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Nonlinear Panel Flutter Analysis Based on an Improved
CFD/CSD Coupled Procedure
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Abstract: Nonlinear aeroelasticity, caused by the interaction between nonlinear
fluid and geometrically nonlinear structure, is studied by an improved CFD and
CSD coupled program. An AUSMpw+ flux splitting scheme, combined with an
implicit time marching technology and geometric conservation law, is utilized to
solve unsteady aerodynamic pressure; The finite element co-rotational theory is
applied to model geometrically nonlinear two-dimensional and three-dimensional
panels, and a predictor-corrector program with an approximately energy conser-
vation is developed to obtain nonlinear structure response. The two solvers are
connected by Farhat’s second order loosely coupled method and the aerodynamic
loads and structural displacements are transferred by boundary element method.
With the application on the solution of panel flutter problems for supersonic, tran-
sonic and subsonic Mach numbers, representative limited cycle oscillations appear
when geometric nonlinearity and aerodynamic nonlinearity are considered. The
flutter boundary and amplitude of limit cycle oscillation are discussed and com-
pared with the work of Dowell and Gordnier. The program is also used to compute
the nonlinear elastic response of AGARD 445.6 wing, and the results show that
improved procedure presents a better stability than conventional method.

Keywords: Nonlinear aeroelasticity, limited cycle oscillation, panel flutter, geo-
metrical nonlinearity, co-rotational theory, boundary element method.

1 Introduction

Aeroelasticity is an interesting subject of the interaction between flexible structure
and the surrounding fluid. Nonlinearities involved with aeroelasticity arise from
two aspects: the structural and aerodynamic points of view. Such as large shock
motions, flow separation and geometrical nonlinearity in structure. At present, most
of the nonlinear aeroealstic analysis depends on computation of unsteady aerody-
namic forces and structural linear mode superposition method, which considers
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only the nonlinearity in fluid regime. However, the structural geometrical nonlin-
earity plays a crucial role and the linear theory is not able to determine accurately
the response in the case of large deformation for large flexible structure. There
are strong requirements in discussing approaches for solving two nonlinearities in-
volved in aeroelasticity simultaneously and studying computational interfaces ad-
equate to handle the nonlinear interdisciplinary interactions. Studying this phe-
nomenon, well validated computational fluid dynamics (CFD) methods should be
coupled with computational structural dynamics (CSD) in an accurate way [Baum,
Luol, Mestreaul, Sharov, Lohner, Prlessone and Charman (2001); Patil and Hodges
(2000)], and this will provide a path for developing a comprehensive prediction ca-
pability for simulating complex, nonlinear aerodynamics and structural dynamics
[Gordnier and Fithen (2003)].

Dowell [Dowell (1970); Dowell, Thomas, and Hall (2001)] classified the nonlinear
aeroelasticity into four different categories and studied limit cycle oscillations (L-
COs) of the panel in supersonic flow, as well as proposed reduced order aerodynam-
ic models- proper orthogonal decomposition and the harmonic balance technique.
The latter method has been developed and applied by several researchers, such
as Hall[Hall, Thomas, and Clark (2002)], Dai[Dai, Schnoor, and Atluri (2012)]
and Liu[Liu, Thomas, and Dowell (2007)]. Gordnier [Gordnier and Fithen (2003);
Gordnier and Visbal (2004)] proposed a computational aeroelastic model consisted
of a finite element solution of the nonlinear von Karman plate equations coupled
to both an Euler and Navier-Stokes aerodynamic models, and performed the model
on a three dimensional panel and a flexible delta wing. Mei [Mei (1977)] applied
the finite element method and third-order piston theory to study the supersonic lim-
it cycle oscillations of two-dimensional panels. Strganac [Strganac, Cizmas, and
Nichkawde (2005)] studied bifurcation of vehicles with moderate-to-high defor-
mations and presented the nonlinear structural equations of motion for cantilevered
wing configurations that possess in-plane, out-of-plane, and torsional couplings,
and outlined a Navier-Stokes based unsteady aerodynamic model that addressed
viscous and compressible flows for transonic flows with shock/boundary layer in-
teraction. Patil and Hodges [Patil and Hodges (2000); Patil, Hodges, and Cesnik
(2001)] presented a mixed variational formulation based on the exact intrinsic equa-
tions for the dynamics of beams in moving frames and studied finite-state airloads
for deformable airfoils on fixed and rotating wings, and performed the theory on
High Altitude Long Endurance (HALE) aircraft aeroelastic computation. Attar [At-
tar and Gordnier (2005)] studied the flutter and LCO behavior of a cropped delta
wing using a newly developed computational aeroelastic solver which included Eu-
ler finite difference solver and nonlinear structural model. The structural solver for
geometric nonlinearities was modeled by co-rotational formulation, which was ap-
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plied in aeroelastic analysis for the first time.

