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Simulation of Stress Concentration Problems by
Hexahedral Hybrid-Trefftz Finite Element Models
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Abstract: Hybrid-Trefftz stress finite elements have been applied with success
to the analysis of linear and non-linear problems in structural mechanics. Two
independent fields are approximated: stresses within the elements and displace-
ments on their boundary. The stress field satisfies the Trefftz constraint a priori,
i.e., it is extracted from the Navier equation solution. This type of element has
provided remarkable improvement in stress predictions compared to the standard
displacement-based finite elements. In this work, solution of stress concentration
problems is carried out by hexahedral hybrid-Trefftz stress element models. Stress
concentration factors and stress intensity factors are then identified and compared
with available results. The hierarchicalp-refinement strategy is exploited in the
numerical tests.

Keywords: Hybrid element, Trefftz element, stress concentration, hexahedral el-
ement.

1 Introduction

The displacement-based finite element models are traditionally the most current-
ly used in structural analysis because of their simplicity and general effectiveness.
However, there are certain analyses in which these models are not sufficiently ef-
fective. As an example, the stress field provided by them is likely to display greater
error than the displacement field. The reason for this behavior is that the stress field
is obtained by differentiation of the displacement field, and differentiation discloses
differences. Computed stresses are usually most accurate at locations within an el-
ement rather than on its boundaries. This is unfortunate because stresses of greatest
interest usually appear at boundaries. Therefore, stresses may be calculated at cer-
tain points within an element, then extrapolated to element boundaries, or treated
by some smoothing scheme. Stress smoothing is discussed by [Hinton and Camp-
bell (1974)]; Hinton, Scott and Ricketts (1975)]. The lower quality of the predicted
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stress field becomes yet worse in the presence of sharp geometric discontinuities
caused by cracks, holes, fillets and notches, where stresses are the most relevant
mechanical quantities [Cook, Malkus, Plesha and Witt (2002); Bathe (1996)].

Mixed, hybrid and mixed-hybrid formulations have been developed to offer some
advantages compared to the standard displacement-based formulation. A hybrid
stress finite element formulation, for instance, is based on the independent ap-
proximation of stresses within the element and displacements on its boundary. As
displacements are not favor over stresses or vice versa, a better stress description
permits the improvement of the stress approximation [Kardestuncer (1988)].

Trefftz elements, a kind of hybrid elements, are known to produce accurate stress
estimates. The strongest limitation in developing this type of element is the ful-
fillment of the Trefftz constraint, i.e., the stress bases must be extracted from the
Navier equation solution of the problem being analyzed. The derivation of such
bases may not be trivial. However, once these bases are secured, the advantages
offered by Trefftz elements are difficult to surpass as they combine the major fea-
tures of the competing finite element and boundary element methods [Freitas and
Cismasiu (2001)].

Many authors have proposed the enrichment of the original approximation func-
tions set with some novel functions. Singular solutions derived from [Williams
(1952)] biharmonic stress potential are implemented to the 2-D hybrid-Trefftz el-
ements to model high stress gradients [Freitas and Ji (1996a)] and crack problems
[Freitas and Ji (1996b)]. Exploring the clouds concept to define a support region
[Duarte, Babuška and Oden (2000)], the enrichment of the initial approximation
stress bases is introduced in the hybrid-Trefftz formulation for plane elasticity by
[Souza and Proença (2011)]. Singularities in crack problems are analyzed by Tre-
fftz elements with collocation method by [Li, Lu and Hu (2004)].

Construction of appropriate models for heterogeneous materials may involve a
formidable task due to the presence of numerous voids or inclusions and, conse-
quently, the stress concentration around them. To deal with such issue in an at-
tractive manner, [Dong and Atluri (2012a,b,c)] develop micromechanical models
based on special Trefftz elements with built-in voids or inclusions.

