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Dynamic Anti-plane Crack Analysis in Functional Graded
Piezoelectric Semiconductor Crystals

J. Sladek1,2, V. Sladek1, E. Pan3 and D.L. Young4

Abstract: This paper presents a dynamic analysis of an anti-plane crack in func-
tionally graded piezoelectric semiconductors. General boundary conditions and
sample geometry are allowed in the proposed formulation. The coupled governing
partial differential equations (PDEs) for shear stresses, electric displacement field
and current are satisfied in a local weak-form on small fictitious subdomains. The
derived local integral equations involve one order lower derivatives than the origi-
nal PDEs. All field quantities are approximated by the moving least-squares (MLS)
scheme. After performing spatial integrations, we obtain a system of ordinary d-
ifferential equations for the involved nodal unknowns. It is noted that the stresses
and electric displacement field in functionally graded piezoelectric semiconductors
exhibit the same singularities at crack tips as in a homogeneous piezoelectric sol-
id. The influence of the initial electron density on the intensity factors and energy
release rate is also investigated.

Keywords: Meshless local Petrov-Galerkin method (MLPG), Moving least-
squares approximation, piezoelectric solids, functionally graded semiconductor,
intensity factors, dynamic loading, impermeable conditions.

1 Introduction

Piezoelectric materials (PZ) can be either dielectrics or semiconductors. These ma-
terials have been widely used in various electromechanical devices and systems. Up
to date dielectric materials are more intensively investigated than semiconductors.
However, PZ semiconductors play a crucial role in offering the great electrome-
chanical couling effect within a high-frequency regime. In PZ semiconductors the
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induced electric field produces also the electric current. The interaction between
mechanical fields and mobile charges in PZ semiconductors is called the acousto-
electric effect [Hutson and White (1962); White (1962)]. An acoustic wave travel-
ing in a PZ semiconductor can be amplified by application of an initial or biasing
dc electric field [Yang and Zhou (2005)]. This phenomenon is utilized in many
acoustoelectric devices [Heyman (1978); Busse and Miller (1981)]. When an a-
coustic field deforms the PZ material, space charges are generated by the elastic
field, causing the electrons to redistribute accordingly. The electron drift induced
by an external field can become supersonic, and amplification can take place due to
the phonon emission of carriers.

Piezoelectric ceramics are brittle and susceptible to fracture during service. To
improve the performance and to predict the reliable service lifetime of ceramic
PZ components, it is necessary to analyze theoretically the damage and fracture
processes taking place in PZ materials with consideration of the coupling effect
between mechanics and electrics. Deeg (1980) and Pak (1990) addressed the in-
plane and anti-plane fracture problems of an infinite PZ body and obtained the
closed form solutions of stress field and electric displacement field near the crack
tip.

To meet the demand of advanced PZ materials with improved mechanical, ther-
mal, corrosion and wear resistant properties, the concept of functionally graded
materials (FGMs) [Suresh and Mortensen (1998)] has recently been extended to
the field of PZ solids. Consequently, the concept of FGMs can be extended to the
piezoelasticity to obtain PZ materials with high strength, high toughness, low ther-
mal expansion coefficient and low dielectric constant. Devices such as actuators
based on functionally graded PZ materials (FGPMs) are presented by Zhu et al.
(1995, 1999). Fracture of FGPMs under a thermal load was studied by Wang and
Noda (2001). An anti-plane crack problem can be described by relatively simpler
governing equations than for in-plane problems [Li and Weng 2002a]. The elec-
troelastic problem of an anti-plane shear crack propagating in a functionally graded
PZ ceramic strip was analyzed by the integral transform approach [Kwon (2004)].
Recently, the in-plane crack problem in FGPMs was analyzed by Chen et al. (2003)
and Ueda (2003). Anti-plane cracks in finite functionally graded PZ solids under
time-harmonic loading was studied via a non-hypersingular traction based bound-
ary integral equation method [Dineva et al. (2010)]. The electrically nonlinear
crack problem in a functionally graded PZ ceramic strip was analyzed by Kwon
(2003). However, in all these crack problems, the PZ material was considered as a
non-conducting dielectric.