Most of flight vehicles’ structure are generally modeled by beam or shell finite
element in engineering analysis. Although many algorithms of large rotation solu-
tion have been developed as Total Lagrangian (TL) and Updated Lagrangian (UL),
most of these early works were surprisingly sophisticated and worth improvemen-
t. The co-rotational approach, viewed as an effective way to describe nonlinear
structural kinematics analysis, has generated an increasing amount of interest in
the last decade [Crisfield (1996)]. The main idea is that the motion of the ele-
ment can be split into a rigid part and a pure deformational response. Assuming
the pure deformational part measured in a rotated reference frame to be small e-
nough, a linear finite element theory can be used in the analysis [Battini (2002);
Battini (2007); Pacoste (1998)]. This leads to very simple expressions for the local
internal force vector and tangent stiffness matrix. Crisfield [Crisfield (1996)] de-
veloped a unified co-rotational framework for solids, shells and beams, and applied
it to facet shell elements and three-dimensional beams. Battini [Battini (2002)] im-
plemented co-rotational beam elements and branch-switching procedures in order
to analyze elastic and plastic instability problems, and proposed a new numerical
method based on a minimal augmentation procedure for the direct computation of
elastic critical points. Battini [Battini (2007)] also did some work to modifications
in triangular shell elements. Pacoste [Pacoste (1998)] investigated the formulation
of co-rotational flat facet triangular elements for the numerical analysis of instabil-
ity phenomena in shell structures considered three types of local formulations. Cai
[Cai, Paik and Atluri (2009)] and Zhu [Zhu, Cai, Paik and Atluri (2010)] proposed
an updated Lagrangian corotational frame for analyzing large rotations, and large
deformation of plates and shells.

For structural dynamic response solution, Galvaneito and Crisfield [Galvaneito
and Crisfield (1996)] presented an exact energy-conserving procedure for the im-
plicit nonlinear dynamic analysis of planar beam structures. Chimakurth [Chi-
makurth and Cesnik (2011)] utilized a nonlinear finite element solver based on a
co-rotational approach and simulated flapping wing structure under large displace-
ments and rotations. Relvas [Relvas and Suleman (2007); Relvas and Suleman
(2006)] applied the finite element co-rotational theory to model geometrically non-
linear structures and utilized a dynamic co-rotational energy-conserving algorithm
to solve the nonlinear structural response. The unsteady Euler solver and vortex-
ring method were used to model aerodynamic loads for a two-dimensional airfoil
and a plate under low speed airflow respectively.

In subsystem, the CFD grid is different from the CSD grid on account of the differ-
ent reference frame between Euler and Lagrange. In aeroelastic analysis, there are
two kinds of data transfer on common boundary: one is interpolating the displace-
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ments calculated by the CSD solver to CFD grid, and the other is transforming the
aerodynamic loads computed by CFD code on CSD points. At present, the most
popular interpolation methods [Goura and Badcock (2001); Kim and Kim (2005);
Sadeghi, Liu, and Lai (2004)] can be categorized as two groups: (1) Surface fit-
ting method, which utilizes a global function with weighting coefficients, such as
Infinite-Plate Spline (IPS), this kind of method has dominantly used for displace-
ment transfer; (2) Surface tracking method, which utilizes the shape functions of
finite elements by projecting fluid nodes to nearest structural elements, for example
Conservation Volume Transformation (CVT). Currently, surface tracking method
is mostly used for load transfer.

However, the above popular methods: IPS and CVT cannot keep energy conser-
vation on the boundary between CFD and CSD module. The boundary element
method (BEM), which was generally used for solid mechanics analysis, was firstly
proposed by Chen and Jadic [Chen and Jadic (1998)] to generate the universal s-
pline matrix for CFD/CSD data transfer. Then, BEM scheme was developed to deal
with complex configuration, including structural discontinuity like control surfaces
by Chen and Gao [Chen and Gao (2001)]. The approach was developed to han-
dle large and complex structures and transform the displacement vectors at a solid
boundary to the interior of the field grid as mesh deformation algorithm by Lai
[Lai, Tsai, and Lum (2002); Lai, Tsai, and Liu (2003)]. It is a pity that the BEM
technique has not been employed in aeroelastic simulation in any literatures.

So far, time marching algorithm of CFD/CSD coupled method can be classified
broadly under four major categories [Kamakoti and Shyy (2004); Farhat and Van
(2006)](as seen in Fig. 1):

(i) Fully coupled method can solve the two solvers simultaneously and accurate-
ly, however, it is highly nonlinear and limited to two-dimensional problems.