[Freitas and Bussamra (2000)] have presented hybrid-Trefftz stress elements for the
analysis of three-dimensional elastic problems: 6-face elements (hexahedrons) and
4-face elements (tetrahedrons). The stress bases are extracted from the Papkovitch-
Neuber solution of Navier equations for isotropic material, assigning Legendre and
Chebyshev polynomials to Papkovitch-Neuber potentials. These elements have
shown good performance in the analysis of three-dimensional solids: no locking
in the incompressibility or near incompressibility regime, low sensitivity to ele-
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ment distortion (deviation from a right-angle hexahedron) and good estimates for
stresses and displacements. In special, very low sensitivity to high aspect ratio
(ratio between the largest and smallest element edges) was reported for the hex-
ahedral elements in modeling thin plates. This formulation has been extended to
the elastoplastic analysis of solids [Bussamra, Pimenta and Freitas (2001)] and to
the analysis of laminated composite plates [Bussamra, Lucena Neto and Raimundo
(2012)].

The above element attributes, in addition to the symmetry, high sparsity and well
conditioning of the solving system, have motivated the use of the hexahedral ele-
ments presented by [Freitas and Bussamra (2000)] to handle thin plates with geo-
metric discontinuities. Solution of stress concentration problems is carried out and
comparison of the obtained stress concentration factors and stress intensity factors
is made with available results. The hierarchicalp-refinement strategy is exploited
in the numerical tests. It is shown that good results can be directly computed with
relatively coarse meshes.

2 Finite element formulation

Let V be the domain of a typical finite element and Γ its boundary. Let Γu and Γσ be
the portions of Γ on which displacements and tractions are specified, respectively.
The equilibrium equations and strain-displacement relations are

Dσσσ = 0 in V εεε = DTu in V, (1)

where u is the displacement vector, σσσ and εεε are vectors which collect the inde-
pendent components of stress and strain tensors and D is a differential operator.
Body forces and residual stress are not taken into account for simplicity. On the
boundary,

Nσσσ = tΓ on Γσ u = uΓ on Γu. (2)

Matrix N contains the components of the unit outward normal vector to Γ; vectors
tΓ and uΓ are the specified surface tractions on Γσ and displacements on Γu. The
stress-strain relations of a linearly hyperelastic material are denoted by

σσσ = kεεε inV, (3)

where k is the 6×6 material stiffness matrix.

2.1 Approximations

The Hybrid-Trefftz elements are based on the direct and independent approxima-
tions of stress σσσ in V and displacement ũ on Γσ and also on the interelement bound-
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ary Γi (Γu∪Γσ ∪Γi = Γ; Γu∩Γσ ∩Γi = /0):

σσσ = SX in V ũ = Zq on Γσ , Γi (4)

Matrices S and Z collect the approximation functions and vectors X and q collect
the corresponding weights.

The equilibrium equations can be expressed in terms of the displacement field by

DkDTu = 0 in V, (5)

known as Navier equations. Trefftz constraint requires a choice of S such that u
within the element satisfies (5). The stress is then determined from the displace-
ment by means of

σσσ = kDTu in V. (6)

If the displacement is written as

u = UX+ur in V, (7)

where ur collects the rigid-body displacement components and U collects functions
related to the displacement basis, one gets from (4) and (6)

S = kDTU in V. (8)

2.2 On the choice of U

Each column of U is stated as a Papkovitch-Neuber solution of (5) for isotropic
material:

−4(1−ν)ψψψ +∇(rT
ψψψ +φ) (9)

where ψψψ and φ are vector and scalar harmonic displacement potentials, respective-
ly, r the position vector, ∇ the gradient operator and ν the Poisson’s ratio [Slaughter
(2002)].

Legendre and Chebychev polynomials are attributed to ψψψ and φ , as explained in
[Freitas and Bussamra (2000)], in order to generate a displacement basis U. Linear-
ly dependent modes, i.e., linearly dependent columns of U, eventually introduced
in this process are eliminated. The stress basis (8) is then described by 186 com-
plete, linearly independent polynomial modes of degree dσ = 6. Higher degrees are
possible, but incomplete bases are generated. For degrees 7, 8 and 9, for instance,
the stress bases have 231, 278 and 326 independent modes with deficits of 6, 16
and 31 modes to be completed, respectively.
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A complete polynomial basis of degree dσ ≤ 6 is explicitly written in the computer
code. In this case, linearly dependent modes generated by Legendre and Chebyshev
associated polynomials have been detected and eliminated a priori from the stress
basis S. For greater polynomial degrees dσ > 6, polynomials are recursively cal-
culated so that linearly dependent modes detection and elimination are performed
during the solving system solution, when a zero, or an almost zero, pivot is found in
the Gauss elimination process. Construction of complete and linearly independent
sets of Papkovich-Neuber solutions in polynomial form can be found in [Fu, Yuan,
Cen and Tian (2012); Wang, Xu and Zhao (2012)].