There are only few papers devoted to crack problems in PZ semiconductor mate-
rials. All papers concern the anti-plane crack problem in unbounded domain with
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a semi-infinite crack [Yang (2005)] and a finite crack [Hu et al. (2007)] under
stationary conditions. The Fourier transform technique is usually applied to re-
duce the problem to a pair of dual integral equations. In the present paper, we aim
at analyzing the anti-plane crack problem in bounded domains with functionally
graded material properties and under transient loading conditions. The solution of
the boundary value problems for continuously nonhomogeneous PZ solids requires
advanced numerical methods due to the high mathematical complexity. The gov-
erning equations are more complicated than in a homogeneous counterpart and the
electric and mechanical fields are coupled with each other. Transient regime brings
additional complications.

In recent years, meshless formulations are becoming popular due to their high adap-
tivity and low costs to prepare input and output data for numerical analyses. A
variety of meshless methods has been proposed so far and some of them are also
applied to PZ problems [Ohs and Aluru (2001); Liu et al. (2002); Sladek et al.
(2007, 2010, 2012)]. They can be derived either from a weak-form formulation on
the global domain or a set of local subdomains. In the global formulation, back-
ground cells are required for the integration of the weak-form. The meshless local
Petrov-Galerkin (MLPG) method is a fundamental base for the derivation of many
meshless formulations, since trial and test functions can be chosen from different
functional spaces. Recently, the MLPG method with a Heaviside step function as
the test functions [Atluri et al. (2003); Atluri (2004); Sladek et al. (2004); Sladek et
al. (2013)] was applied to crack problems in continuously nonhomogeneous medi-
um [Sladek et al. (2007)] and an interface crack problem [Sladek et al. (2010)].
Impermeable or permeable crack conditions were considered there. Energetically
consistent boundary conditions on the crack-faces are considered too [Sladek et al.
(2012)]. This model is leading to consistency of total and crack-tip energy release
rates. An additional closing traction is added to the well-known semi-permeable
crack-face boundary conditions.

In this paper, the MLPG is applied to a finite continuously nonhomogeneous PZ
conducting solid with anti-plane crack under transient boundary conditions. The
coupled governing partial differential equations for shear stresses, electric displace-
ment field and current are satisfied in a weak-form on small fictitious subdomains.
Nodal points are introduced and spread on the analyzed domain and each node is
surrounded by a small circle for simplicity, but without loss of generality. If the
shape of subdomains has a simple form, numerical integrations over them can be
easily carried out. The integral equations have a very simple nonsingular form.
The spatial variations of the displacement, electric potential and electron density
are approximated by the Moving Least-Squares (MLS) scheme [Zhu et al. (1998)].
After performing the spatial integrations, a system of ordinary differential equa-
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tions for unknown nodal values is obtained. The essential boundary conditions on
the global boundary are satisfied by the collocation approach. Then, the system of
the ordinary differential equations of the second order resulting from the equation-
s of motion is solved by the Houbolt finite-difference scheme [Houbolt 1950] as
a time-stepping method.

2 Local integral equations for piezoelectric semiconductor

Consider a homogeneous n-type PZ semiconductor with m0 electron density in
unloaded state with vanishing initial electric field E0. Supposing the frequency of
external loadings to be close to characteristic frequency of elastic waves, one can
assume quasi-static approximation for the electromagnetic field. Then, the effect
of Faraday’s induction is neglected even if there is a magnetic field induced by the
electric current according to the Ampere’s law. Eventually, the governing equations
within the linear theory are given by the balance of momentum, Gauss’s law and
conservation of charge [Hutson and White (1962)]

σi j, j(x,τ) = ρ üi(x,τ), Di,i(x,τ) = qm(x,τ), qṁ(x,τ)+ Ji,i = 0 , (1)

where üi, σi j, Di, and q are the acceleration of displacements, stress tensor, electric
displacement field, and electric charge of the electron, respectively. The electron
density and electric current are denoted by m and Ji, respectively. Symbol ρ is used
for the mass density. A comma followed by an index denotes partial differentiation
with respect to the coordinate associated with the index.

