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Abstract: In this paper, a novel double iteration process for solving the nonlin-
ear algebraic equations is developed. In this process, the outer iteration controls the
evolution path of the unknown vector x in the selected direction u which is deter-
mined from the inner iteration process. For the inner iteration, the direction of evo-
lution u is determined by solving a linear algebraic equation: BTBu = BTF where
B is the Jacobian matrix, F is the residual vector and the superscript “T” denotes
the matrix transpose. For an ill-posed system, this linear algebraic equation is very
difficult to solve since the resulting leading coefficient matrix is ill-posed in nature.
We adopted the modified Tikhonov’s regularization method (MTRM) developed by
Liu (Liu, 2012) to solve the ill-posed linear algebraic equation. However, to exact-
ly find the solution of the evolution direction u may consume too many iteration
steps for the inner iteration process, which is definitely not economic. Therefore,
the inner iteration process stops while the direction u makes the value of a0 being
smaller than the selected margin ac or when the number of inner iteration steps
exceeds the maximum tolerance Imax. For the outer iteration process, it terminates
once the root mean square error for the residual is less than the convergence crite-
rion ε or when the number of inner iteration steps exceeds the maximum tolerance
Imax. Six numerical examples are given and it is found that the proposed method is
very efficient especially for the nonlinear ill-posed systems.
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1 Introduction

The engineering or physical problems are sometimes modeled as nonlinear equa-
tions. After discretization, a system of nonlinear algebraic equations is then needed
to be solved. Unlike the linear algebraic equation system, there exist not many
solvers for the nonlinear algebraic equation system. Among these nonlinear e-
quation solvers, they can be categorized into two folds: iteration and evolution
dynamics.

For the group of iteration, most well-known methods are Newton’s method [T-
jalling (1955)] and Landweber iteration method [Landweber (1951)]. The former
one is very efficient for solving nonlinear equation however it is not appropriate
to adopt this method for the ill-posed system since the inverse of Jacobian ma-
trix is not easy to obtain. The later one is less efficient than the Newton’s method
while dealing with the well-posed problem but is more stable when dealing with
the ill-posed problem. However, the Landweber iteration method cannot deal with
severely ill-posed system and most of times the Tikhonov’s regularization method
[Tikhonov and Arsenin (1977)] is required.

For the group of evolution dynamics, a system of the first order ordinary differ-
ential equations of the unknowns is constructed and the trajectory of the unknown
will approach to the fixed point of this ODE system which is the solution of the o-
riginal algebraic equation system [Ramm (2007)]. The homotopy method [Billups
(2002)], the scalar homotopy method [Liu, Yeih, Kuo and Atluri (2009)], the fic-
titious time integration method [Ku, Yeih, Liu and Chi (2009)] and so on can be
categorized in this group.

No matter the iteration method or the evolution dynamic method is adopted, the un-
known vector changes according to some known direction for most methods. For
example, the Newton’s method uses the direction of B−1F where the superscript
‘-1’ denotes the inverse of a matrix, Landweber iteration method and the expo-
nentially convergent scalar homotopy algorithm (ECSHA) [Chan, Fan and Yeih
(2011)] use the direction of BT F. The fictitious time integration method (FTIM)
and the dynamic Jacobian inverse free method (DJIFM) [Ku, Yeih and Liu (2011)]
adopt the direction of F. Liu [Liu and Atluri (2011a)] proposed to use two direction-
s at the same time and he found the optimal combination of these two directions.
[Yeih, Ku, Liu and Chan (2013)] extended this idea and answered the question for
finding the optimal combination for multiple directions. All these methods adopt
one or a combination of multiple known directions, however, generally speaking
adopting a known direction or a combination of multiple known direction cannot
guarantee it will be the best one for all problems. Later in the article, it will be
found that theoretically the optimal direction will be the direction of B−1F if the