2.3 On the choice of Z

Displacements on Γσ and Γi are approximated by independent hierarchical mono-
mial bases, following the Pascal’s triangle scheme in a local coordinate system
(ζ1, ζ2) with −1 ≤ ζi ≤ 1, assigned to each one of the 6 faces of the master cubic
element [Cook, Malkus, Plesha and Witt (2002)]. As there are three displacement
components, the number of independent displacement modes on each face is

n f =
3
2

(n+1)(n+2) (10)

for a polynomial of degree n.

2.4 Element matrices

The element is based on the variational expressions∫
Γ

(Nδσσσ)T udΓ−
∫

Γσ∪Γi

(Nδσσσ)T ũdΓ−
∫
Γu

(Nδσσσ)T uΓdΓ = 0

∫
Γσ∪Γi

δ ũTNσσσdΓ−
∫

Γσ

δ ũTtΓdΓ = 0, (11)

which require that the approximation of the stress field σσσ must be extracted from
the Navier equation solution and the approximation of the displacement field ũ must
be the same along the common boundaries of any two adjacent elements [Washizu
(1982); Fung and Tong (2001); Wunderlich and Pilkey (2002)]. There is no other
constraint to be satisfied.

The divergence theorem allows to write∫
V

δσσσ
T (DTur

)
dV =

∫
Γ

(N δσσσ)T urdΓ−
∫
V

(Dδσσσ)T urdV, (12)
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which reduces to∫
Γ

(Nδσσσ)T urdΓ = 0 (13)

since DTur and Dδσσσ are both null vectors. In view of (13), substitution of the
approximations (4) and (7) into (11) yields the discrete equations

FX−Aq = v

ATX = Q (14)

or[
F −A
−AT 0

]{
X
q

}
=

{
v
−Q

}
, (15)

where

F =
∫
Γ

(NS)T UdΓ A =
∫

Γσ∪Γi

(NS)TZdΓ

v =
∫
Γu

(NS)TuΓdΓ Q =
∫

Γσ

ZTtΓdΓ. (16)

All integrals in (16) are exactly integrated by Gauss-Legendre quadrature with the
minimum number of points required.

As σσσ is chosen independently for each element, X can be eliminated from the
element equation (15),

X = F−1 (v+Aq) , (17)

by assuming that the matrix F is nonsingular, to give

ATF−1Aq = Q−ATF−1v. (18)

Let nX and nq be the number of stress and displacement parameters in X and q.
Then

rank of ATF−1A≤min(nX ,nq−6) (19)

where 6 is the number of rigid body modes associated with the basis Z. The rank of
the matrix will be deficient and there will be spurious modes if nX < nq−6 [Fung
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and Tong (2001)]. In accordance with [Pian (1995); Pian and Wu (2006)], suppres-
sion of spurious modes, as it is done in this paper whenever a linearly dependent
mode is detected, is the practical procedure for satisfying the mathematical form of
a stability criterion, namely the LBB condition [Babuška (1973); Brezzi (1974)].
The restriction nX < nq−6 for an individual element is necessary, but not sufficient,
to ensure the satisfaction of the LBB condition.

A hybrid element becomes stiffer as the number nX increases, and usually becomes
more flexible as the number nq increases. One cannot say in general that a model
built of hybrid elements will be either stiffer or more flexible than the mathemati-
cally exact solution. The optimal relation between nX and nq should be found by
numerical experimentation.

Some comments are in order on the numerical solution of the assembled set of
equations of a finite element model. Because the assembled square matrix is sym-
metric and highly sparse, substantial memory is saved by storing only its nonzero
entries, located in the upper triangle, in a three-column matrix with each row con-
taining a nonzero entry and its position (row and column) in the original square
matrix. Sparsity, defined as the ratio between the number of zero elements of the
square matrix and its total number of elements, is typically greater than 99%. Sym-
bolic Cholesky decomposition is applied to reduce fill-in, and then direct Gauss
elimination method is applied to find the solution [Pissanetsky (1984)].