These governing equations (1) have to be supplemented by the constitutive equa-
tions below [Hutson and White (1962); White (1962)]

σi j(x,τ) = ci jkl(x)εkl(x,τ)− eki j(x)Ek(x,τ),
D j(x,τ) = ei jk(x)ε jk(x,τ)+hi j(x)Ei(x,τ),
Ji(x,τ) = qm0(x)µi j(x)E j(x,τ)−qdi j(x)m, j(x,τ),

(2)

where ci jkl(x) , ei jk(x) , hi j(x) , µi j(x) and di j(x)are the elastic, PZ, dielectric,
electron mobility and carrier diffusion material coefficients, respectively. Gener-
ally, these coefficients can depend on Cartesian coordinates in functionally graded
materials.

Finally, the strain tensor εi j and the electric field vector E j are related to the dis-
placements ui and the electric potential φ by

εi j =
1
2
(ui, j +u j,i) ,

E j =−φ, j .
(3)
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In this analysis, we assume a transversely isotropic PZ solid. Assuming anti-plane
deformations (u1 = u2 = 0) with all the fields dependent on the in-plane coordinates
(x1, x2), hence the following fields vanish:

u1 = u2 = σ11 = σ22 = σ33 = σ12 = E3 = 0. (4)

Then, the governing equations are transformed into a simpler form

σ3α,α(x,τ) = ρ ü3(x,τ),
Dα,α(x,τ)−qm(x,τ) = 0,

Jα,α(x,τ)+qṁ(x,τ) = 0.

(5)

The constitutive equations for the transversally isotropic anti-plane problem be-
come [Hu et al. (2007)]

σ13 = c44u3,1 + e15φ,1,

σ23 = c44u3,2 + e15φ,2,

D1 = e15u3,1−h11φ,1,

D2 = e15u3,2−h11φ,2,

J1 =−qm0µ11φ,1−qd11m,1,

J2 =−qm0µ11φ,2−qd11m,2.

(6)

Instead of writing the global weak-form for the above governing equations, we ap-
ply the MLPG method to construct a weak-form on the local fictitious subdomains
such as Ωs, which is a small region taken for each node inside the global domain
[Atluri (2004)]. The local subdomains are distributed inside the whole global do-
main Ω. The local subdomains could be of any geometrical shape and size. In the
present paper, the local subdomains are taken to be of circular shape. The local
weak-form of the governing equations (5) can be written as∫
Ωs

[σ3α,α(x,τ)−ρ ü3(x,τ)] u∗(x) dΩ = 0, (7)

∫
Ωs

[Dα,α(x,τ)−qm(x,τ)] u∗(x) dΩ = 0, (8)

∫
Ωs

[Jα,α(x,τ)+qṁ(x,τ)] u∗(x) dΩ = 0, (9)

where u∗(x) is a test function.
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Applying the Gauss divergence theorem to equations (7)-(9) one obtains

∫
∂Ωs

σ3α(x,τ)nα(x)u∗(x)dΓ−
∫
Ωs

σ3α(x,τ)u∗,α(x)dΩ−
∫
Ωs

ρ ü3(x,τ)u∗(x)dΩ = 0,

(10)

∫
∂Ωs

Dα(x,τ)nα(x)u∗(x)dΓ−
∫
Ωs

Dα(x,τ)u∗,α(x)dΩ−
∫
Ωs

qm(x,τ)u∗(x)dΩ = 0, (11)

