2000); Golberg, Muleshkov, Chen and Cheng (2003); Cheng, Ahtes, and
Ortner (1994); Tsai (2008) and for the spline approximation of f by Tsai, Cheng
and Chen (2009).

The scheme which combines the MFS and RBFs approximation has been proposed
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for further improvement of the MFS for solving PDEs with variable coefficients.
This is the so-called one-stage scheme or the MFS-MPS technique [Chen, Fan
and Monroe (2008)]: u = ∑

N0
i=1 piΦ(ri)+∑

Nb
j=1 q jG j (r j) , L[G j] = 0. Recently this

technique has been transformed into the method of approximate particular solutions
(MAPS) Chen, Fan and Wen (2010, 2011). Applying it to the problem

∇
2u+b1 (x)

∂u
∂x1

+b2 (x)
∂u
∂x2

+q(x)u = f (x) , x ∈Ω, (3)

Bu(x) = g(x) , x ∈ ∂Ω, (4)

one rearranges (3) into Poisson-type equation

∇
2u = h

(
x,w,

∂u
∂x1

,
∂u
∂x2

)
=−b1 (x)

∂u
∂x1
−b2 (x)

∂u
∂x2
−q(x)u+ f (x) . (5)

The solution is approximated by

u'
N

∑
i=1

piΦ(ri) , (6)

where Φ is obtained by analytical solution of

∇
2
Φ(ri) = ϕ (ri) . (7)

and ϕ (ri) are RBF functions. Substituting (6) and (7) in (5), one gets

h
(

x,u,
∂u
∂x1

,
∂u
∂x2

)
'

N

∑
i=1

piϕ (ri) . (8)

The information on the recent development of the MFS can be found in [Fu, Chen,
and Yang (2009, 2013)] and in proceedings cited in Chen, Fan and Monroe (2008).

Similar to Kansa’s approach the unknowns pi are determined by the collocation
at the inner points of the solution domain and by the collocation of the boundary
conditions. The collocation at the inner points is performed for equation (8) and
this technique utilizes expansion (6) to approximate the boundary condition (4).
More detailed information on the method can be found in the original papers cited
above. In [Li, Chen and Tsai (2012)] the MAPS is applied for solving the Cauchy
problems of elliptic partial differential equations with variable coefficients. The
recent developments and advances on the RBF technique can be found in [Huang
(2007); Cheng (2012); Chen, Hon and Schaback (2014)].

In Reutskiy (2012, 2013) the semi-analytic meshless method (SAMM) was pro-
posed for solving the equation

L [u] = F (u,∂x1u,∂x2u,x) (9)
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Similar to MPS it uses the particular solutions corresponding to the RBFs placed
in the right hand side of the PDE. Let the basis functions ϕm (x) be such that F can
be approximated by the linear combination

F (u,∂x1u,∂x2u,x)'
M

∑
m=1

qmϕm (x) . (10)

It is assumed that there exist analytic solutions Φm (x) corresponding to the basis
functions ϕm (x), which satisfy the equations: L [Φm] = ϕm and the homogeneous
boundary condition. The exact solution

uM (x,q) = u f (x)+
M

∑
m=1

qmΦm (x) (11)

of the approximate equation

L [uM] =
M

∑
m=1

qmϕm (x) (12)

is considered as an approximate solution of the boundary value problem (9), (2).
We name this method as the indirect scheme of SAMM. See Reutskiy (2012, 2013)
for more detailed information.

