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Numerical Solution of Fractional Fredholm-Volterra
Integro-Differential Equations by Means of Generalized

Hat Functions Method

Baofeng Li1

Abstract: In this paper, operational matrix method based on the generalized hat
functions is introduced for the approximate solutions of linear and nonlinear frac-
tional integro-differential equations. The fractional order generalized hat function-
s operational matrix of integration is also introduced. The linear and nonlinear
fractional integro-differential equations are transformed into a system of algebra-
ic equations. In addition, the method is presented with error analysis. Numerical
examples are included to demonstrate the validity and applicability of the approach.
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1 Introduction

Fractional calculus has been known for more than 300 years. These fractional phe-
nomena allow us to describe a real object more accurately than the classical integer
order methods. As we all know, the nature of real objects is fractional. Howev-
er, for many of them the fractionality is very low. The fractional system describes
many typical examples, such us the voltage current relation of a semi-infinite lossy
transmission line [Wang (1987)], the diffusion of heat through a semi-infinite sol-
id, where heat flow is equal to the half derivative of the temperature [Westerlund
(2002)]. In recent years, there are a lot of methods for approximation of fractional
derivatives and integrals can be used in wide filed of applications. Fractional order
calculus plays an important roles in electrical engineering [Nakagava and Sori-
machi (1992)], physics [Valdes-Parada; Ochoa-Tapia; Alvarez-Ramirez (2007)],
signal processing [Vinagre and Chen(2003); Tseng (2007)], robotics [Maria da
Graca Marcos, Duarte, Tenreiro Machado (2008)], chemistry [Oldham and Spanier
(1974)], chaos [Tavazoei and Haeri (2008)], and so on. In general, it is difficult
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to derive the analytical solutions to most of the fractional differential equation-
s. Therefore, it is important to develop some reliable and efficient techniques to
solve fractional differential equations [Chen, Yi, Chen and Yu (2012); Yi and Chen
(2012); Chen, Sun, Li and Fu (2013)]. The numerical solutions of fractional differ-
ential equations have attracted considerable attention from many researchers. The
most commonly used methods are Variational Iteration Method [Zaid M. Odibat
(2010)], Adomian Decomposition Method [EI-Kalla (2008) and Hosseini (2006)],
and Generalized Differential Transform Method [Shaher and Zaid (2007); Zaid
and Shaher (2008)]. Wavelet basis approach has also been successfully employed
to solve the factional differential equations.

The motivation of this paper is to extend the application of generalized hat functions
to provide approximate solution of linear and nonlinear integro-differential equa-
tions of fractional order. The linear and nonlinear integro- differential equations of
fractional order can be solved by many numerical methods. Saeedi and Moghadam
[Saeedi and Moghadam (2011)] applied CAS wavelets method to solve the numer-
ical solution of nonlinear Volterra integro-differential equations of fractional order
and nonlinear Fredholm integro- differential equations of fractional order. In Ref-
s.[ Zhu and Fan (2013), Zhu and Fan (2012)], the authors solved the same integro-
differential equations by using the second kind Chebyshev wavelets[Babolian and
Mordad (2011)].

The structure of this paper is as follows: In Section 2, the generalized hat functions
are introduced. The generalized hat functions operational matrix of fractional inte-
gration is also introduced and the error analysis of generalized hat functions is given
in Section 3. In Section 4, we summarize the application of generalized hat func-
tions operational matrix method to the solution of the fractional integro-differential
equation. Four numerical examples are provided to clarify the approach in Section
5. The conclusion is given in Section 6.

2 Generalized hat functions and their properties

The interval [0,T ] is divided into n subintervals [ih,(i+1)h], i = 0,1,2, . . . ,n−1,
of equal lengths h where h = T

n . The generalized hat functions’ family of first n+1
hat functions is defined as follows [Podlubny (1999)]

ψ0(x) =
{ h−x

h , 0≤ x < h,
0, otherwise,

(1)

ψi(x) =


x−(i−1)h

h , (i−1)h≤ x < ih,
(i+1)h−x

h , ih≤ x < (i+1)h,
0, otherwise,

i = 1,2, . . . ,n−1 (2)
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ψn(x) =
{ x−(T−h)

h , T −h≤ x≤ T,
0, otherwise.