∫
∂Ωs

Jα(x,τ)nα(x)u∗(x)dΓ−
∫
Ωs

Jα(x,τ)u∗,α(x)dΩ+
∫
Ωs

qṁ(x,τ)u∗(x)dΩ = 0, (12)

where ∂Ωs is the boundary of the local subdomain [Atluri 2004] and nα is a unit
normal vector to the boundary ∂Ωs. By choosing a Heaviside step function as the
test function u∗(x) in each subdomain

u∗(x) =
{

1 at x ∈ (Ωs∪∂Ωs)
0 at x /∈ (Ωs∪∂Ωs)

the local weak-forms (10)-(12) are converted into the following local boundary-
domain integral equations∫
∂Ωs

σ3α(x,τ)nα(x)dΓ−
∫
Ωs

ρ(x)ü3(x,τ)dΩ = 0, (13)

∫
∂Ωs

Dα(x,τ)nα(x)dΓ−
∫
Ωs

qm(x,τ)dΩ = 0, (14)

∫
∂Ωs

Jα(x,τ)nα(x)dΓ+
∫
Ωs

qṁ(x,τ)dΩ = 0. (15)

In the MLPG method the test and trial functions are not necessarily from the same
functional spaces. For internal nodes, the test function is chosen as the Heaviside
step function with its support on the local subdomain. The trial functions, on the
other hand, are chosen to be the moving least-squares (MLS) approximation over
a number of nodes spread within the domain of influence. Details are given in the
next section.
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3 Numerical solution

According to the MLS [Lancaster and Salkauskas (1981); Nayroles et al. (1992)]
method, the approximation of physical fields f (x,τ) (i.e., the displacement, electric
potential and electron density) over a number of randomly located nodes {xa},
a = 1,2, ...n, is given by

f (x,τ) = π
T (x)a(x,τ) , (16)

where πT (x) =
[
π1(x), π2(x), ...,πs(x)

]
is a complete monomial basis of order

s; and a(x,τ) is a vector containing the coefficients a j(x,τ) , j = 1,2, ...,m and
x≡ (x1, x2) . The following monomial basis are used in numerical analyses

π
T (x) = [1, x1, x2] , for linear basis s = 3, (17)

π
T (x) =

[
1, x1, x2, (x1)

2, x1x2, (x2)
2] , for quadratic basis s = 6. (18)

The coefficient vector a(x,τ) is determined by minimizing a weighted discrete
L2 -norm defined as

s(x) =
n

∑
a=1

wa(x)
[
π

T (xa)a(x,τ)− f̂ a(τ)
]2

, (19)

where n is the number of nodes used for the approximation. It is determined by the
weight function wa(x) associated with the node a. The symbol f̂ a(τ) stands for
the fictitious nodal values, but not the nodal values of the unknown trial functions
in general. The stationarity of s in eq. (19) with respect to a(x,τ) leads to the
following linear relation between a(x,τ) and f̂ (τ) =

[
f̂ 1(τ), ... , f̂ n(τ)

]T
A(x)a(x,τ)−B(x) f̂ (τ) = 0 , (20)

where

A(x) =
n

∑
a=1

wa(x)π(xa)πT (xa) ,

B(x) =
[
w1(x)π(x1), w2(x)π(x2), ....,wn(x)π(xn)

]
.

(21)

The solution of Eq. (20) for a(x,τ) and a subsequent substitution into Eq. (16)
gives the approximation formulas for the displacement, electric potential, and elec-
tron density [Sladek et al. (2010)]

u3(x,τ) =
n

∑
a=1

Na(x)ûa
3(τ),

φ(x,τ) =
n

∑
a=1

Na(x)φ̂ a(τ),

m(x,τ) =
n

∑
a=1

Na(x)m̂a(τ)

(22)
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where the nodal values ûa
3(τ), φ̂ a(τ) and m̂a(τ) are fictitious parameters for the

displacement, electric potential and electron density, respectively, and Na(x) is the
shape function associated with node a. The number of nodes n used for the approx-
imation is determined by the weight function wa(x). A 4th order spline-type weight
function is applied in the present work as below

wa(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
, 0≤ da ≤ ra

0, da ≥ ra , (23)

where da = ‖x−xa‖ and ra is the size of the support domain. It is seen that the C1−
continuity is ensured over the entire domain; therefore the continuity conditions of
the traction, electric charge and the electric current are satisfied.