In this paper we present the direct scheme of the SAMM which is as follows. Let
ug (x) be a smooth enough function in Ω and let it satisfy the boundary condition

B [ug (x)] = g(x) , x ∈ ∂Ω. (13)

Let ϕm (x) be system of basis functions on Ω which satisfy the homogeneous
boundary condition:

B [ϕm (x)] = 0, x ∈ ∂Ω. (14)

We seek an approximate solution in the form:

uM (x,q) = ug (x)+
M

∑
m=1

qmϕm (x) . (15)

(cf. (11)) which satisfies the boundary condition (2) with any choice of the free
parameters q1, ...,qM. The unknown free parameters are determined by substituting
(15) in (1) and collocation at the inner points of Ω. Thus, the new direct scheme
of the SAMM saves the key idea of the previous indirect scheme: the approxima-
tion of the boundary conditions and approximation of the PDE inside domain are
algorithmically divided.
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The outline of this paper is as follows. The main algorithm of the method is de-
scribed in Section 2. The numerical implementation of the algorithm for 2D and
3D problems is presented in Section 3. In particular, the method is applied to the
PDE with variable coefficients in the main operator part. Finally, in Section 4, we
give a short conclusion.

2 Main algorithm

Throughout the paper we use the following RBFs:

1) the conical radial basis functions ψ (x) = |x|2k−1 , |x|=
√

x2
1 + x2

2;

2) the Duchon splines ψ (x) = |x|2k ln |x|;

3) the Multiquadric (MQ) RBFs ψ (x) =
√
|x|2 + c2 , where c is the shape param-

eter.

Using these RBFs, we denote

φm (x) = ψ (x−ξm)

and define the basis functions as:

ϕm (x) = φm (x)+ωm (x) , (16)

where the centers ξm are placed inside the solution domain Ω and the correcting
functions ωm (x) are chosen to satisfy the boundary condition (14):

B [ωm (x)] =−B [φm (x)] , x ∈ ∂Ω. (17)

It is important to note that contrary to the indirect SAMM here the functions ϕm (x)
and ug (x) should not necessarily satisfy any equation inside the solution domain.
Thus, to approximate the correcting functions ωm (x) and the function ug (x) we
can use any complete in Ω system of functions.

When we have the basis functions ϕm (x) , m = 1, ...,M and ug (x), we substitute
uM (x,q) in the initial equation (1). Then we find the coefficients q1, ...,qM by
collocation inside the solution domain. Let xn ∈ Ω, n = 1, ...,N be collocation
points distributed inside the solution domain Ω. As a result of the collocation, we
get the system of N linear equations for q1, ...,qM.

M

∑
m=1

{
d

∑
i=1

[
ai (xn)

∂ 2ϕm (xn)

∂x2
i

+bi (xn)
∂ϕm (xn)

∂xi

]
+c(xn)ϕm (xn)}qm = f (xn)− c(xn)ug (xn)− (18)

−
d

∑
i=1

[
ai (xn)

∂ 2ug (xn)

∂x2
i

+bi (xn)
∂ug (xn)

∂xi

]
.
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All the terms in (18) can be obtained in the analytic form using the explicit expres-
sions for φm, ωm and ug. We take the number of the collocation points N to be
approximately 2M. As a result we obtain an overdetermined linear system which
can be solved by the standard least squares procedure. After determining q1, ...,qM,
we get the approximate solution uM (x,q) (15).

3 Numerical results

3.1 Two-dimensional problems

The functions

θk (α,x) = sin
(

kπ
x+α

2α

)
(19)

form a complete orthogonal system in [−α,+α] and

θk (α,x) = θk1,k2 (α,x) = (20)

= sin
(

k1π
x1 +α

2α

)
sin
(

k2π
x2 +α

2α

)
form a complete orthogonal system in the square Ωα = [−α,+α]× [−α,+α].

Choosing α large enough to satisfy Ω ⊂ Ωα , we look for the correcting functions
in the form:

ωm (x) =
KI

∑
k1+k2≤I

pm,kθk (α,x) . (21)

The number of terms in the sum (21) and the number of the unknowns pm,k is: KI

= the number of the different trigonometric products

sin(k1π (x1 +α)/2α)sin(k2π (x2 +α)/2α)

with k1 +k2 ≤ I. We use 15≤ I ≤ 24 and so 120≤ KI ≤ 300 in all the calculations
presented in this section. Using the collocation procedure, we get the linear system:

KI

∑
k1+k2≤I

pm,kB [θk (α,yi)] = −B [φm (yi)] , (22)

yi ∈ ∂Ω, i = 1, ...,K1.