(ii) Loosely coupled method has advantages of simplify explicit/implicit treat-
ment, sub-iteration and software modularity, but it is only first order time
accuracy, therefore, the time-step requires small enough.

(iii) Tightly coupled method is developed to eliminate the time-lag, and it can
achieve second order time accuracy, however, the computational cost in-
crease greatly .

(iv) The fourth CFD/CSD coupled procedure in Fig. 1, named as second order
loosely coupled method, was proposed by Farhat [Farhat and Van (2006);Geuzaine,
Van, and Farhat (2004)] and proved to reach second order time accuracy if
the solver of the subsystem was selected appropriately. It has the same ad-
vantages of the loosely coupled method.
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(a) (b)

(c) (d)

Figure 1: Description of existing CFD/CSD coupled procedures. (a)fully coupled
method, (b) loosely coupled method, (c) tightly coupled method, (d) second order
loosely coupled method

In the present article, the CSD solver will use a predictor-corrector program with
an approximate energy conservation algorithm to solve the nonlinear structure re-
sponse. The CFD solver will utilize an AUSMpw+ flux splitting scheme, an im-
plicit dual-time stepping technology and the geometric conservation law to solve
Euler and Reynolds averaged Navier-Stokes equation. We use the BEM method
which is most robust and accurate for energy mapping conservation by combin-
ing of the load and displacement transfer, and we will apply Farhat’s second order
loosely coupled procedure for connecting the CFD program with CSD solver. This
improved program is used to analyze the flutter characteristics of two-dimensional
and three-dimensional panels for supersonic, transonic and subsonic Mach num-
bers, as well performed on the solution of nonlinear elastic response of AGARD
445.6 wing.

2 Unsteady Aerodynamic Load Model

Euler equation and Reynolds averaged Navier-Stokes equation are applied to estab-
lish the model for solving aerodynamics, taking Euler equation as an example:

∂

∂x

∫
ŪdΩ+

∫
F̄ ·dS = 0 (1)
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Where Ū are the fluid variables, F̄ denote the vector of inviscid convective flux.
dΩ and dS are the moving control finite volume and outer normal area vector of
the control surface respectively. An AUSMpw+ flux splitting scheme [Yao and Xu
(2008)] is utilized to discretize the inviscid flux as follows:

F̄1/2 = M̄+
L c1/2ŪL + M̄−R c1/2ŪR +

(
Ψ

+
L pL +Ψ

−
R pR

)
(2)

Where c is sound velocity, p is flow pressure and Ψ± = Ψ± (M), where M is Mach
number.

Define m1/2 = c1/2M1/2, M̄+
L and M̄−R can be written as:

When 0 < m1/2 ≤ 1{
M̄+

L = M+
L +M−R ((1−ω)(1+ fR)− fL)
M̄−R = M−R ω (1+ fR)

(3)

When −1≤ m1/2 < 0{
M̄+

L = M+
L ω (1+ fL)

M̄−R = M−R +M+
L ((1−ω)(1+ fL)− fR)

(4)

Where ω is defined as

ω = 1−min
(

pL

pR
,

pR

pL

)
(5)

The modified pressure weighted function f is defined as follows:

fL,R =

{ pL,R

Ψ
+
L pL+Ψ

−
R pR
−1 |ML,R|< 1

0 |ML,R| ≥ 1
(6)

In order to solve unsteady flow, a sub-iterative course of the dual-time technology
is introduced to eliminate the time marching error. Suppose that fluid grid moves
with the body flexibly, and then the introduced dual-time term can be written as:

Ω
dŪ
dτ

+
3Ωn+1Ūn+1−4ΩnŪn +Ωn−1Ūn−1

2dt
+ Q̄n+1 = 0 (7)

Where Q̄ is computed by ∑ F̄ · dS, τ and t are pseudo and real time respectively.
Transfinite interpolation (TFI) technique [Wong and Tsai (2000)] is applied to treat
the moving grid of unsteady flow, and the geometric conservation law (GCL) is
introduced to solve the moving finite volume as follows:

Ω
n+1 =

4
3

Ω
n− 1

3
Ω

n−1 +
2∆t
3

∫
V ·dS (8)

Where V is the velocity of the moving grid.

Note that the above program also can be used to solve Reynolds averaged Navier-
Stokes equation.
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Figure 2: Panel geometry

3 Geometrically Nonlinear Model of Panel

A flexible panel of length a, width b, thickness h, and mass density ρs shown in
Fig. 2 is investigated in the present work. The air flowing above the panel at Mach
number M∞ and density ρ∞ is in the positive x direction. Two cases are studied:
two-dimensional case as a/b = 0 and three-dimensional case as a/b = 1. The
panel’s characteristics are: h/a = 0.002, mass ratio µs = ρ∞a/ρsh = 0.1, Poisson’s
ration ν = 0.3 and modulus of elasticity Es = 7.0× 1010. The panel is pinned at
both edges in the flow direction.