Ill-posed Nonlinear Algebraic Equations 125

inverse of the Jacobian matrix does exist. However, for the ill-posed problem or
some special cases the inverse of the Jacobian matrix does not exist or cannot be
found in the numerical sense the optimal searching direction used in the iteration
process or evolution dynamics method is then not proposed to authors’ best knowl-
edge. To overcome the ill-posed nature, the abovementioned alternatives such as
the Landweber iteration, the fictitious time integration method and so on adopt oth-
er directions than the direction of B−1F such that the numerical process will be
stabler. The problem is these methods show slow convergence rate which makes
solving the nonlinear ill-posed problem become not economic in numerical sense.
Especially when the large scale problem is encountered, computation effort to deal
with the ill-posed nature then becomes awful and not acceptable for engineers.

The method proposed here combine two recent developed methods: the residual
norm based algorithm and the modified Tikhonov’s regularization method. The
followings give a brief review of these two methods. Recently, the residual norm
based algorithm (RNBA) has been proposed to deal with the nonlinear algebraic
equation system. [Liu and Atluri (2012); Liu and Atluri (2011b)] The RNBA basi-
cally is a type of the scalar homotopy method [Liu, Yeih, Kuo and Atluri (2009)]
where the trajectory of the unknown vector is required to lie on the space-time man-
ifold. The RNBA constructs an iteration process from the evolution dynamics when
the evolution direction u is selected. Later, Liu (2013) reported that the value of
the relaxation parameter in RNBA has an optimal value. The modified Tikhonov’s
regularization method (MTRM) [Liu (2012)] proposed an iteration to solve the
solution for an ill-posed linear system. In the same paper, Liu also proposed a
generalized Tikhnov’s regularization method (GTRM) to solve the ill-posed lin-
ear system. The MTRM is very similar to conventional Tikhonov’s regularization
method which adds a regularization parameter in the diagonal line of the leading
coefficient matrix while the GTRM adds regularization parameters in the diago-
nal line and the determination for these regularization parameters depend on the
equilibrate matrix concept.

In this article, we develop a novel double iteration process to deal with the non-
linear algebraic equation systems. For outer iteration process, the evolution path
of the unknown vector follows the searching direction determined from the inner
iteration process and the process requires the path falls on the space-time manifold
such that the convergence rate can be guaranteed. To determine the searching direc-
tion, we solve a linear algebraic equation system: BTBu = BTF. For a well-posed
problem, it can be easily proved that the direction u for the above problem is B−1F.
However, for the ill-posed problem the above linear system cannot be solved due
to the ill-posed nature. We adopt the modified Tikhonov’s regularization method
(MTRM) [Liu (2012)] to iteratively approach the solution for the above linear sys-
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tem. However, for ill-posed problems to really find the solution of u may require
too many iteration steps for the modified Tikhonov’s regularization method which
makes the whole numerical process not economic at all. Therefore, we propose
that the inner iteration process should stop while the direction u already makes the
value of a0 being smaller than the prescribed critical value ac(it should be small-
er than 4 to guarantee the path falls on the manifold) or while the number of the
iteration steps for the current inner iteration process exceeds the prescribed maxi-
mum tolerance value says Imax. The former criterion loosen the problem for solving
BTBu = BTF exactly (for which the value of a0 should be one exactly) by finding
an approximated direction such that a0<ac and the path is still guaranteed on the
manifold. The later criterion avoids consuming too many iteration steps for the
inner iteration process. It means when one needs to consume too many iteration
steps for the inner iteration process the numerical process becomes not economic
and should be stopped immediately. Six numerical examples are illustrated to show
the validity and efficiency for the proposed method. It is found that the proposed
method show excellent efficiency especially for the ill-posed nonlinear problem.
Aside this section, other sections will be arranged as the followings. In the second
section, the mathematical backgrounds used in this article will be introduced. In
the third section, six numerical examples including the Brown’s problem, the stag-
nant point problem, the nonlinear Fredholm integral equation of the first kind, the
problem of determining the unknown boundary for the biharmonic equation, the
problem of finding the thermal conductivity and the temperature for the heat equi-
librium equation by prescribing the surface temperature and the surface distribution
of thermal conductivity in advance and the inverse Cauchy problem for the nonlin-
ear semi-linear partial differential equation. In the final section, the conclusions
will be drawn based on the results from this article.