In the same way we look for the function ug in the form:

ug (x) =
KI

∑
k1+k2≤I

pkθk (α,x) (23)
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and obtain the system

KI

∑
k1+k2≤I

pkB [θk (α,x)] = g(yi) , yi ∈ ∂Ω, i = 1, ...,K1. (24)

We take the number of the collocation points K1 to be approximately 2KI .

To validate the numerical accuracy, we calculate the following root mean square
(RMS) errors erms:

erms =

√√√√ 1
Nt

Nt

∑
j=1

[uM (x j,q)−uexact (x j)]
2. (25)

The same RMS error ex,rms is used for the x derivative of the solution. We use
Nt = 1000 test points randomly distributed inside Ω. We also use the maximum
absolute error emax to estimate the accuracy of the calculations.

Example 1. Consider the equation:

γ∇
2u+ x2 cos(x2)

∂u
∂x1

+ sinh(x1)
∂u
∂x2

+
(
x2

1 + x2
2
)

u = (26)

= f (x) , x =(x1,x2)∈Ω

with the Dirichlet boundary condition

u(x) = g(x) ,x ∈ ∂Ω. (27)

The computational domain is a star-shape domain with the boundary defined by the
parametric equation:

x1 = ρ (θ)cosθ , x2 = ρ (θ)sinθ , 0≤ θ ≤ 2π,

ρ (θ) = 1+ cos2 (4θ) ,

where (ρ,θ) are the polar coordinates. The domain is shown in Fig. 1.

The functions f (x) and g(x) correspond to the exact solution

uexact (x) = sin(πx1)cosh(x2)− cos(πx1)sinh(x2) .

The data placed in Table 1 show the maximum absolute errors emax and the RMS
errors in the solution of (26), (27) using MQ RBFs as the basis functions. The
same problem was considered by Chen, Fan and Wen (2011) using the method of
particular solutions (MPS) and Kansa’s method. The better results in solution this
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Figure 1: Example 1. The star-shape domain. The collocation points xn for ap-
proximation PDE are shown inside the domain and the collocation points yi for
approximation the correcting functions ωm are placed on the boundary ∂Ω.

BVP presented there are: ni = 317, nb = 150 : erms = 8.95×10−6, ex,rms = 9.98×
10−5 - for the MPS and erms = 6.64× 10−7, ex,rms = 1.21× 10−3 - for Kansa’s
method.

It should be noted that determination of the optimal shape parameter copt is a diffi-
cult problem in the framework of the presented method. As it is shown in Fig. 2,
the curve erms(c) is not monotonic and has many local minimums. The data placed
in Table 1 correspond to some of these local minimums. However, there are quite
enough other values of 0 < c < 1 which correspond to very close values of erms.
For example, for M = 50: erms(0.097)=1.054× 10−7, erms(0.204)=1.050× 10−7,
erms(0.228)=1.040×10−7.

The bottom part of the table contains the data corresponding to the small parameter
γ = 0.001 as a multiplier before the Laplace operator. Such problems are more
difficult for numerical simulation. The numerical experiments carried out show
that the proposed meshless scheme is very stable for a large range of values of γ . In
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Figure 2: Example 1. The star-shape domain. The RMS errors erms as functions of
the MQ shape parameter c with different M.

addition no fictitious source points are required in this version of the direct scheme
of the SAMM. The data obtained by using the RBFs ψ (x) = |x|2k−1 and |x|2k ln |x|
as the basis functions are placed in Table 2. They show that the use of RBFs |x|13,
|x|14 ln |x| provides approximately the same accuracy of the calculation as MQ. But
they do not require any efforts for optimization.