(3)

Using the definition of generalized hat functions, we can obtain

ψi(kh) =
{

1, i = k,
0, i 6= k

(4)

and

ψi(x)ψ j(x) = 0, |i− j| ≥ 2 (5)

An arbitrary function u ∈ L2[0,T ] is approximated in vector form as

u(x)≈
n

∑
i=0

uiψi(x) =UT
n+1Ψn+1(x) (6)

where Un+1 = [u0,u1, . . . ,un]
T and Ψn+1(x) = [ψ0(x),ψ1(x), . . . ,ψn(x)]T .

Substituting Eq.(1)-(3) into the Eq. (6), we get the coefficients in Eq.(6) as follow-
ing

ui = u(ih), i = 0,1,2, . . . ,n (7)

3 Operational matrix of the integration for generalized hat functions

3.1 Fractional calculus

Before we introduce the generalized hat functions operational matrix of the frac-
tional integration, we first review some basic definitions of fractional calculus,
which have been given in [Li and Sun (2011)].

Definition 1. The Riemann-Liouville fractional integral of order α is given by

Jαu(x) =
1

Γ(α)

∫ x

0
(x− τ)α−1u(τ)dτ, α > 0 (8)

J0u(x) = u(x) (9)

Definition 2. The Caputo definition of fractional differential operator is given by

Dαu(x) =

{ dru(x)
dxr , α = r ∈ N;

1
Γ(r−α)

∫ x
0

u(r)(τ)
(x−τ)α−r+1 dτ, 0≤ r−1 < α < r.

(10)

The Caputo fractional derivatives of order α is also defined as Dαu(x)= Jr−αDru(x),
where Dr is the usual integer differential operator of order r. The relation between
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the Riemann- Liouville operator and Caputo operator is given by the following
expressions:

DαJαu(x) = u(x) (11)

JαDαu(x) = u(x)−
r−1

∑
k=0

u(k)(0+)
xk

k!
, x > 0 (12)

3.2 Fractional order generalized hat functions operational matrix of integra-
tion.

If Jα is fractional integration operator of generalized hat functions, we can get:

Jα
Ψn+1(x)≈ Pα

n+1Ψn+1(x) (13)

where

Pα
n+1 =

hα

Γ(α +2)



0 ζ1 ζ2 ζ3 · · · ζn

0 1 ξ1 ξ2 · · · ξn−1
0 0 1 ξ1 · · · ξn−2
0 0 0 1 · · · ξn−3
· · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1


(n+1)×(n+1)

(14)

where

ζk = kα(α− k+1)+(k−1)α+1, k = 1,2, . . . ,n (15)

and

ξk = (k+1)α+1−2kα+1 +(k−1)α+1, k = 1,2, . . . ,n−1 (16)

Pα
n+1 is called the generalized hat functions operational matrix of fractional integra-

tion.

Apart from the generalized hat functions, we consider another basis set of block
pulse functions. The set of these functions, over the interval [0,T ), is defined as

bi(x) =
{

1, ih≤ x < (i+1)h i = 0,1,2, . . . ,n−1
0, otherwise,

(17)

with a positive integer value for n and h = T
n .

The following properties of block pulse functions will be used in this paper

bi(x)b j(x) =
{

0, i 6= j
bi(x), i = j

(18)
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∫ T

0
bi(x)b j(x)dx =

{
0, i 6= j
T
n , i = j

(19)

Let Bn(x) = [b0(x),b1(x), . . . ,bn−1(x)]T . Suppose Jα (Bn(x)) ≈ Fα
n Bn(x), then Fα

n
is called the block pulse operational matrix of fractional integration [21], here

Fα
n = hα 1

Γ(α +2)


1 ξ1 ξ2 · · · ξn−1
0 1 ξ1 · · · ξn−2
0 0 1 · · · ξn−3
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 ,

ξk = (k+1)α+1−2kα+1 +(k−1)α+1,k = 1,2, . . . ,n−1.