3.1 Two-Dimensional Panel Model

For two-dimensional case a/b = 0, the panel can be considered as planar beam
structure, which can be described by co-rotational frame as shown in Fig. 3 [Cr-
isfield (1996); Battini (2002)].

The vectors of global and local displacements of the element are defined by d and
dl as{

d =
[
u1 w1 θ1 u2 w2 θ2

]T
dl =

[
ū θ̄1 θ̄2

]T (9)

Where ū = lc− l0.

The vectors of global and local inter forces of the element are defined by Fi and fl
as{

Fi =
[
X1 Z1 M1 X2 Z2 M2

]T
fl =

[
N̄ M̄1 M̄2

]T (10)

Let c = cosβ and s = sinβ , through differentiation of Eq. 9, and utilize geometry
connection, then transformation matrix T between local and global displacements
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Figure 3: Co-rotational frame of two-dimensional panel

can be obtained by

δdl = Tδd (11)

Where

T =

 −c −s 0 c s 0
−s/lc c/lc 1 s/lc −c/lc 0
−s/lc c/lc 0 s/lc −c/lc 1


The relation between global and local inter forces can be obtained by virtual work

Fi = TT fl (12)

Through differentiation of Eq. 12, we can obtain

δFi = TT
δ fl + f T

l δT (13)

The first term in Eq. 13 is computed by introducing the local standard linear stiff-
ness matrix Kl

δ fl = Klδdl = KlTδd (14)

Introduce two notations{
r =

[
−c −s 0 c s 0

]T
p =

[
s −c 0 −s c 0

]T (15)



Nonlinear Panel Flutter Analysis 609

Figure 4: Co-rotational frame of three-dimensional panel

Then utilize their differentiations, the second term in equation 13 can be obtained
and the tangent stiffness equation can be finally written as

Kt = TT KlT+Kσm (16)

Where Kσm is called geometric matrix and expressed as

Kσm =
N̄
lc

ppT +
M̄1 + M̄2

l2
c

(
rpT +prT ) (17)

3.2 Three-Dimensional Panel Model

For three-dimensional case a/b = 1, the panel can be modeled by triangular shell
structure as described in Fig. 4.

The origin is taken at the geometric center point C, and an orthogonal matrix to
specify the orientation of the local frame is defined as

R0 =
[
e1 e2 e3

]
(18)

Where ei denote the three axes vectors. The rigid translation and rotation are de-
scribed by the displacements ug

c of node C and orthogonal matrix Rr respectively.
The nodal local pure deformational values are defined by ūi and R̄i as shown in
Fig. 4.

Then, the local displacements can be derived as{
ūi = RT

r
(
rg

i +ug
i − rg

c −ug
i

)
− r0

i
R̄i = RT Rg

i R0
i = 1,2,3 (19)
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Where ug
i are nodal displacements in global frame, rg

c are the original coordinates
of node C, and r0

i are the vectors from three corners to node C. Pacoste [Pacoste
(1998)] proposed a parameterization of the orthogonal matrix to represent large
rotation, the global rotation matrix of each point can be defined as

Rg
i = exp(ψ̃i) (20)

The rotational values of angular variable and rotational vector can be related as

δθ
g
i = Tm (ψi)δψi (21)

Where

Tm (ψi) =
Rg

i + I√
1−
(
q2

1 +q2
2 +q2

3

)
The local displacements and internal forces can be written as{

dl =
[
ūT

1 θ̄ T
1 ūT

2 θ̄ T
2 ūT

3 θ̄ T
3
]T

fl =
[
F̄T

1 M̄T
1 F̄T

2 M̄T
2 F̄T

3 M̄T
3
]T (22)

In local coordinate system, the above internal forces and displacements can be ex-
pressed in linear relation as

fl = Kldl (23)

Where Kl is the linear triangular shell element local stiffness matrix. The global
displacements and forces are defined as{

dg =
[
uT

1 θ T
1 uT

2 θ T
2 uT

3 θ T
3
]T

Fg =
[
FT

g1 MT
g1 FT

g2 MT
g2 FT

g3 MT
g3
]T (24)

Through differentiation of Eq. 23, and utilize geometry connection, then transfor-
mation matrix between local and global frame can be obtained by{

δdl = Tgδdg

Fg = TT
g fl

(25)