In the local integral equations (13)-(15) we have the scalar products of the normal
vector with shear stresses, electrical displacement and electric current. Substituting
the MLS approximations into the scalar products we obtain

σ3,α(x,τ)nα(x) = c44(x)
n

∑
a=1

Ba(x)ûa
3(τ) + e15(x)

n

∑
a=1

Ba(x)ϕ̂a(τ) , (24)

Dα(x,τ)nα(x) = e15(x)
n

∑
a=1

Ba(x)ûa
3(τ) −h11(x)

n

∑
a=1

Ba(x)φ̂ a(τ) , (25)

Jα(x,τ)nα(x) =−qm0µ11(x)
n

∑
a=1

Ba(x)φ̂ a(τ) −qd11(x)
n

∑
a=1

Ba(x)m̂a(τ) , (26)

where

Ba(x) = n1(x)Na
,1(x)+n2(x)Na

,2(x).

Substituting Eqs. (24) - (26) into the local integral equations (13) - (15), we obtain
the following system of ordinary differential equations

n

∑
a=1

 ∫
∂Ωs

c44(x)Ba(x)dΓ

 ûa
3(τ) +

n

∑
a=1

 ∫
∂Ωs

e15(x)Ba(x)dΓ

 φ̂
a(τ)−

−
n

∑
a=1

∫
Ωs

ρ(x)Na(x)dΩ

 ¨̂ua
3(τ) = 0 , (27)

n

∑
a=1

 ∫
∂Ωs

e15(x)Ba(x)dΓ

 ûa
3(τ) −

n

∑
a=1

 ∫
∂Ωs

h11(x)Ba(x)dΓ

 φ̂
a(τ)−
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−
n

∑
a=1

∫
Ωs

qNa(x)dΩ

 m̂a(τ) = 0 , (28)

n

∑
a=1

 ∫
∂Ωs

qm0µ11(x)Ba(x)dΓ

 φ̂
a(τ) −

n

∑
a=1

 ∫
∂Ωs

qd11(x)Ba(x)dΓ

 m̂a(τ)+

+
n

∑
a=1

∫
Ωs

qNa(x)dΩ

 ˙̂ma(τ) = 0 . (29)

The essential boundary conditions at nodal points on the global boundary are satis-
fied by approximation formula (22)

n

∑
a=1

Na(ζ )ûa
3(τ) = ū3(ζ ,τ) for ζ ∈ Γu, (30)

n

∑
a=1

Na(ζ )φ̂ a(τ) = φ̄(ζ ,τ) for ζ ∈ Γp, (31)

n

∑
a=1

Na(ζ )m̂a(τ) = m̄(ζ ,τ) for ζ ∈ Γm, (32)

where ū3, φ̄ and m̄ are the prescribed quantities on corresponding parts of the global
boundary denoted by Γu, Γp and Γm, respectively. Then, collocation equations (30)
– (32) replace discretized local integral equations (27) – (29) at those nodal points,
where essential boundary conditions are prescribed.