There is a relation between the block pulse functions and generalized hat functions,
namely

Ψn+1(x) = ΦBn(x) (20)

where

Ψn+1(x) = [ψ0(x),ψ1(x), . . . ,ψn(x)]T ,

Φ =



1/2 0 0 · · · 0
1/2 1/2 0 · · · 0
0 1/2 1/2 · · · 0
· · · · · · · · · · · · · · ·
0 · · · 0 1/2 1/2
0 · · · · · · 0 1/2


(n+1)×n

.

3.3 Error analysis

In this section, from Eq.(6), we suppose

un(x) =
n

∑
i=0

u(ih)ψi(x) (21)

And

Jα
n u(x) =

1
Γ(α)

∫ x

0
(x− τ)α−1un(τ)dτ (22)

where Jα
n u(x) denotes the approximation of α order Riemann-Liouville fractional

integral of u(x). Let εn(x) = |Jαu(x)− Jα
n u(x)|, then we have the following theo-

rem.
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Theorem 3.1 If u(x), x ∈ [0,T ] is approximated by the Eq. (6), then

(i) |u( jh)−un( jh)|= 0, for j = 0,1,2, . . . ,n;

(ii) |u(x)−un(x)| ≤ 1
2n2 |u′′( jh)|+O

( 1
n3

)
, for jh< x < ( j+1)h, j = 0,1,2, . . . ,n−

1;

(iii) For jh < x < ( j+1)h, εn(x)≤ MT 2+α

2n2Γ(α+1) +O
( 1

n3

)
, where |u′′( jh)| ≤M, M > 0.

Proof (i) From Eq. (4), the value of un(x) at jth point x = jh, j = 0,1,2, . . . ,n

is given by un( jh) =
n
∑

i=0
u(ih)ψi( jh) = u( jh), then |u( jh)−un( jh)| = 0, for j =

0,1,2, . . . ,n.

(ii) If jh < x < ( j+ 1)h, j = 0,1,2, . . . ,n− 1, then from Eq.(1)-(3) and Eq.(21),
we have

un(x) =
n
∑

i=0
u(ih)ψi(x) = u( jh)ψ j(x)+u(( j+1)h)ψ j+1(x)

= u( jh)
(
( j+1)h−x

h

)
+u( jh+h)

(
x− jh

h

)
= u( jh)− jh

(
u( jh+h)−u( jh)

h

)
+ x
(

u( jh+h)−u( jh)
h

)
= u( jh)+(x− jh)

(
u( jh+h)−u( jh)

h

) (23)

when h→ 0, we obtain

un(x)≈ u( jh)+(x− jh)u′( jh) (24)

Using the Taylor’s series of u(x), in the powers of (x− jh), we have

u(x) =
∞

∑
k=0

(x− jh)k

k!
u(k)( jh) (25)

where u(k) denotes the kth order derivative of u(x). From Eq. (24) and Eq. (25), we
get

u(x)−un(x) =
∞

∑
k=2

(x− jh)k

k!
u(k)( jh) =

(x− jh)2

2
u′′( jh)+O

(
(x− jh)3) (26)

Because (x− jh)< h, nh = T , so we have

|u(x)−un(x)| ≤
T 2

2n2

∣∣u′′( jh)
∣∣+O

(
1
n3

)
(27)

(iii) According to the definition of the absolute error εn(x), we obtain

εn(x) = |Jαu(x)− Jα
n u(x)| ≤ 1

Γ(α)

∫ x

0
(x− τ)α−1 |u(τ)−un(τ)|dτ (28)
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For jh < x < ( j+1)h, we get

εn(x)≤ 1
Γ(α)

∫ x
0 (x− τ)α−1 |u(τ)−un(τ)|dτ

= 1
Γ(α)

[
j−1
∑

r=0

∫ (r+1)h
rh (x− τ)α−1 |u(τ)−un(τ)|dτ +

∫ x
jh (x− τ)α−1 |u(τ)−un(τ)|dτ

]
(29)