Where

Tg = PET
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P =

[
∂ ūi
∂ue

i

∂ ūi
∂θ e

i
∂θ e

r
∂ue

i

∂θ e
r

∂θ e
i

]
E = diag

(
Rr, Rr, Rr, Rr, Rr, Rr

)
The above variables are computed by the defined spatial angular variation, it has
to transform the rotational values to rotational vector. New definitions of the dis-
placements and internal forces are given as{

d =
[
uT

1 ψT
1 uT

2 ψT
2 uT

3 ψT
3
]T

F =
[
FT

1 MT
1 FT

2 MT
2 FT

3 MT
3
]T (26)

Via virtual work, the new internal forces can be obtained by

F = BT
mFg = TT fl (27)

Where

T = TgBm

Bm = diag
(
I3 Tm (ψ1) I3 Tm (ψ2) I3 Tm (ψ3)

)
Through differentiation of Eq. 27, the tangent stiffness matrix can be finally written
as

Kt = TT KlT+Kσm (28)

Where

Kσm = diag
(
03, Kσm1, 03, Kσm2, 03, Kσm3

)
Kσmi =

∂TT
m(Mgi)
∂ψi

i = 1,2,3

4 An Approximate Energy Conservation Algorithm

Newmark integral approach, an unconditional stable and predominant procedure
to determine the structure dynamic response at each time step for linear problems,
may encounter "lock" or "blow up" solution for nonlinear case. It has been veri-
fied by Galvanetto and Crisfield [Galvaneito and Crisfield (1996)], and an energy
conservation algorithm was proposed for the implicit nonlinear dynamic analysis
of planar beam structures in literature [Galvaneito and Crisfield (1996)], in which
the time step n+ 1

2 was used to achieve energy conservation during n to n+1 step.
However, it may appear more complex and more data have to be stored. Based on
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this algorithm, an approximate energy conservation algorithm is developed, which
retains the stability and accuracy, and simplifies the procedure without any modifi-
cation.

Assume that there is no damp in the structural system, the equilibrium equation at
n+1 step can be written as

gn+1 = Fi,n+1 +Mün+1−Fs,n+1 = 0 (29)

Where M and Fs,n+1 are the mass matrix and the external force as unsteady aero-
dynamic load respectively. By introducing midpoint rule and the variables of n+ 1

2
step as

Fi,n+1/2 = TT
n+1/2fil,n+1/2 (30)

Where

Tn+1/2 =
1
2
(Tn +Tn+1)

The equilibrium equation at n+ 1
2 step can be derived as

gn+1/2 = Fi,n+1/2 +
1
∆t

M(u̇n+1− u̇n)−Fs,n+1/2 = 0 (31)

Let gn+1/2→ 0, then the energy change between n and n+1 step ∆E = gn+1/2∆un+1/2
could be conservative. Differentiate the Eq. 30 and the new global tangent stiffness
matrix can be obtained as

Kt,n+1/2 =
1
2

(
Tn +Tn+1

2

)T

KlTn+1 +
1
2

Kσm (32)

It is notable that Eq. 32 can be used for both beam and shell structure.

4.1 Predictor Step

The initial values of displacement increment are determined by

K̄t,n+1/2∆u = ∆F (33)

Where

K̄t,n+1/2 = Kt,n+1/2 +
2

∆t2 M,

∆F = Fs,n+1/2−Fi,n+1/2 +
2
∆t

Mu̇n

Then the information at n+1 step can be predicted by{
un+1 = un +∆u

u̇n+1 =
2
∆t ∆u− u̇n

(34)
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4.2 Corrector Step

Firstly, gi−1
n+1/2 can be received from Eq. 31, and a new equilibrium equation is

applied as

gi−1
n+1/2 + K̄i−1

t,n+1/2δui
n+1 = 0 (35)

Secondly, the displacements and velocities can be updated by δui
n+1 as

{
ui

n+1 = ui−1
n+1 +δui

n+1
u̇i

n+1 = u̇i−1
n+1 +δ u̇i

n+1
(36)

Where δ u̇i
n+1 =

2
∆t δui

n+1.

The above two equations 35 and 36 should be solved repeatedly in the corrector
process until a convergence criterion with gn+1/2→ 0 is satisfied.

5 Data Transfer Via Boundary Element Method

If the displacements x on the entire boundary (CFD surface grid) are known, a
transformation from boundary to interior displacements u of the internal source
(CSD grid) can then be performed by a transformation matrix B as

u = Bx,B = GasG−1
aa Haa−Has (37)

Where H and G are formed from the kernel integral of the displacement and trac-
tion, and the subscript a and s stand for CFD surface grid and CSD grid values
respectively. Via the minimum strain energy (W = xT

a Rxa) requirement [Chen and
Jadic (1998), the spline matrix is determined by

D =
(
R+RT )−1 BT

[
B
(
R+RT )−1 BT

]−1
(38)