It should be noted that one of the most important properties of the MLS approx-
imation is its high-order continuity of approximated fields. On the other hand,
there are such problems in which even the primary fields suffer certain discontinu-
ities. For instance, the displacements are discontinuous across the crack surface.
Crack discontinuities can be treated in several ways in the meshless approximation
[Organ et al. (1996); Carpinteri et al. (2003)]. The simplest approach to satisfy
the discontinuity of displacements on the crack surfaces is the visibility criterion.
Nodes lying inside the domain ABC shown in Fig. 1 are not considered for the
evaluation of the shape function at the point x in the MLS-approximation (i.e., the
mentioned nodes are excluded from the support domain). Another approach for the
treatment of crack discontinuities in both the meshless and the FEM is based on
the introduction of discontinuous enrichment functions [Belytschko et al. (2001)].
Carpinteri et al. (2003) proposed the method where the crack is virtually extend-
ed in the direction of the tangent at the crack-tip. All the weight functions whose
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Figure 1: Visibility criterion for the support of domain in the crack-tip vicinity.

support domains intersect the real crack are cut along the crack line (real + virtu-
al), while the weight functions are left unchanged if the support domains intersect
only the virtual crack. That method has to be applied to problems where symmetry
with respect to the crack plane cannot be utilized and both crack surfaces has to be
modeled. It happens if materials properties are varying along the direction normal
to the crack plane.

4 Numerical examples

Consider a finite PZ semiconductor strip in plane x1− x2 with size 2H× 2L (Fig.
2) and a central crack with length 2a. On the top and bottom surfaces, the shear
stress τ0, electric displacement D0 and the electric current J0 are applied. Elec-
trically impermeable boundary conditions on the crack surface are considered that
gives rise to singular behavior of both the electric intensity and electric displace-
ment fields near the crack tips. First, the numerical analysis is performed for a
homogeneous material. The material properties correspond to Cadmium Sulfide
CdS [Auld 1973]:

c44 = 1.504 ·1010Nm−2 , e15 =−0.21Cm−2 , h0 = 8.854 ·10−12C(V m)−1 ,

h11 = 9.02h0, µ11 = 3.4 ·10−2m2(V s)−1 , d11 = 8.84 ·10−4m2s−1 ,

q = 1.602 ·10−19C , ρ = 4820kg/m3 .

Due to the symmetry of the problem, it is sufficient to analyze only a quarter of the
cracked strip. The strip width L = 2.5a , crack length a = 0.08m and height of the
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Figure 2: Anti-plane crack in a finite strip.

strip h= 1.25L are considered. In the first example the crack size is relatively small
with respect to the strip size. The mechanical displacement, electrical potential and
electron density in the quarter of the specimen are approximated with 930 (31x30)
nodes equidistantly distributed. The local subdomains are considered to be circular
with a radius rloc = 0.006m.

Variations of displacements, electric potentials and electron densities along the
crack surface for various initial electron densities m0 are presented in Figs 3, 4 and
5, respectively. The presented numerical results correspond to a pure mechanical
load τ0 = 1Pa. One can observe that initial electron density has a small influence
on the crack displacement. However, the induced electric potential is strongly de-
pendent on the initial electron density. The largest value of the induced potential
is for a non-conducting PZ material. With increasing value of m0, the induced
electric potential decreases. The observed electron density on the crack surface is
strongly dependent on m0 value. The higher value of m0 results in lower density
of electrons m.

For cracks in homogeneous and linear PZ solids the asymptotic behaviour of the
field quantities near the crack tip has been given by Sosa (1991) and Pak (1992).
In one of our previous papers [Sladek et al. (2007)] we showed that the stress sin-
gularity at the crack tip in a continuously nonhomogeneous PZ solid is the same as
that in a homogeneous one. Therefore, similarly to a homogeneous case [Hu et al.,
(2007)] we can define field intensity factors in functionally graded PZ semiconduc-
tors as

Kσ = lim
x1→a

√
2π(x1−a)σ23(x1,0), (33)
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Figure 3: Variation of displacement u3 along the crack under a pure mechanical
load τ0 = 1N/m2.

Figure 4: Variation of the electric potential (-φ ) along the crack under a pure me-
chanical load τ0 = 1N/m2.
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Figure 5: Variation of the electron density m along the crack under a pure mechan-
ical load τ0 = 1N/m2.