Substituting Eq.(27) into Eq.(29), we have

εn(x)≤ 1
Γ(α)

[
j−1
∑

r=0

∫ (r+1)h
rh (x− τ)α−1

(
T 2

2n2 |u′′(rh)|+O
( 1

n3

))
dτ

+
∫ x

jh (x− τ)α−1
(

T 2

2n2 |u′′(rh)|+O
( 1

n3

))
dτ

] (30)

If Max |u′′(kh)| ≤M, k = 0,1,2, . . . , j, then we obtain

εn(x)≤ 1
Γ(α)

(
MT 2

2n2 +O
( 1

n3

))[[ j−1
∑

r=0

∫ (r+1)h
rh (x− τ)α−1dτ +

∫ x
jh (x− τ)α−1dτ

]
= xα

Γ(α+1)

(
MT 2

2n2

)
+O

( 1
n3

)
≤ ( j+1)α

Γ(α+1)

(
MT 2

2n2+α

)
+O

( 1
n3

)
≤ MT 2+α

2n2Γ(α+1) +O
( 1

n3

)
(31)

This completes the proof.

The fractional order integration of the function t was selected to verify the correct-
ness of matrix Pα

n+1. The fractional order integration of the function u(t) = t is
easily obtained as follows

Jαu(t) =
Γ(2)

Γ(α +2)
tα+1 (32)

When α = 0.5, m = 32, the comparison results for the fractional integration is
shown in Figure 1

4 The algorithm for finding numerical solution of fractional integro-differential
equations

4.1 Linear fractional integro-differential equations

Consider the linear fractional integro-differential equations

Dαu(x) = λ1

∫ x

0
k1(x, t)u(t)dt +λ2

∫ 1

0
k2(x, t)u(t)dt + f (x) (33)
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Figure 1: 0.5-order integration of the function u(t) = t.

subject to initial conditions

u(s)(0) = 0, s = 0,1, . . . ,r−1, r−1 < α ≤ r, r ∈ N (34)

where u(s)(x) stands for the sth-order derivative of u(x), Dα(·) denotes the Caputo
fractional order derivative of order α , f (x) is input term and u(x) is the output
response. k1(x, t),k2(x, t) are given functions. λ1,λ2 are real constants.

Now we approximate Dαu(x), k1(x, t),k2(x, t) and f (x) in terms of generalized hat
functions as follows

Dαu(x)≈UT
n+1Ψn+1(x), k1(x, t)≈Ψ

T
n+1(x)K1Ψn+1(t),k2(x, t)

≈Ψ
T
n+1(x)K2Ψn+1(t)

(35)

and

f (x)≈ FT
n+1Ψn+1(x) (36)

where K1 = [k1
i j](n+1)×(n+1), K2 = [k2

i j](n+1)×(n+1) and Fn+1 = [ f0, f1, . . . fn]
T .

Now using Eq. (35) and Eq.(12), we obtain

u(x) = JαDαu(x)≈ Jα(UT
n+1Ψn+1(x)) =UT

n+1Pα
n+1Ψn+1(x) (37)

Substituting Eq. (20) into Eq.(37), we have

u(x)≈UT
n+1Pα

n+1ΦBn(x) (38)
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Let E = [e0,e1, . . . ,en−1] =UT
n+1Pα

n+1Φ, then∫ x

0
k1(x, t)y(t)dt =

∫ x

0
Ψ

T
n+1(x)K1Ψn+1(t)ΨT

n+1(t)[U
T
n+1Pα

n+1]
T dt

= Ψ
T
n+1(x)K1

∫ x

0
ΦBn(t)BT

n (t)[U
T
n+1Pα

n+1Φ]T dt

= Ψ
T
n+1(x)K1Φ

∫ x

0
Bn(t)BT

n (t)E
T dt

= Ψ
T
n+1(x)K1Φ

∫ x

0
diag(E)Bn(t)dt

= Ψ
T
n+1(x)K1Φdiag(E)F1

n Bn(x)