By embracing all CFD and CSD gird points, an intermediate BEM model is con-
structed as a third platform [Chen and Gao (2001)]. Firstly, a universal spline
matrix D can be generated to transfer the information of the CSD grid to the inter-
mediate BEM model by Eq. 38, then a BEM matrix B is constructed to transfer the
information on the intermediate BEM model to the CFD grid by Eq. 37. Finally
the mapping matrix between two different grid systems can be obtained

S = BD (39)
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Thus, the structural displacements and aerodynamic loads can be transferred by{
x = Su

Fs = ST Fa
(40)

Where u and x are the displacements of structural and CFD surface grid respec-
tively. Fs and Fa denote the vector of structural nodal forces and aerodynamic
loads respectively. Thus, the requirements of the conservation of work between
two transformations can be satisfied as

Ws = FT
s us =

(
ST Fa

)T
us = FT

a (Sus) = FT
a ua =Wa (41)

6 CFD/CSD Coupled Program

Based on the Farhat’s second order loosely coupled procedure [Farhat and Van
(2006)], the two solvers are connected as following six steps:

(i) Predict the structural displacements at time-step n+ 1
2 by n step

un+1/2 = un +
∆t
4

(
u̇n +

∆un

∆t

)
(42)

(ii) Transfer the predicted motion un+1/2 to the fluid system as xn+1/2 by Eq. 40.

(iii) Update the position of the fluid grid by TFI technique and compute the new
control finite volume by Eq. 8.

(iv) Solve Eq. 7 to obtain the loads on aerodynamic surface.

(v) Convert the aerodynamic loads Fa,n+1/2 into structure element to get equiva-
lent loads Fs,n+1/2 by Eq. 40.

(vi) Advance Eq. 31 and approach the motion at n + 1 step by the predictor-
corrector program.

7 Numerical Results

7.1 CFD Solver for AGARD CT5 Unsteady Test

Two cases of AGARD CT5 unsteady test are introduced to validate the present CFD
solver. Unsteady motion of the NACA0012 airfoil is defined as

α (t) = αm +α0sin(2kt) (43)
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Figure 5: (a)Lift coefficient vs. angle of attack in case 1, (b) moment coefficient
vs. angle of attack in case 1
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Figure 6: (a)Lift coefficient vs. angle of attack in case 2, (b) moment coefficient
vs. angle of attack in case 2

Flow conditions are set as follows: (1) Case1: M∞ = 0.6, αm = 3.16o, α0 = 4.59o

and k = 0.0811. The axis position is 0.273 chord. (2) Case2: M∞ = 0.755, αm =
0.016o, α0 = 2.51o and k = 0.0814. The axis position is 0.25 chord.

In both two cases, the CFD gird is constructed by O grid consisting of 121× 80
points and Euler equation is solved with the total time step numbers in one period
is 80, and the number of sub-iteration within one time step is 10. The computed
results of the lift and moment coefficient in Fig. 5 and 6 are the first 7 periods. The
results are also compared with experimental values. The computation demonstrates
reasonable agreement with the experimental data for both two cases.
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Figure 7: (a)Cantilever beam subjected to an end moment, (b) cantilever beam
nonlinear static analysis results

7.2 Cantilever Beam Nonlinear Static Analysis

The cantilever beam subjected to an end moment (shown in Fig. 7(a)) which has an
analytical solution is solved by present finite co-rotational formulation.

The beam’s parameters are defined as: l = 20m, EIz = 10N ·m and EA = 10N.
The end moment M is set to 0.2π , 0.4π , 0.6π , 0.8π and π respectively. While the
exactly analytical solution is expressed as θ = (MI)/(EIz). The results presented
in Fig. 7(b) and Tab. 1 agree well with the analytical solution.

Table 1: Comparison of the tip displacements of cantilever beam between co-
rotational formulation and exactly analytical solution

M Co-rotational
formulation

(u/l)

Exactly
analytical

solution (u/l)

Co-rotational
formulation

(w/l)

Exactly
analytical

solution (w/l)
0.2π -0.243 -0.243 -0.550 -0.550
0.4π 0.768 -0.766 -0.720 -0.720
0.6π -1.158 -1.156 -0.477 -0.478
0.8π -1.189 -1.189 -0.136 -0.137
π -1.0 -1.0 0.0 0.0

7.3 Hinged cylindrical Segment Nonlinear Dynamic Simulation

The nonlinear problems of a hinged cylindrical segment with a total thickness
t = 0.00635m presented in Fig. 8 are analyzed. The total length and circumferential
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Figure 8: Geometry of a hinged cylindrical segment

length are La = Lb = 0.508m, and curvature of the circular edges is R = 2.54m. The
material properties are E = 3.105×109N ·m and µ = 0.3. The hinged cylindrical
segment is taken under the constant central point load P = 500N. The time step is
set to ∆t = 0.0001s and ∆t = 0.001s respectively. Then the dynamic responses at
point A are computed by the linear Newmark method, nonlinear Newmark method
and the improved predictor-corrector procedure with the approximate energy con-
servation algorithm.