To increase the sparsity and also improve the conditioning a little more, the origin
of the local Cartesian coordinate system is positioned at each element centroid.
Material properties and geometric dimensions are scaled properly and advantage
has been taken of the fact that identical elements, wherever are placed, have the
same submatrix F.

3 Numerical tests

Three examples have been chosen to illustrate the performance of the hybrid-Trefftz
formulation in the analysis of stress concentration in plates subjected to a uniformly
distributed edge load q. All the examples are three-dimensional models of isotropic
rectangular plates with thickness h, length L, width H, Young’s modulus E and
Poisson’s ratio ν . The relevant data for the numerical analysis are summarized in
Tab. 1 (consistent units are used). Although just one layer of elements is adopted in
the thickness direction, the discretization can still be improved under p-refinement
in that direction.

Neither the formulation nor the approximation bases constrain the element geome-
try, which may be non-convex or multiple connected. However, and for simplicity,
only one cubic master element is employed.
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Table 1: Data for the numerical analysis

Example q E ν L H h
3.1 1 1 0.2 150 50 5
3.2 1 1 0.3 30 10 1
3.3 10 1 0.3 30 10 1

Several hybrid-Trefftz stress elements, identified by HTS(dσ ,du), are tested. The
symbol du stands for the degree adopted for displacement polynomial approxima-
tion in each element face and dσ , as already defined, is the degree of the stress
polynomial approximation. Elements with dσ > 6 will involve incomplete stress
basis.

3.1 Notched plate

The first set of tests is concerned with stress concentration factor calculation in a
double notched plate, as depicted in Fig. 1. The plate has half-circular notches with
radius r, the left edge fixed and the right one submitted to the action of a uniformly
distributed load q, and refers to a Cartesian coordinate system with the xy-plane
located in the plate midsurface.
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Figure 1: Notched plate.

Figure 2 shows the meshes used in the notched plate analysis, with 38, 36 and 52
elements. The convergence of the stress concentration factor Kt is verified with
different degrees of polynomial stress approximation dσ in the element domain
and displacements du in the element boundary. The stress concentration factor is
defined as the ratio between the maximum stress σxx, evaluated in the plate midsur-
face at (x,y) = (L/2, r) or (L/2, H− r), and the nominal stress σn = qH/(H−2r).

Figure 3 summarizes the results for Kt/Ktn obtained with r = 0.4 H, where the
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Figure 2:  Meshes for the notched plate problem 
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mesh 3 (52 elements) 

Figure 2: Meshes for the notched plate problem.

reference value Ktn = 1.141 is taken from

Ktn = 3.065−3.472
2r
H

+1.009
(

2r
H

)2

+0.405
(

2r
H

)3

(20)

given by [Pilkey and Pilkey (2008)] for an infinitely long plate in a state of plane
stress.

The contour of σxx/q depicted in Fig. 4 shows that the notches are sufficiently far
from the edges x = 0 and x = L to make insignificant the influence of longer plates
on the calculated Kt .

The midsurface distribution of σxx/σn along the plate width at x = L/2 is plotted in
Fig. 5a in a suitable scale to highlight the small interelement discontinuity. At this
point it should be remembered that the interelement traction continuity is enforced
to be satisfied only in a weak sense according to (11). It is also plotted in Fig.
5b the distribution of σxx/σn along the plate thickness at (x,y) = (L /2, r) or (L /2,
H− r), where the maximum value σxx/σn = 1.144 for the whole plate is shown.

Finally, results of Kt/Ktn given in Tab. 2 using different values of r/H confirm the
good performance of HTS(9,4) element in mesh 2. Although this model has 21501
degrees of freedom, the computing time to solve the linear system was 14 s due
to the advantage taken from the 99.42% matrix sparsity. The numerical tests was
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Figure 3: Results of Kt/Ktn for r = 0.4 H under p-refinement.
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Figure 4: Contour of σxx/q for r/H = 0.4 obtained with mesh 2 of HTS(9,4) ele-
ments.
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Figure 5: Distribution of σxx/σn for r = 0.4 H obtained with mesh 2 of HTS(9,4)
elements: (a) in the midsurface along the plate width at x = L /2; (b) along the plate
thickness at (x, y) = (L /2, r) or (L /2, H–r).

carried out in a PC-Computer with Intel Core Duo 2.93 GHz, 8 GB RAM, running
Windows XP.