= BT
n (x)Φ

T K1Φdiag(E)F1
n Bn(x)

= Q̃T Bn(x)

(39)

where Q̃ is a n-vector with elements equal to the diagonal entries of the following
matrix

Q = Φ
T K1Φdiag(E)F1

n (40)

and∫ 1

0
k2(x, t)y(t)dt =

∫ 1

0
Ψ

T
n+1(x)K2Ψn+1(t)ΨT

n+1(t)[U
T
n+1Pα

n+1]
T dt

= Ψ
T
n+1(x)K2Φ

∫ 1

0
Bn(t)BT

n (t)[U
T
n+1Pα

n+1Φ]T dt

= Ψ
T
n+1(x)K2Φ

∫ 1

0
Bn(t)BT

n (t)dtET

=
1
n

Ψ
T
n+1(x)K2ΦET

=
1
n

BT
n (x)Φ

T K2ΦET

=
1
n

EΦ
T KT

2 ΦBn(x)

(41)

Substituting the above equations into Eq. (33), we have

UT
n+1ΦBn(x) = λ1Q̃T Bn(x)+

λ2

n
EΦ

T KT
2 ΦBn(x)+FT

n+1ΦBn(x) (42)

Dispersing Eq. (42), we obtain

UT
n+1Φ = λ1Q̃T +

λ2

n
EΦ

T KT
2 Φ+FT

n+1Φ (43)

which is a linear system of algebraic equations. By solving this system we can
obtain the approximation of Eq. (37).
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4.2 Nonlinear fractional integro-differential equations

In this section we deal with nonlinear fractional integro-differential equation of the
form

Dαu(x) = λ1

∫ x

0
k1(x, t)[u(t)]pdt +λ2

∫ 1

0
k2(x, t)[u(t)]qdt + f (x) (44)

subject to initial conditions

u(s)(0) = 0

where p,q ∈ N, and the other parameters and variables are the same as the section
4.1. While dealing with such a situation, the same procedure (as in linear case) of
expansion of fractional order derivatives via generalized hat functions is adopted
with exception at the term containing [u(t)]p, [u(t)]q.

From Eq. (38), we have u(x)≈ EBn(x) and hence

[u(t)]p ≈ [EBn(t)]p = [ep
0 ,e

p
1 , . . . ,e

p
n−1]Bn(t) = EpBn(t) (45)

and

[u(t)]q ≈ [EBn(t)]q = [eq
0,e

q
1, . . . ,e

q
n−1]Bn(t) = EqBn(t) (46)

Following the procedure of section 4.1 and using the Eq.(45) and Eq.(46), the
Eq.(44) is transformed into a nonlinear system of algebraic equations

UT
n+1Φ = λ1W̃ T +

λ2

n
EqΦ

T KT
2 Φ+FT

n+1Φ (47)

where W̃ is a n-vector with elements equal to the diagonal entries of the following
matrix.

W = Φ
T K1Φdiag(Ep)F1

n (48)

Solving the system of equations given by Eq. (47), the approximate numerical so-
lution u(x) is obtained. The Eq. (47) can be solved by iterative numerical technique
such as Newton’s method. Also the Matlab function “fsolve” is available to deal
with such a nonlinear system of algebraic equations.

5 Numerical examples

In order to illustrate the effectiveness of the proposed method, we consider numer-
ical examples of linear and nonlinear nature.
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Example 5.1 Consider this equation:

D2.3y(x) =
1
4

∫ x

0
(x− t)y(t)dt +

1
2

∫ 1

0
xt · y(t)dt + f (x) (49)

where f (x) = Γ(4.5)
Γ(2.2)x

1.2− x5.5

99 −
x

11 , such that y′′(0) = y′(0) = y(0) = 0, the exact
solution is y(x) = x3.5. The numerical results for n = 8, 16, 32, 64 are shown in
Figs. 2-5. From the Figs. 2-5, we can find easily that the numerical solutions are
in good agreement with the exact solutions. Table 1 shows the absolute errors ob-
tained by generalized hat functions method and CAS wavelets method (CASW) for
different n, respectively. Through Table 1, we can also see that the errors are small-
er and smaller when n increases. Comparing with the absolute errors obtained by
CAS wavelets method, generalized hat functions method can reach higher degree
of accuracy.