2 Mathematical backgrounds

2.1 Residual Norm Based Algorithm (RNBA)

The following derivation can be found in many related articles such as [Liu and
Atluri (2012); Liu and Atluri (2011b)]. Let us begin with a nonlinear algebraic
system written as:

F(x) = 0, (1)

where F denotes the residual vector and x denotes the unknown vector. To solve this
nonlinear algebraic equation system, we formulate an equivalent scalar equation
written as

‖F(x)‖2 = 0. (2)
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It is obvious that solving equation (1) is equivalent to solving equation (2) and vice
versa. Now let us construct a space-time manifold as:

h(x, t) =
1
2
‖F(x)‖2− 1

2
1

Q(t)
‖F(x0)‖2 = 0 (3)

where x0 is the initial guess and Q(t) satisfies that Q(t) > 0, Q(0) = 1, and it is a
monotonically increasing function of t with Q(∞) = ∞.

In order to keep the trajectory of the solution x on the manifold, the following
consistency equation should be satisfied:

Dh
Dt

=
∂h
∂ t

+∇h · dx
dt

= 0, (4)

where ∇denotes the gradient operator. Since equation (4) is a scalar equation, it is
not possible to determine the evolution of the unknown vector (i.e., dx

dt ) uniquely.
Let us assume that the evolution of the unknown vector is in the direction of u and
we have:

ẋ =
dx
dt

= λu, (5)

where λ is the proportional constant. After some manipulations, we can obtain the
evolution equation of x as

ẋ =− Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)v
u (6)

where v=Bu. Now let us consider the evolution of the residual vector as:

Ḟ(x(t)) = Bẋ. (7)

Substituting equation (6) into equation (7), we then obtain:

Ḟ(x(t)) =
−Q̇(t)
2Q(t)

‖F(x)‖2

FT(x)v
v (8)

Using the forward Euler scheme, we can discretize equation (8) as:

F(x(t +∆t)) = F(x(t))−∆t
Q̇(t)

2Q(t)
‖F(x)‖2

FT (x)v
v. (9)
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where ∆t is the time increment. Using equation (9), one can have ‖F(x(t))‖2 =
‖F(x0)‖2

Q(t) and ‖F(x(t +∆t))‖2 = ‖F(x0)‖2

Q(t+∆t) .

Taking square norm of the above expressions and using β := ∆t Q̇(t)
2Q(t) and equation

(9), one can derive an algebraic equation as:

‖F(x0)‖2

Q(t +∆t)
=
‖F(x0)‖2

Q(t)
−2β

‖F(x0)‖2

Q(t)
+β

2 ‖F(x0)‖2

Q(t)
‖F(x)‖2

(FT (x)v)2 ‖v‖
2 .

Consequently, an algebraic equation for β is obtained as:

a0β
2−2β +1− Q(t)

Q(t +∆t)
= 0, (10)

where a0 =
‖F(x)‖2‖v‖2

(FT (x)v)2 =
{
‖F(x)‖‖v‖
(FT (x)v)

}2
=
( 1

cosθ

)2 in which θ denotes the angle be-
tween the residual vector F and the vector v.