Example 2 Consider the following Poisson equation

∇
2u =−2sin(x1)sin(x2) (28)

in a unit square domain [0,1]× [0,1] with the mixed boundary conditions

∂u
∂x2

(x1,0) = sin(x1) ,
∂u
∂x2

(x1,1) = sin(x1)cos(1) , (29)

u(0,x2) = 1, u(1,x2) = sin(1)sin(x2)+1. (30)

The exact solution is given by uexact (x) = sin(x1)sin(x2)+ 1. The data obtained
by using the RBFs ψ (x) = |x|13 and |x|14 ln |x| as the basis functions are placed
in Table 3. This problem was also studied by Wei, Chen and Fu (2013) using the
singular boundary method. The better result obtained there is erms ∼ 10−5.

Example 3. Consider the equation with variable coefficients in the main operator
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Table 1: Example 1. The maximum absolute errors emax and RMS errors erms, ex,rms

in the solution of the BVP (26), (27) with MQ RBFs.

γ = 1
M c emax erms ex,rms

50 0.228 1.0×10−6 1.0×10−7 1.2×10−6

100 0.02 1.1×10−8 1.2×10−9 1.4×10−8

200 0.08 6.7×10−10 7.2×10−11 7.4×10−10

300 0.11 8.6×10−11 1.0×10−11 1.2×10−10

γ = 0.001
M c emax erms ex,rms

50 0.01 5.5×10−7 6.1×10−8 8.8×10−7

100 0.15 1.7×10−8 9.4×10−10 1.4×10−8

200 0.02 3.7×10−10 4.0×10−11 6.9×10−10

300 0.02 4.4×10−11 7.8×10−12 1.5×10−10

part:

[
1+ sin2 (x1x2)

] ∂ 2u(x)
∂x2

1
+
[
1+ sinh2 (x1x2)

] ∂ 2u(x)
∂x2

2
+

2x2 sinx1
∂u(x)

∂x1
− x2 cosx1

∂u(x)
∂x2

+

+x1x2u(x) = f (x) , x =(x1,x2)∈Ω (31)

with the Dirichlet boundary condition

u(x) = g(x) ,x ∈ ∂Ω. (32)

The computational domain is an ameba-shape domain with the boundary defined
by the parametric equation:

x1 = ρ (θ)cosθ , x2 = ρ (θ)sinθ , 0≤ θ ≤ 2π,

ρ (θ) = exp(sinθ)sin2 (2θ)+ exp(cosθ)

is shown in Fig. 3.

The functions f (x) and g(x) correspond to the exact solution:

uexact (x) = x2 sin(x1)+ x1 cos(x2).
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Table 2: Example 1. The maximum absolute errors emax and RMS errors erms,
ex,rms in the solution of the BVP (26), (27) by using the RBFs ψ (x) = |x|2k−1 and
|x|2k ln |x|, γ = 1.

|x|13

M emax erms ex,rms

100 1.4×10−7 7.6×10−9 7.3×10−8

200 8.1×10−10 7.4×10−11 1.6×10−9

300 5.6×10−11 1.0×10−11 4.4×10−11

|x|14 ln |x|
M emax erms ex,rms

100 1.7×10−7 7.8×10−9 7.6×10−8

200 9.4×10−10 7.2×10−11 7.0×10−10

300 5.0×10−11 1.5×10−11 4.3×10−11

The data obtained by using the RBFs ψ (x) = |x|13 and |x|14 ln |x| as the basis func-
tions are placed in Table 4.

Consider the same equation (31) in the gear wheel shape domain depicted in Fig.
4.

The boundary of the computational domain is defined by the parametric equation:

x1 = ρ (θ)cosθ , x2 = ρ (θ)sinθ , 0≤ θ ≤ 2π,

ρ (θ) =
1
n2

[
2+2n+n2−2(n+1)cos(nθ)

]
.

Here we take n = 12. The functions f (x) and g(x) correspond to the exact solution:

uexact (x) = sin(x1 + x2
2)− cos(x2− x2

1).

The data obtained by using the RBFs ψ (x) = |x|13 and |x|14 ln |x| as the basis
functions are placed in Table 5.