Figure 2: Comparison of Num. sol. and Exa. Sol. of n = 8.

Example 5.2 Consider the following nonlinear equation:

D2.2y(x) =
1
3

∫ x

0
(x+ t)[y(t)]2dt +

1
4

∫ 1

0
(x− t)[y(t)]3dt + f (x) (50)

such that y′′(0) = y′(0) = y(0) = 0.The exact solution of the equation is y(x) = x3,
where f (x) = Γ(4)

Γ(1.8)x
0.8− 5x8

56 −
x

40 +
1

44 .
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Figure 3: Comparison of Num. sol. and Exa. Sol. of n = 16.

Figure 4: Comparison of Num. sol. and Exa. Sol. of n = 32.
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Figure 5: Comparison of Num. sol. and Exa. Sol. of n = 64.

Table 1: The absolute errors for different values of n.

x
n = 8 n = 16 n = 32

Ours CASW Ours CASW Ours CASW
0 0 2.7434e-005 0 5.2528e-006 0 4.2730e-007

1/8 1.2316e-004 7.2373e-003 3.2343e-005 2.1658e-004 4.2465e-006 1.0174e-004
2/8 3.1235e-004 6.2642e-003 5.8723e-005 5.2365e-004 5.6172e-005 4.1987e-004
3/8 4.6237e-004 3.1236e-003 6.1423e-005 8.2316e-004 6.2164e-005 9.2364e-004
4/8 2.8236e-003 5.2374e-002 2.2317e-004 2.4582e-003 6.9423e-005 4.1726e-003
5/8 4.1327e-003 3.6285e-002 4.4326e-004 7.0243e-003 3.2375e-004 8.1648e-003
6/8 5.2321e-003 2.2364e-002 6.4235e-003 4.4565e-002 4.5421e-004 2.3112e-002
7/8 6.0432e-003 9.1287e-001 7.2324e-003 8.2364e-002 6.2376e-004 8.0723e-002

Figures 6-9 show the numerical solutions and exact solution for n = 16, 32, 64.

We can see that the numerical solutions are more and more close to the exact solu-
tion with the value of nbecomes large by taking a closer look at Figures 6-8.

Example 5.3 Consider this equation:

Dα+1y(x) =
∫ x

0
(et +1)[y(t)]2dt +

∫ 1

0
xt[y(t)]2dt + f (x) (51)

where f (x) = ex− (ex−x−1)3

3 −x( e2

4 −2e+ 11
3 ), with initial conditions y′(0) = y(0) =



118 Copyright © 2014 Tech Science Press CMES, vol.99, no.2, pp.105-122, 2014

Figure 6: Comparison of Num. sol. and Exa. Sol. of n = 16 for Example 3.

Figure 7: Comparison of Num. sol. and Exa. Sol. of n = 32for Example 3.



Means of Generalized Hat Functions Method 119

Figure 8: Comparison of Num. sol. and Exa. Sol. of n = 64for Example 3.

0. The exact solution of the problem for α = 1 is y(x) = ex− x−1.

The comparison of numerical results for α = 0.7, α = 0.8, α = 0.9, α = 1 and the
exact solution for α = 1 are shown in Figure. 9.

Figure 9: Numerical solution and exact solution of α = 1.
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From Figure 9, we can see clearly that the numerical solutions are in very good
agreement with the exact solution when α = 1. It is evident from the Figure 9 that,
as α close to 1, the numerical solutions by the generalized hat functions converge
to the exact solution.

6 Conclusion

In this work, we introduce the generalized hat functions and operational matrix of
the fractional integration. Using the operational matrix to solve the fractional linear
and nonlinear integro-differential equations numerically. By solving the linear and
nonlinear system, numerical solutions are obtained. The error analysis of general-
ized hat functions is proposed. The numerical results show that the approximations
are in very good coincidence with the exact solution
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