From the Cauchy-Schwarz inequality, it can be easily verified that a0 ≥ 1. Now
let us define s := Q(t)

Q(t+∆t) =
‖F(x(t+∆t))‖2

‖F(x(t))‖2 , it can be found that this ratio s is the ratio
between the square norm of the residual vector in the next state and the square
norm of the residual vector in the current state. It is for sure that we hope s ≤ 1,
such that for each state the norm of the residual vector decreases. The equation
(10) now can be rewritten as a0β 2−2β +1− s = 0 and we can obtain real-valued

β =
1−
√

1−(1−s)a0
a0

if 1-(1-s)a0 ≥ 0. For simplicity, we let 1− (1− s)a0 = r2 (r is
a relaxation parameter which will be explained later) and use the definition of a0,
one can obtain:

s = 1−
(
1− r2

)(
FT (x)v

)2

‖F(x)‖2 ‖v‖2 . (11)

Now let us use the forward Euler scheme on equation (6), we can obtain the fol-
lowing equation

x(t +∆t) = x(t)− (1− r)
(FT (x)v)

‖v‖2 u. (12)

For a selected value of r, we can rewrite equation (12) as an iteration formula [Liu
and Atluri (2011b)]:

xk+1 = xk− (1− r)
FT (xk)vk

‖vk‖2 uk. (13)
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In the above equation, the relaxation parameter is used to make the iteration stabler.
In a recent published paper, Liu (2013) further found the value of r needs to satisfy
the following relationship to guarantee the trajectory of x remains on the manifold:

r =
∥∥∥1− a0

2

∥∥∥ . (14)

And Liu (2013), Ku and Yeih (2012) all reported that the value of a0 is between 1
and 4 if we hope the trajectory of x remain on the manifold. From the definition
of a0, we know that the value of a0 relates to the vector F and v (or equivalently
u). The problem now is how to find a vector v (or equivalent u) such that a0 is
between 1 and 4. If such a direction is found, we then select the value of r as r =∥∥1− a0

2

∥∥ in equation (14). To find an appropriate direction u then becomes the key.
Theoretically speaking, if a0=1 then the residual norm decreases in the fast manner.
This means that the best direction u will satisfy that Bu−F = 0 (or u = B−1F
if the inverse of the Jacobian matrix exists), it means that the Newton’s iteration
method is the best iteration. However, for ill-posed systems to seek the inverse
of the Jacobian matrix sometimes is impossible due to its numerical instability.
Therefore, one requires an algorithm to find an appropriate u for the nonlinear
ill-posed systems. To achieve this, we first give a brief review of the modified
Tikhonov’s regularization method (MTRM) as the following subsection describes.

3 Modified Tikhonov’s Regularization Method (MTRM)

The regularization technique is well-known for dealing with an ill-posed system.
There exist many literatures mentioning the regularization technique. For readers’
convenience, the following references can provide a conceptual understanding for
the regularization technique. [ Lin, Chen and Wang (2011); Wang, Chen and Ling
(2012); Fu, Chen and Zhang (2012)]

The details of the following descriptions can be found in [Liu (2012)]. Considering
the following linear algebraic system as:

Bu = F (15)

and we use the following preconditioner written as:

P1 = BT + ᾱB+, (16)

where B+ is the pseudo-inverse with B+B = I.

and apply this preconditioner to equation (15) then we will obtain(
BT B+ ᾱI

)
u = BT F+ ᾱu. (17)
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It is quite interesting to find that the regularized equation in equation (17) is very
similar to that of the conventional Tikhonv’s regularization method. However, in
equation (17) the regularization parameter appears in the both sides of equation
while for the conventional Tikhonov’s regularization method it appears only in the
left-hand side.

Liu (2012) proposed that one can use equation (17) to formulate an iteration process
as:(
BT B+ ᾱI

)
up+1 = BT F+ ᾱup (18)

The convergence criterion of the iteration process for equation (18) can be set as:
‖up+1−up‖ ≤ ς where ς is a preselected small tolerance. Liu also provided a
theoretical proof of the convergence as the following theorem states:

[Theorem 1] For Eq. (18) with ᾱ >0 the iterative sequence upconverges to the true
solution utrue monotonically.

Although the convergence of the sequence is guaranteed, in computation reality
to reach the final numerical convergence it may takes too many steps such that it
becomes not economic at all. It means that if one tries to find the solution of an
ill-posed linear system, a lot of computation effort will be paid for the iteration
process (equation (18)) and sometimes it makes this iteration not economic at all.