Example 4. Consider the convection-diffusion equation as follows:

γ∇
2u+

(
x2

2 + cos(x1)
) ∂u

∂x1
− x2 sin(x1)

∂u
∂x2

+ x2
1x2u =

= f (x) , x =(x1,x2)∈Ω. (33)
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Table 3: Example 2. The maximum absolute errors emax and RMS errors erms in
the solution of the BVP with the mixed boundary conditions (28), (29), (30) by
the direct scheme of SAMM by using the RBFs ψ (x) = |x|13 and |x|14 ln |x| as the
basis functions.

|x|13

M emax erms ex,rms

10 4.3×10−3 2.2×10−3 1.2×10−2

20 4.0×10−5 1.2×10−5 8.1×10−5

50 1.5×10−8 4.6×10−9 2.3×10−8

100 2.1×10−10 5.3×10−11 1.6×10−10

200 8.7×10−11 2.4×10−11 6.4×10−11

|x|14 ln |x|
M emaxs erms ex,rms

10 6.3×10−3 1.9×10−3 1.2×10−2

20 6.2×10−5 2.1×10−5 8.3×10−5

50 2.5×10−9 7.1×10−10 8.2×10−9

100 4.7×10−10 1.4×10−10 3.6×10−10

200 2.2×10−10 6.3×10−11 1.7×10−10

The computational domain is a peanut shape domain with the boundary defined by
the parametric equation:

x1 = ρ (θ)cosθ , x2 = ρ (θ)sinθ , 0≤ θ ≤ 2π,

ρ (θ) =

√
cos(2θ)+

√
1.1− sin2 (2θ),

where (ρ,θ) are polar coordinates. The domain is shown in Fig. 5.

The boundary conditions are of the two types:

u(x) = gD (x) ,x ∈ ∂Ω
D the Dirichlet condition, (34)

∂u(x)
∂n

= gN (x) ,x ∈ ∂Ω
N the Neumann condition, (35)

where ∂ΩD and ∂ΩN are the boundaries subjected to Dirichlet and Neumann bound-
ary conditions respectively. The portion of boundary above the x1 axis has the
Dirithlet boundary condition and the other portion of the boundary has the Neu-
mann boundary condition. The functions f (x), gD (x) and gN (x) correspond to the
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Figure 3: Example 3. The ameba-shape domain. The collocation points xn for
approximation PDE are shown inside the domain and the collocation points yi for
approximation the correcting functions ωm are placed on the boundary ∂Ω.

exact solution:

uexact (x) = sin(x1 + x2
2)− cos(x2− x2

1).

The data placed in Table 6 show the RMS errors in the solution of (33), (34),
(35) by using the RBFs ψ (x) = |x|13 and |x|14 ln |x| as the basis functions. The
same problem was considered by Chen at all Chen, Fan and Wen (2011) using the
method of particular solutions (MPS) and Kansa’s method. The better results in
solution this BVP presented there are: ni = 317, nb = 150 : erms = 8.95× 10−6,
ex,rms = 9.98× 10−5 - for the MPS and erms = 6.64× 10−7, ex,rms = 1.21× 10−3

- for Kansa’s method. The right part of the table contains the data corresponding
to the small parameter γ = 0.001 as a multiplier before the Laplace operator. Such
problems are more difficult for numerical simulation.
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Table 4: Example 3. The maximum absolute errors emax and RMS errors erms,
ex,rms in the solution of the BVP (31), (32) by using the RBFs ψ (x) = |x|2k−1 and
|x|2k ln |x|.