The time histories of the normal displacement and total energy change via various
schemes are shown in Fig. 9. It can be seen that the linear results are obviously
different from the other two nonlinear results as the nonlinearity has much affection
in the structure. The nonlinear Newmark method has the similar response to the
improved scheme in original time steps. However, with time boosting, nonlinear
Newmark method tends to augment after some time steps. Also, the nonlinear
Newmark scheme has wide variations in total energy changes while the improved
procedure tends to zero, which keeps the energy conservation. It is evident that the
conventional nonlinear Newmark integration has a limited stability in the nonlinear
case.

When the time step is made larger with ∆t = 0.001s, as shown in Fig. 10, the lin-
ear results also present error curve, and the two nonlinear results show obvious
difference. The amplitude of the nonlinear Newmark method is increased marked-
ly and ends up with high energy state, about 8× 104J, which leads to a lack of
convergence and provides improper information for designers. Clearly, improved
predictor-corrector procedure is keeping stable versus time steps, and can be set to
larger time steps and gives satisfactory results.

7.4 Nonlinear Panel Flutter Analysis

(1)Two-dimensional panel flutter results

The finite element model composes of 21 Bernoulli beam elements. The CFD
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Figure 9: (a)Time-histories of normal displacement at ∆t = 0.0001s, (b) time-
histories of total energy change at ∆t = 0.0001s
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Figure 10: (a)Time-histories of normal displacement at ∆t = 0.001s, (b) time-
histories of total energy change at ∆t = 0.001s
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grid is constructed by H grid consisting of 161× 41 points, and Euler equation is
solved with the number of sub-iteration within one time step is 10. Mach numbers
are chosen as: supersonic case M∞ = 1.2, M∞ = 1.414, M∞ = 1.8 and M∞ = 2.0;
transonic and subsonic case M∞ = 1.02, M∞ = 0.95, M∞ = 0.9 and M∞ = 0.7. The
flutter computation are initiated as ẇ = ẇ0sin(πx).

Fig. 11 and Fig. 12 show the time-histories of the oscillation and phase portrait of
w/h vs. ẇ/h under dynamic pressure λ = ρ∞V 2

∞a3/D = 100 for M∞ = 1.2 case
at x/a = 0.75. It is clear that a representative limited cycle oscillation appears
when the nonlinearity is considered. Fig. 13 shows the limit cycle oscillation am-
plitude values of Dowell(linearized potential theory), Gordnier(Euler equation) and
present work for a supersonic Mach number at x/a = 0.75. When M∞ = 1.2, the
three amplitude values are compared well with each other though Dowell used lin-
earized potential theory. For M∞ = 1.414 case, the results have good agreement
with Gordnier’s work; these two solutions have lower values than Dowell’s results.
For a higher Mach number M∞ = 1.8, there are small difference between the present
work and Gordnier’s solution. When M∞ < 1.0, static equilibrium positions are ob-
tained under a broad range of dynamic pressure λ . The results are compared well
with Gordnier’ work at x/a= 0.5 as shown in Fig. 14. In the present work, only one
static equilibrium values are obtained for a same initial condition ẇ = ẇ0sin(πx).
Fig. 15 shows the flutter boundary. Note that it will be singular when M∞ = 1.0 in
Dowell’ solution.

(2) Three-dimensional panel flutter results

A finite element structural model is constructed 400 triangular shell elements and
1323 degrees of freedom. The CFD grid is constructed by H grid consisting of
121×121×31. In this case, Euler equation is still solved with the number of sub-
iteration within one time step is still 10. Mach numbers are chosen as: supersonic
case M∞ = 1.2, M∞ = 1.414 and M∞ = 1.6. Fig. 16 shows that the time-histories
of the oscillation under λ = 300 for case at x/a = 0.75. Note that the peak values
have a small variety in every cycle. Fig. 17 shows the pressure on section under
four different positions. The curves for the two peak position are nearly symmetric.
Fig. 18 shows the limit cycle oscillation amplitude values of Dowell, Gordnier and
present work for three-dimensional panel at x/a = 0.75. For M∞ = 1.2 case, the
three amplitude values are also compared well with each other. While for higher
Mach numbers: M∞ = 1.414 and M∞ = 1.6, there are evident difference between
the present work and Dowell’s solution as we apply nonlinear aerodynamic solver.