This algorithm needs to be further examine while it is used to solve the best di-
rection u such that Bu-F=0 since for each step in the iteration process stated in
equation (13) for solving the nonlinear problem this linear algebraic equation Bu-
F=0 needs to be done if one tries to find the optimal direction. However, to find
the solution of this linear problem may cost too many iteration steps for iteration
process equation (18). Remember that we are not really interested in finding the
best direction we only want to find an appropriate u such that a0 is between 1 and 4.
Therefore, we can check this criterion for each step of the inner iteration (equation
(18)) and terminate the inner iteration as the value of a0 is less than a prescribed
critical value ac. Of course, it may take too many steps to let a0 being less than this
prescribed critical value ac. We say that if the number of iteration steps for the in-
ner loop exceeds a preselected maximum number Imax, we then stop the inner loop
as well as the outer loop. It means that to find an appropriate direction of evolution
using the proposed algorithm already becomes not economic and the whole process
should be terminated.

4 Double Iteration Process (DIP)

Based on the abovementioned theoretical backgrounds, we proposed a double iter-
ation process as the followings.
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Double Iteration Process (DIP):
Double Iteration Process (DIP): 

Give initial guess x0 

Give prescribed parameters  ,  . 

Outer Iteration: 

For k=0,1,2,… Repeat 

Calculate the residual vector Fk(xk) and the Jacobian matrix Bk(xk) 
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  Give the initial guess of u as 0
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If RMSE   or (b) is true then the outer iteration process stops; otherwise continue.  

End of Outer Iteration Process. 

 

It is worth mentioned here that the initial guess in the inner iteration uses the de-
scent direction. Actually, one can select other alternatives such as u0=0. How the
initial guess for the inner iteration process influences the accuracy and efficiency
of DIP leaves as an open question and in this article we use the initial guess as
mentioned above. The DIP can be summarized in the flow chart in Fig. 1.

From the abovementioned double iteration process, we can find that the proposed
method does not really try to solve the linear algebraic equation Bu-F=0 since it
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Figure 1: The flow chart of DIP.
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is expected that for the ill-posed system it may take too many iteration steps to
accomplish this for the inner iteration and it definitely costs too much. In order to
avoid using much computation effort, we say once the value of a0 is less than the
prescribed value ac we claim that the appropriate direction has been found already.
Of course we need to remind ourselves that while ac approaches to one the inner
iteration takes more and more steps. And we expect that to find an appropriate
direction may still require unreasonably many steps so we say that once the iter-
ation steps exceed that maximum value Imax we can stop the whole process since
it becomes not economic for further searching. The appropriate values of ac , ᾱ

and Imax influence the convergence speed a lot and how to choose them leaves as
an open question.

According to our numerical experiences, the value of ac is suggested to in the range
from 2.5 to 4. Once the value of ac is less than 2.5, to seek the appropriate direction
in the inner loop then consumes too many iteration steps. The value of Imax actually
depends on the selection of ac. If the value of ac is between 2.5 and 4, the value of
Imax is suggested to be in the range of 30,000 to 80,000 according to our numerical
experiences. The selection of ε depends on the system we want to solve. If the
system is a well-posed system, the value of ε can be very small such as 10−7.
However, if the system is an ill-posed system the value of ε should not be very big
and usually 10−3 or 10−4 is appropriate. It should be mentioned here that actually
for an ill-posed system the value of ε can be set as a small value for DIP since this
tight convergence criterion cannot be reached and the whole DIP will be terminated
due to the number of the inner iteration steps exceeds the maximum value Imax. It
means the selection of ε is not critical at all. The value of ᾱ needs to be larger than
the smallest eigenvalue of BT B which varies step by step. In calculation reality,
a big enough value is selected. However, if ᾱ is too big the iteration process for
eq.(18) becomes slow.