|x|13

M emax erms ex,rms

50 2.6×10−4 1.8×10−5 1.2×10−4

100 7.1×10−6 6.5×10−7 6.6×10−6

200 1.1×10−6 1.0×10−7 1.0×10−7

300 9.6×10−8 6.7×10−9 9.1×10−8

400 8.2×10−8 4.0×10−9 6.0×10−8

500 9.5×10−9 5.6×10−10 7.2×10−9

|x|14 ln |x|
M emax erms ex,rms

50 2.8×10−3 1.9×10−4 1.8×10−3

100 5.4×10−6 3.4×10−7 3.8×10−6

200 5.4×10−7 3.5×10−8 4.1×10−7

300 2.4×10−7 1.6×10−8 1.9×10−7

400 2.1×10−8 1.3×10−9 1.8×10−8

500 1.4×10−8 6.5×10−10 7.3×10−9

3.2 Three dimensional case

The functions

θk (α,x) = θk1,k2,k3 (α,x) = sin
(

k1π
x1 +α

2α

)
×

×sin
(

k2π
x2 +α

2α

)
× sin

(
k3π

x3 +α

2α

)
form a complete orthogonal system in the cube Ωα = [−α,+α]3.

Choosing α large enough to satisfy Ω ⊂ Ωα , we look for the correcting functions
in the form:

ωm (x) =
KI

∑
k1+k2+k3≤I

pm,kθk (α,x) , k =(k1,k2,k3) . (36)

The number of terms in the sum (36) and the number of unknowns pm,k is: KI = the
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Figure 4: Example 3. The gear wheel shape domain. The collocation points xn for
approximation PDE are shown inside the domain.

number of the different trigonometric products

sin(k1π (x1 +α)/2α)×
×sin(k2π (x2 +α)/2α)× sin(k3π (x3 +α)/2α)

with k1 + k2 + k3 ≤ I. We use I = 14 and so KI = 364 in the calculations presented
in this section. Using the collocation procedure we get the linear system:

KI

∑
k1+k2+k3≤I

pm,kB [θk (α,yi)] = −B [φm (yi)] , (37)

yi ∈ ∂Ω, i = 1, ...,K1.

In the same way we look for the function ug in the form:

ug (x) =
KI

∑
k1+k2+k3≤I

pkθk (α,x) (38)
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Table 5: Example 3. The maximum absolute errors emax and RMS errors erms, ex,rms

in the solution of the BVP (31), (32) in the gear wheel shape domain by using the
RBFs ψ (x) = |x|2k−1 and |x|2k ln |x|.

|x|13

M emax erms ex,rms

10 4.3×10−5 1.1×10−5 6.9×10−5

20 1.4×10−5 1.6×10−6 2.0×10−5

50 2.5×10−7 2.0×10−8 2.2×10−7

100 3.8×10−9 4.7×10−10 7.9×10−9

200 1.0×10−9 2.7×10−10 6.2×10−10

|x|14 ln |x|
M emax erms ex,rms

10 4.5×10−5 1.1×10−5 5.5×10−5

20 1.4×10−5 1.9×10−6 2.1×10−5

50 2.6×10−7 1.7×10−8 2.2×10−7

100 9.0×10−9 4.0×10−10 4.6×10−9

200 2.1×10−9 6.0×10−10 1.2×10−9

and obtain the system

KI

∑
k1+k2+k3≤I

pkB [θk (α,x)] = g(yi) , yi ∈ ∂Ω, i = 1, ...,K1. (39)

We take the number of the collocation points K1 to be approximately 2KI .

Example 5. Consider the equation

[
1+ sin2 (xyz)

] ∂ 2u
∂x2 +

[
1+ sinh2 (xyz)

] ∂ 2u
∂y2 +

+cosh(x+ y+ z)
∂ 2u
∂ z2 + yzsin(2xyz)

∂u
∂x

+xzsinh(2xyz)
∂u
∂y

+ sinh(x+ y+ z)
∂u
∂ z

+

+
(
1+ x2 + y2 + z2)u = f (x,y,z) (40)

with the Dirichlet boundary condition

u(x,y,z) = g(x,y,z) . (41)
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Figure 5: Example 4. The peanut shape domain. The collocation points xn for
approximation PDE are shown inside the domain.

Table 6: Example 4. RMS errors erms in the solution of the BVP (33), (34), (35) by
using the RBFs ψ (x) = |x|13 and |x|14 ln |x|.