7.5 Nonlinear Aeroelastic Response of AGARD 445.6 Wing

The simulation of the nonlinear aeroelastic response of the AGARD 445.6 wing
(constructed by NACA 65A004 airfoil) is also considered to test the prediction
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(a) (b)

Figure 19: (a)Sketch of AGARD 445.6 wing configuration, (b) CFD model with
intermediate BEM model

capability for more complex configuration of the developed program. The mate-
rial properties of the flexible wing are E1 = 3.15Gpa, E2 = 0.42Gpa, µ = 0.3,
G = 0.44Gpa and ρ = 382kg/m3. Fig. 19(a) shows the configuration of the wing.
Fig. 19(b) shows the CFD surface model surrounded by intermediate BEM mod-
el. A finite element structural model is constructed 200 triangular composite shell
elements and 363 degrees of freedom. The CFD grid is constructed by C grid
consisting of 159× 45× 45, the surface mesh contains 2940 points. In this case,
Reynolds averaged Navier-Stokes equation is considered to instead of Euler equa-
tion, and B-L turbulence model is used. The number of sub-iteration within one
time step is 10.

The free stream condition are M∞ = 1.05, α = 5o and q∞ = 8171kg/
(
m · s2

)
, and

the time step is set to ∆t = 0.0002s. The aeroelastic responses of the wing under
large aerodynamic loads are computed by the coupled system. In structural solu-
tion, the developed predictor-corrector procedure with approximate energy conser-
vation algorithm, linear Newmark method and linear mode superposition with first
four modes are considered. Fig. 20 shows the displacement curves of normal di-
rection and phase portrait normal displacement vs. velocity at the point on trailing
edge tip by three structural dynamic algorithms. It can be seen that both two linear
algorithms present the similar augment amplitude whereas the developed nonlin-
ear approach tends to the same variation after some time steps. A representative
LCO appears when geometrically nonlinear effect is considered. It means that the
nonlinearity can alleviate the divergence of the structural response.

Fig. 21 shows the histories of lift and drag coefficient of the wing. It can be seen
that the lift coefficient curve of the improved predictor-corrector nonlinear algorith-
m has a similar LCO phenomenon to the above structural response in Fig. 20, while
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Figure 20: (a)Time-histories of normal displacement on trailing edge tip, (b)phase
portrait normal displacement vs. velocity on trailing edge tip

the linear results tend to diverge. From Fig. 21, the drag coefficient of the present
method shows a cycle oscillation characteristic, however, the two linear method-
s show markedly different trends with time marching. It indicates that the error
caused by a linear approach in structural solver will induce a much discrepancy in
fluid solution, which has a sensitive effect for fluid convergence.
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Figure 21: (a)Time-histories of lift coefficient of the wing, (b)time-histories of drag
coefficient of the wing

Fig. 22 shows normal displacements and loads distribution of the wing at time
t = 0.11875s via three methods. It is obvious that the wing has small displacements
in X and Y direction on the tip when considering geometrical nonlinearity. When
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considering the deformation and loads distribution in aeroelastic analysis, the linear
mode superposition method may be of no avail, and the linear Newmark will be
useless for a nonlinear solution under large load and deformation.
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Figure 22: (a)Normal displacements distribution of the wing at t = 0.11875s,
(b)Normal loads distribution of the wing at t = 0.11875s

8 Conclusions

In this paper, we design an improved CFD/CSD coupled procedure for solving both
aerodynamic and structural nonlinearity involving four parts:

(i) CFD solver-AUSMpw+ flux splitting scheme with dual-time implicit tech-
nology and geometric conservation law are introduced. It can solve Euler
and Reynolds averaged Navier-Stokes equation and obtain unsteady aerody-
namic load.

(ii) CSD solver-a predictor-corrector program with an approximate energy con-
servation algorithm based on co-rotational theory is developed. It can treat
with geometrically nonlinear dynamic response of the beam and shell struc-
ture.

(iii) Data transfer between two different solvers is performed by the BEM method,
which keeps energy conservation accurately and combines of the load and
displacement transformation together.

(iv) A second order loosely coupled method is applied to manage time marching
algorithm between CFD and CSD solver.
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It is evident that the predictor-corrector procedure with an approximate energy con-
servation algorithm based on co-rotational frame in our CSD solver can deal with
geometrically nonlinear dynamic structure effectively. Combined with finite vol-
ume method and dual-time technology, and through CFD/CSD coupled algorithm,
the improved procedure can capture the representative LCO behavior for the solu-
tion of two-dimensional, three-dimensional panel and a complex wing, and it will
provide a path for developing a comprehensive prediction capability for simulating
complex, nonlinear aerodynamics and structural dynamics.

Acknowledgement: The first author acknowledges the financial support provid-
ed by the National Natural Science Foundation of China (Grant No. 11212165).
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