5 Numerical Examples

[Example 1] In this example, we consider an almost linear problem [Brown (1973)]:

Fi = xi +
j=n

∑
j=1

x j− (n+1) = 0, i = 1, · · · ,n−1 and Fn =
j=n

∏
j=1

x j−1 = 0 (19)

with a closed-form solution as xi = 1, for i = 1, · · · ,n. We select n=100 and the
initial guess of the unknown is set as x0 =

[
0 · · · 0

]T . It is easy to find that
for the initial guess point the associate Jacobian matrix is singular, i.e., the inverse
of the Jacobian does not exist at all. The parameters used for the double iteration
process are ᾱ=0.1, ac=2.5, Imax=20000 and ε=10−7. From Fig. 2, we can find that
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Figure 2: The RMSE versus the number of steps for the outer loop in example 1.

Figure 3: The value of a0never exceeds ac.
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Figure 4: The absolute error for the k-th component in the solution vector x.

after 34 steps for the outer loop the RMSE reaches the convergence criterion. In
addition, we can find from Fig. 3 that for each step for the outer loop the value
of a0 never exceeds the critical value ac =2.5. From Fig. 4, one can find that the
numerical solution is very close to the exact solution and the maximum absolute
error occurs for the last component of the solution vector x, i.e., x(100). Neverthe-
less, the maximum absolute error is less than 10−4. It is worth mentioned here if
one tries to solve this problem by the conventional Newton method using the initial
guess given above, he will not obtain correct solution since the Jacobian matrix
becomes singular.

[Example 2] In this problem, we consider the following simple system:

F1 (x1,x2) = x2
1 + x2

2−2 = 0,
F2 (x1,x2) = e(x1−1)+ x2

2−2 = 0,
(20)

where B =

[
2x1 2x2

e(x1−1) 2x2

]
.

This is an interesting example because the iteration for Newton’s method fails when
the initial guess is selected as (3,5) as shown in Fig. 5. As the trajectory approaches
to x1 = 3.5192 during the iteration, it happens x2 ≈ 0.0. It then is found that the
Jacobian matrix now is nearly singular. This leads the trajectory of (x1,x2) oscil-
lates at the axis for x1 = 3.5192 as shown in Fig. 5. It means that the conventional
Newton method fails for this case. We now use the double iteration process to solve
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Figure 5: Trajectory for the solution using the Newton method.

Figure 6: RMSE versus the number of iteration steps for the outer loop in example
2.
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Figure 7: The value of a0 never exceeds the critical value ac=2.0.

Figure 8: The trajectory of the solution for the double iteration method.
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this problem with the initial guess is set as (x1,x2) = (3,5). The parameters used
for the double iteration process are ᾱ=10, ac =2.0, Imax=30000 and ε=10−6. It is
found from Fig. 6 that the process terminates after 31 steps for the outer loop. We
check the plot of a0 as shown in Fig. 7 and we find out that a0 never exceeds the
critical value ac =2.0 which once more shows that our method really can guarantee
the trajectory of the solution vector falls on the manifold. The trajectory of the
solution is shown in Fig. 8.

[Example 3] A classical example of an ill-posed problem is the nonlinear Fredholm
integral equation of the first kind which is well known as a nonlinear ill-posed
problem. The problem we consider is written as:

1∫
0

x(s)x(t)dt = Acos
(
β̄ s
)
, A > 0 (21)

where A and β̄ are constants. We let A=1 and β̄ = 3 in the followings. We give
data for Acos(β̄ s) in the region s ∈ [0,1] by equally dividing the region into 200
segments, that means totally 201 data points are used. The data has disturbed by
maximum 5% relative error. Therefore, we also use these 201 points as the integra-
tion quadrature points and the trapezoidal rule is used for integration.