KD = lim
x1→a

√
2π(x1−a)D2(x1,0), (34)

Kγ = lim
x1→a

√
2π(x1−a)γ23(x1,0), (35)

KE = lim
x1→a

√
2π(x1−a)E2(x1,0), (36)

where Kσ , KD, Kγ and KE are the stress intensity factor, electrical displacement
intensity factor, strain intensity factor and electric field intensity factor, respectively
All intensity factors (IFs) in equations (33)-(36) are computed using the extrapola-
tions technique from three corresponding quantities at three points ahead the crack
tip. Their distance from the crack tip has to be sufficiently small due to validi-
ty of asymptotic expansion of stress σ23, electric displacement D2, strain γ23 and
electric intensity field E2. It follows from constitutive equations (2) and (6) that
intensity factors Kσ and KD can be expressed by Kγ and KE , respectively. Then,
one gets

Kσ = c44Kγ − e15KE , KD = e15Kγ +h11KE .

The energy release rate can be defined on the base of above given intensity factors
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[Pak (1990)]

G =
Kσ Kγ −KDKE

2
. (37)

For stationary boundary conditions the stress intensity factor (SIF) for non-
conducting PZ solid is independent on electric load D0. The SIF vanishes in such
a case since the stresses σ23 are zero ahead the crack tip on the crack line because
of the immediate electromechanical interaction, despite the finite value of induced
electric potential for a pure mechanical load (Fig. 4). It means that displacemen-
t and electric potential are coupled; however, intensity factors are decoupled in a
stationary case.

Figure 6: Variation of the electric displacement intensity factor with initial electron
density.

In conducting PZ solids we observe a strong influence of the initial electronic den-
sity m0 on the induced electric potential. Therefore, it is interesting to investigate
the influence of m0 on the electric displacement intensity factor for the crack un-
der a mixed mechanical τ0 and electric load D0. The variation of KD with initial
electron density is given in Fig. 6. For a pure mechanical load we get a vanish-
ing value of KD for any value of m0. For a finite value of the electric load D0 we
get a finite value of KD for non-conducting material. With increasing conductivity
of PZ semiconductor, the KD value is reduced and for m0 = 1011m−3 the electric
displacement intensity factor is almost zero.
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Figure 7: Influence of the electric load on the energy release rate for a mixed load.

The influence of the electric load D0 and electric current J0 on the energy release
rate is shown in Fig. 7 and 8, respectively. Two different initial electron densities
are considered in the numerical analyses. One can observe that the energy release
rate is less sensitive on the electric load and electric current for PZ semiconductor
as for non-conducting PZ solid, since the initial electron density m0 = 106 can be
considered as a value corresponding to a non-conducting solid.

It is also interesting to investigate influence of the geometry (crack size and strip
size) on G. Therefore, we consider a larger crack with length a= 0.08m and smaller
strip height h = 1.0L and strip width L = 2.0a. The energy release rate for this
cracked specimen is given in Fig. 9. The sensitivity on the electric current is smaller
for a larger crack size and smaller specimen. A similar influence is observed for
the electric load D0 as shown in Fig. 10.

We now consider the influence of the non-stationary boundary conditions on the
physical quantities. The strip is subjected to an impact load with Heaviside time
variation and the intensity τ0 = 1Pa for a pure mechanical load. Time variation
of the normalized stress intensity factors for a non-conducting and semiconductor
PZ solid are presented in Fig. 11, where K0 =

√
πa. One can observe that the

initial electron density has vanishing influence on the SIF. In non-stationary case a
pure electrical load can induce finite value of the SIF. The response of the electric
fields is immediate, while that of the elastic ones is taken as finite because of the
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Figure 8: Influence of the electric current on the energy release rate for a mixed
load.