γ = 1 γ = 0.001
M |x|13 |x|14 ln |x| |x|13 |x|14 ln |x|
50 2.310−5 1.410−5 1.110−5 7.010−6
100 1.810−7 3.610−7 1.710−7 1.710−8
200 1.810−11 3.110−11 1.110−11 7.710−12
300 6.810−13 3.310−13 6.310−13 3.910−13

The solution domain is a sphere with the radius R = 1. The functions f and g
correspond to the exact solution:

uexact = xysinz+ xzsiny+ yzsinx. (42)

Some results of the calculations are shown in Table 7. The parameter α = 11.0 is
used in all the data presented in the table.

Consider the same PDE (40) with the mixed boundary conditions on the sphere:

u(x) = gD (x) ,x ∈ ∂Ω
D the Dirichlet condition (43)

∂u(x)
∂n

= gN (x) ,x ∈ ∂Ω
N the Neumann condition (44)

Here ∂ΩN is the surface of the top hemisphere z > 0 and ∂ΩD corresponds to z < 0.
The functions f (x), gD (x) and gN (x) correspond to the exact solution (42).

To calculate the RMS errors emax, erms, ex,rms we use the formula (25) with Nt =
1000 except the case M = 500, where Nt = 2000 the test points are used.
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Table 7: Example 5. 3D problem. RMS errors erms in the solution of (40), (41) by
using the RBFs ψ (x) = |x|2k−1 and |x|2k ln |x|, k = 6,7.

M |x|11 |x|13 |x|12 ln |x| |x|14 ln |x|
50 1.410−5 1.810−5 1.510−5 2.710−5
100 3.510−8 9.710−8 4.610−8 1.310−7
200 4.110−9 1.310−10 1.210−10 4.410−10
300 2.210−10 1.110−11 1.010−11 1.410−11
400 1.510−12 1.310−12 1.310−12 1.510−12
500 4.510−13 3.610−13 6.410−13 3.710−13

Table 8: Example 5. 3D problem. The maximum absolute errors emax and the RMS
errors erms, ex,rms in the solution of the BVP (40), (43), (44) in the sphere domain
by using the RBFs ψ (x) = |x|13 and |x|14 ln |x|.

M |x|13

emax erms ex,rms

20 3.610−5 1.010−5 3.210−5
50 1.810−6 3.310−7 1.210−6
100 5.310−8 8.210−9 2.910−8
200 5.710−10 1.110−10 4.010−10
300 8.410−11 1.210−11 5.110−11
400 1.010−11 1.810−12 8.310−12
500 3.610−12 7.310−13 3.310−12
M |x|14 ln |x|

emax erms ex,rms

20 4.410−5 1.110−5 4.210−5
50 1.610−6 4.010−7 1.610−6
100 3.510−8 7.610−9 3.510−8
200 9.010−10 1.810−10 7.010−10
300 6.110−11 1.110−11 5.010−11
400 1.310−11 3.010−12 8.710−12
500 5.510−12 9.610−13 3.010−12

4 Conclusion

This paper presents a new version of the semi-analytic meshless method for solv-
ing PDEs with variable coefficients in irregular domains. The key idea of the pre-
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vious indirect version Reutskiy (2012, 2013) is saved here: to divide satisfaction of
boundary conditions and satisfaction of the governing PDE inside the domain. The
new version extends the sphere of applicability of the developed technique.

While the indirect scheme permits using only such RBFs ϕm which have the ana-
lytic solution Φm: L [Φm] = ϕm, the novel direct scheme allows to use any smooth
enough functions as the basis functions. As it is demonstrated in Example 3 and
Example 5, the novel direct scheme is applicable to the PDEs with the variable co-
efficients in the main operator part. Besides, using the new direct scheme we can
get rid of the singularities inherent to MFS and of the fictitious boundary for their
placement.

The method introduced in this paper can be easily extended on to nonlinear PDEs,
3D problems and time dependent problems. This will be the subject of further
studies.
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