Two exact solutions exist: x(s) = ±
√

Aβ

sinβ
cos(β s) = ±

√
3

sin3 cos(3s) [Polyanin

and Manzhirov (2007)]. The initial guess are given as x(t) = 10.0 for t ∈ [0,1] and
the following parameters are used: ᾱ=0.1, ac =2.5, Imax=30000 and ε=10−3. The
reason why the value of ε is not very small in comparison with the previous two
examples is that this problem is ill-posed in nature and therefore the convergence
criterion can be larger. From Fig. 9, one can find that after 30 steps for the out-
er loop the solution converges to the requirement. It can be found from Fig. 10
that the numerical solution is acceptable for an ill-posed problem with maximum
5% relative absolute random error in data. The relative absolute random error per-
centage (RAREP) for a given data xgiven (from numerical calculation or prescribed
value) is defined as:

RAREP =
‖xgiven− xtrue‖
‖xtrue‖

×100%

The proposed method shows excellent noise resistance for the ill-posed nonlinear
problem.

[Example 4] The following problem appeared in [Chan and Fan (2013)]. Here we
consider a boundary detection problem with the governing equation is the bihar-
monic equation. The boundary enclosing the computational domain is defined by
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Figure 9: RMSE versus number of iteration steps for the outer loop in example 3.

Figure 10: The solution of a Fredholm integral equation of the first kind.
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the parametric equation:

Γ0 = {(x,y) |x = ρ cosθ ,y = ρ sinθ ,0≤ θ ≤ 2π } (22)

where

ρ (θ) = 1+ cos2 (4θ) . (23)

For 0≤ θ ≤ π , we prescribe four boundary data as

u(x,y) = p1 (x,y) (24)

∂u(x,y)
∂n

= p2 (x,y) (25)

w(x,y) = ∇
2u(x,y) = p3(x,y) (26)

∂w(x,y)
∂n

= p4(x,y). (27)

For π < θ ≤ 2π , only the Dirichlet boundary data is given but the geometry or the
lower part is missing. We assume that the designed field property is written as:

u(x,y) = ex cosy+ x3− y3 +2. (28)

To recover the missing boundary and solve the field quantity at the same time makes
this problem becomes a nonlinear ill-posed inverse problem. To solve this problem,
we adopt the same discretization method used in [Chan and Fan (2013)], that means
the modified Trefftz collocation method is used. For the known boundary, totally 60
points are arranged and 40 points are used for the unknown boundary and the initial
guess of the missing boundary is a half circle. The characteristic length used in this
problem is 3.0 and the order for the basis is 24. That means totally we have 98
Trefftz basis functions, for more details please refer to [Chan and Fan (2013)]. The
parameters used for double iteration process are: ᾱ=10, ac =2.5, Imax=50000 and
ε=10−3. It can be found from Fig. 11 that the RMSE never reaches the requirement
and the whole process terminates for the number of iteration steps for the inner
loop is equal to 22. The reported CPU time is 106.69 sec using the Pentium ®
dual core CPU E5200 at 2.5GHz. The accumulated steps for the inner loop are
70659 steps. We further examine the plot of a0 as shown in Fig. 12, the value
of a0 exceeds the critical value ac and it seems that further seeking an appropriate
vector u becomes numerically uneconomic. However, we can find in Fig. 13 that
the recovering shape for the missing boundary is already acceptable. The proposed
method can automatically stop while further reducing the norm of residual vector
becomes difficult and stops at that time still yield acceptable result.
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Figure 11: RMSE versus the number of iteration step for the outer loop in example
4.

Figure 12: The value of a0 exceeds ac in example 4.
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Figure 13: The recovery of missing boundary. ( -.-: known boundary; -.- : initial
guess for the unknown boundary; - +-: exact unknown boundary; -+-: recovery of
missing boundary using data with maximum 1% relative error)

[Example 5] In the following, an inverse problem is given as :

∇ · (σ (x) ·∇u(x)) = 0 for x ∈Ω

where Ω is the interested domain.