3.2 Cracked plate

In the second set of tests, the stress intensity factor KI is evaluated for the cracked
plate depicted in Fig. 6. The notches of Fig. 1 are replaced by one crack of length
a and the 48-element mesh of Fig. 7 is used in the analysis.

As the plate is in a state of plane stress, the stress intensity factor is evaluated by
means of

KI =
√

EG. (21)
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Figure 6: Cracked plate.

 

 
 

 

 

 

 

Figure 7: 48-element mesh for the cracked plate problem.

The strain energy release rate

G =−1
h

∂U
∂a

(22)

has the derivative ∂U/∂a numerically replaced by the ratio between the strain en-
ergy change ∆U and the small value ∆a assigned to the crack extension. In the
present finite element formulation, the strain energy is evaluated from

U =
1
2

XTFX (23)

in which F refers to the assembled equation that comes from each element contri-
bution (15) and X results from the equation solution. The stress intensity factors
for several crack lengths obtained with 48-element mesh underp-refinement are
compared in Tab. 3 with

Kre f = β q
√

πa β =

√
2H
πa

tan
πa
2H

0.752+2.02 a
H +0.37

(
1− sin πa

2H

)3

cos πa
2H

(24)

found in [Tada, Paris and Irwin (2000)]. Figure 8 shows the contour of σxx/q in
a small region around the crack tip for a/H = 0.5 obtained with mesh of HTS(6,3)
elements. Although this model has 12798 degrees of freedom, it involves a 99.81%
sparse matrix.
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Table 3: Stress intensity factors obtained with 48-element mesh under p-refinement

a/H Kre f Eq. (24)
KI/Kre f

(4,2) (6,3) (7,3) (8,4)
0.1 2.119 1.011 0.999 0.994 0.996
0.2 3.426 1.018 1.005 1.004 1.000
0.3 5.081 1.022 1.006 1.002 1.005
0.4 7.473 1.019 1.002 0.997 1.004
0.5 11.203 1.017 0.998 0.987 1.041
0.6 17.554 1.020 0.996 0.994 0.943
0.7 29.898 1.025 0.998 0.995 0.999
0.8 60.122 1.037 1.003 0.995 1.000
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Figure 8: Contour of σxx/q around the crack tip for a/H = 0.5 obtained with mesh
of HTS(6,3) elements.

3.3 Kinked crack plate

In this third example, the crack of Fig. 6 is replaced by the kinked crack of Fig.
9. The 36-element mesh depicted in Fig. 10 is now used to evaluate the stress
intensity factor for a crack length a = 0.25

√
2H and a kink tip length t = 0.025 H.

The expression (21) is still used to evaluate KI , since the contribution of any crack-
opening mode to G, rather than mode I, is negligible in this problem as pointed
out by [Tracey and Cook (1977)]. Figure 11 shows the results of KI/Kre f under
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Figure 9: Kinked crack plate.

 

Figure 10: 36-element mesh for the kinked crack plate problem
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Figure 11: Results of KI/Kre f under p-refinement.

p-refinements, where the reference value

Kre f = 1.52q

√
1.1π

4
H = 44.677 (25)

is found in [Tracey and Cook (1977)].

The result obtained with mesh of HTS(9,4) elements are compared in Tab. 4 with
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results obtained using special crack element models. The HTS(9,4) model has
16893 degrees of freedom, but deals with a 99.65% sparse matrix.

Table 4: Stress intensity factor KI .

Kre f

Eq. (25)
Tracey and Cook

(1977)
Maiti
(1992)

Freitas and Ji
(1996b)

HTS (9,4)

44.677 42.890 44.621 44.751 44.497

4 Conclusions

The results show that the hexahedral hybrid-Trefftz elements can handle three-
dimensional modeling of thin plates with geometric discontinuities. Good con-
vergence rates under p-refinement are observed even for coarse meshes around the
discontinuities. Accurate estimates for stress concentration factors and stress in-
tensity factors are found. Many degrees of freedom are involved, but substantial
memory and computing time are saved in the assemblage and problem solution by
taking numerical advantage of the high sparsity, that has been greater than 99%.
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