Figure 9: Influence of the electric current J0 on the energy release rate for a mixed
load when the crack is larger with a = 0.1m.
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Figure 10: Influence of the electric load D0 on the energy release rate for a mixed
load when the crack is larger with a = 0.1m.

finite velocity of elastic waves. On the other hand, in a static case, the response
of both the mechanical (strain, stress) and electrical fields is immediate. One can
observe finite value of the electric displacement intensity factor (EDIF) for a pure
mechanical load in Fig. 12. However, due to small value of the PZ coefficient, the
induced EDIF is small for non-conducting solid. Larger values are observed for
the conducting material. It is due to strong influence of m0 on KD as observed for
stationary boundary conditions.

If a pure electric load D0 is applied one can observe a strong influence of m0 on the
SIF as shown in Fig. 13. Larger values of the SIF are achieved in non-conducting
PZ material. The time variation of the normalized EDIF is presented in Fig. 14. For
both conducting and non-conducting materials the EDIF in the whole time interval
is almost uniform. A larger reduction of the EDIF is observed for conducting PZ
material.

Finally, we consider the functionally graded material (FGM) properties for the s-
hear modulus c44 in x2 coordinate. An exponential variation is used

c44(x) = c440 exp(3x2), (38)

where c440 corresponds to material parameter used in the previous example. For
considered geometry and material gradation the shear modulus is almost doubled
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Figure 11: Normalized stress intensity factor for the anti-plane crack within a strip
under a pure mechanical load τ0.

Figure 12: Normalized EDIF for the anti-plane crack within a strip under a pure
mechanical load τ0.
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Figure 13: Normalized SIF for the anti-plane crack within a strip under a pure
electric load D0 = 0,38 ·10−10C/m2.

Figure 14: Normalized EDIF for the anti-plane crack within a strip under a pure
electric load D0 = 0,38 ·10−10C/m2.
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on the top and bottom surfaces than in the crack plane. Other material parame-
ters are uniform with values given in earlier examples. A pure impact load with
Heaviside time variation and initial electron density m0 = 109m−3 are considered.
Numerical results for normalized stress intensity factor are presented in Fig.15.

Figure 15: Influence of the shear modulus gradation on the SIF in a cracked strip
under a pure mechanical impact load with m0 = 109m−3.

For a gradation of mechanical material properties with x2 coordinate and a uniform
mass density, the wave propagation grows with x2 . Therefore, the peak value of the
SIF is reached in a shorter time instant in FGM strip than in a homogeneous one.
The maximum value of the SIF is only slightly reduced for the FGM cracked strip.

5 Conclusions

The meshless local Petrov-Galerkin method (MLPG) is developed for transient dy-
namic analyses of the anti-plane crack problem in continuously nonhomogeneous
PZ semiconductors. The analyzed 2-D domain of arbitrary shape is divided in-
to small subdomains for which local integral equations are derived. The moving
least-squares (MLS) scheme is adopted for approximating the physical quantities.

The numerical results revealed that initial density of electrons (carriers of electric
charge in n-type PZ semiconductors) has a strong influence on the induced electric
potential and electric displacement intensity factor (EDIF). With increasing elec-
tric current in PZ semiconductor, the EDIF is decreasing. It has been observed that
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energy release rate is less sensitive to the electric load and electric current for PZ
semiconductor as for non-conducting PZ solid. The influence of the ratio of crack
length to the specimen size on the energy release rate is investigated too. The sen-
sitivity of the energy release rate on the electric current and electric load decreases
with increasing crack length ratio.

One can observe that the initial electron density has vanishing influence on the
stress intensity factor (SIF) for a crack under a pure impact mechanical load. In
non-stationary case a pure electrical load yields a finite value of the SIF. More
distinct response is observed in non-conducting material than in the PZ semicon-
ductors. The normalized EDIF is almost invariable in time for both the conducting
and non-conducting PZ samples. The EDIF for conducting PZ material, however,
is significantly lower than that for the non-conducting PZ material.
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