The field quantity u and the conductivity σ is both unknown. The boundary values
of the field quantity and conductivity are given as boundary conditions:

u(x) = f1 (x) for x ∈ Γ, (29)

σ (x) = f2 (x) for x ∈ Γ (30)

where Γ is the boundary enclosed the interested domain. The domain we consider
is a square region and x ∈ [0,1] and y ∈ [0,1]. The designed exact solutions for the
field quantity and the conductivity are given as

u(x,y) =
xy

1+0.2x+0.4y+0.15xy
(31)

and

σ (x,y) = (1+0.2x+0.4y+1.5xy)2. (32)
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We use finite difference to discretize the domain by using a 31 by 31 mesh. Max-
imum 5% relative random errors are added in the data both in the surface field
quantity as well as the surface conductivity. The parameters used for the double
iteration process are: ᾱ=0.1, ac =2.5, Imax=30000 and ε=10−5. It reports that the
process terminates for the number of steps for the outer loop is equal to 22 and the
RMSE is lower than the requirement. The solutions for the field quantity and the
conductivity are shown in Fig. 14 (a) and (b), respectively. The absolute error of the
field quantity is illustrated in Fig. 15(a) while the relative error of the conductivity
is illustrated in Fig. 15(b). The absolute error (AE) is defined as:

AE: = ‖unum−utrue‖

where unum is the numerical solution and utrue is the analytic solution.

From these figures, we can say that the current approach gives accurate result and
this method has good noise resistance.

[Example 6] In the following, a nonlinear inverse Cauchy problem for a quasi-linear
PDE is considered as:

∇
2u = 4u3 (33)

in a square region with x ∈ [0,1] and y ∈ [0,1].

The Cauchy boundary conditions are given on x=0 and x=1 while no boundary data
are given on y=0 and y=1. Maximum 2% relative random errors are added into
data. The designed solution is u = 1

1+x+y . The forward problem of this nonlinear
PDE can be found in [Liu (2008)]. The multiple quadrature radial basis function-
s are used to represent the field quantity. The radial basis function is written as

ϕi j =
√

c2 + r2
i j with ri j ≡

√
(xi− x j)

2 +(yi− y j)
2 and c=1.5. Totally we arrange

30×30 mesh for the domain and boundary. It means we have 120 boundary points
and 780 inner points. Parameters used for the double iteration process are: ᾱ=0.01,
ac =3.5, Imax=50000 and ε=10−4. The initial guess for the weight of each radial
basis function is equal to 0.001. After we obtain the weights for each radial ba-
sis functions, we use total 60x60 mesh to represent the solution. The contours for
the exact solution and numerical solution are given in Fig. 16. Although this re-
sult is not so well as previous examples, for an ill-posed nonlinear system like this
problem it is acceptable. The relative error percentage contour plot is illustrated in
Fig. 17 and one can see that the maximum relative error percentage is about 5%
while the maximum error in the boundary data is 2% which indicates that nonlin-
earity of the system may amplify the error. It should be mentioned here that in this
case the process is terminated because the number of steps of inner loop exceeds
Imax=50000.
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Figure 14: Numerical solutions for (a) the field quantity (b) the conductivity. (-+-:
the exact solution; —: numerical solution)
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Figure 16: Comparison between the exact solution and the numerical solution.

Figure 17: The absolute relative error percentage contour plot for example 6.
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6 Conclusions

In this paper, a novel double iteration process for solving the nonlinear ill-posed
system is proposed. The appropriate direction of evolution is determined from the
inner loop which is based on the modified Tikhonov’s regularization method. In
order to avoid consuming too much computation effort, the whole process will be
terminated when the number of iteration steps for the inner loop exceeds the max-
imum prescribed value. In such a case, it is said to further seek for the appropriate
direction of evolution is computationally uneconomic and thus one should stop w-
hole process. However, from numerical results we can observe that the numerical
result is still acceptable. In other words, the proposed method is efficient and robust
for solving the nonlinear ill-posed systems. Six examples are given to illustrate the
validity for the proposed method.

Acknowledgement: The authors would like to express their thanks to H. F. Chan
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