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Abstract: The material point method (MPM) discretizes the material domain
by a set of particles, and has showed advantages over the mesh-based methods for
many challenging problems associated with large deformation. However, at the
same time, it requires more computational resource and has difficulties to construc-
t high order scheme when simulating the fluid in high explosive (HE) explosion
problems. A coupled finite difference material point (CFDMP) method is proposed
through a bridge region to combine the advantages of the finite difference method
(FDM) and MPM. It solves a 3D HE explosion and its interaction with the sur-
rounding structures by dividing the problem domain into FDM region and MPM
region in space. FDM is employed to simulate the region where the detonation
products disperse into the surrounding air, while the FSI region is simulated by
MPM. A bridging region is employed to exchange the information. In the bridge
region, MPM provides the boundary condition for FDM region by mapping the
variables from MPM background grid nodes to FDM fictitious points, while FDM
provides the boundary condition for MPM region by mapping the variables from
FDM cell-centre points to MPM interface grid nodes. The transportation between
the two computational regions is implemented by moving particles in the bridge re-
gion. Numerical results are in good agreement with those of theoretical solutions,
empirical formula and experiments. No obvious interface effect are observed in the
bridge region in numerical tests.
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1 Introduction

A high explosive (HE) explosion is characterized by a number of challenging be-
haviors including the highly pressurized product gas propagating into the quiescent
surrounding air and the following fluid structure interaction (FSI) with the struc-
tures nearby [Zukas and Walters (1998)]. So a lot of research have been carried out
to study these kind of problems.

The traditional methods can be classified into Lagrangian method and Eulerian
method based on the frame of reference [Benson (1992)]. The Lagrangian method
has been widely used for structural analyses because of its capability of modeling
history-dependent material and tracking material interface. A common practice
in modeling HE explosion problems is to discretize the structure by Lagrangian
finite elements and then the explosion effects are taken into account by applying
the pressure load on the structure surface. For examples, a plate under air blast
loading was studied by Jacinto et al. [Jacinto, Ambrosini, and Danesi (2001)] and
the spallation in reinforced concrete plates subjected to blast loading was studied
by Xu et al. [Xu and Lu (2006)]. However, the Lagrangian finite element method
(FEM) suffers from mesh tangling which deteriorates its numerical accuracy and
efficiency dramatically.

Recently, many meshless methods based on Lagrangian framework have been pro-
posed as the alternatives for the traditional finite element methods, which have
showed advantages for problems associated with large deformation. Among them,
the smoothed particle hydrodynamics (SPH) [Lucy (1977); Liu and Liu (2003)] and
material point method (MPM) [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou,
and Schreyer (1995)] have been successfully applied to HE explosion problems.
Detonations of HE in air and underwater were simulated by SPH [Liu, Liu, Zong,
and Lam (2003); Liu, Liu, Lam, and Zong (2003b)]. The numerical tests revealed
the ability of SPH in modeling explosion problems with arbitrary charge shape and
different orientations. Ma et al. [Ma, Zhang, Lian, and Zhou (2009)] proposed an
adaptive MPM for simulating the HE explosion problems whilst Lian et al. [Lian,
Zhang, Zhou, Ma, and Zhao (2011)] extended the MPM method to the explosively
driven metal problems whose numerical results agreed well with the Gurney solu-
tions. Zhang et al. [Zhang, Zou, VanderHeyden, and Ma (2008); Zhang, Ma, and
Giguere (2011)] enhanced MPM to simulate a series of fluid-structure interactions
and multi-material interactions problems. Using MPM, Banerjee [Banerjee (2004)]
simulated the fragmentation of cylinders due to explosively expanding gases gen-
erated by a high energy material inside the cylinders, and Hu et al. [Hu and Chen
(2006)] studied the synergistic effects of blast and fragmentation on a concrete wal-
l. Furthermore, a comparison study of MPM and SPH in modeling hyper velocity
impact problems was conducted by Ma et al. [Ma, Zhang, and Qiu (2009)]. These
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studies concluded that these two methods possesses a great potential for simulating
large deformation FSI problems at high strain-rate. However, the particle methods
require more computational resource and have difficulties to construct high order
scheme when simulating the fluid in high explosive (HE) explosion problems.

In contrast to the Lagrangian method, the Eulerian method employes fixed meshes
so it is not plagued by mesh distortion. They usually solve the fluid region in HE
explosion problem together with approaches for tracking the material interfaces and
the internal history variables, such as the Youngs interface reconstruction method
[Youngs (1982)], level set method [Osher and Fedkiw (2001)] and fuzzy interface
method [Ning and Chen (2004)]. Ma et al. [Ma, Wang, and Ning (2008)] develope-
d a multi-material Eulerian hydrodynamic code with modified Youngs’ interface
reconstruction algorithm for the simulations of explosion problems such as explo-
sion in tunnel and steel shaped charge jet. Luccioni et al.[Luccioni, Ambrosini, and
Danesi (2004)] employed AUTODYN to study the structural failure of a reinforced
concrete building inflicted by an air blast load. The dispersion process of the HE
products in air was simulated by the three-dimensional Euler FCT solver. Wu et
al. [Wu and Hao (2005)] simulated the ground shock and air blast pressure gener-
ated from surface explosions using AUTODYN2D. Furthermore, newly developed
methods based on Eulerian framework such as Discontinuous Galerkin Method
(DGM) [Cockburn, Hou, and Shu (1990)] has been used to solve the gaseous deto-
nation problems [Wang, Zhang, Shu, and Ning (2012)]. These studies show sound
ability of Eulerian method in solving wave propagation process in HE explosion
problems. However, the Eulerian description limits its ability to handle the FSI
problems by one single method, so it is usually coupled with a Lagrangian method
to discretize the region of structures.

There are also some mixed methods which take the advantages of both Lagrangian
and Eulerian descriptions. A well-known example is the arbitrary Lagrangian-
Eulerian method (ALE) [Liu, Belytschko, and Chang (1986)]. The major numerical
difficulty of ALE is developing an effective and efficient mesh moving scheme for
complicated 3D problems. Furthermore, the numerical diffusion and dissipation
still exist in ALE method. A detailed review on Lagrangian, Eulerian and their
mixed methods was presented by Benson [Benson (1992)].

Since the Lagrangian method possess advantages in simulating the structures with
historical variables and the Eulerian method handle the fluid better, much effort has
been devoted to couple these two type of methods so as to take advantage of each
method to simulate the HE explosion and the relevant large deformation problem-
s. Fairlie et al. [Fairlie and Bergeron (2002)] described a coupled methodology
for simulating the surface-laid or buried charges explosions. In the methodolo-
gy, the air and explosive were modeled in an Euler-FCT grid as a single ideal gas



568 Copyright © 2014 Tech Science Press CMES, vol.98, no.6, pp.565-599, 2014

while the surrounding soil and complex targets were modeled by Lagrangian grid.
Zhang et al. [Zhang and Xu (2007)] investigated a cylindrical shell loaded by blast
wave from a central charge. Finite volume method (FVM) was used to model the
HE in ALE framework and FEM was adopted to model the shell in Lagrangian
framework. Guillkey et al. [Guilkey, Harman, and Banerjee (2007)] developed
an approach for solving full-physics FSI problems using the Eulerian description
(FVM) for fluids and the Lagrangian description (MPM) for solids. To simulate
FSI problems with large deformations in the structure, Gilmanov et al. [Gilmanov
and Acharya (2008)] developed an effective numerical method in which the hybrid
immersed boundary method (HIBM) was employed to resolve complex boundaries
for the fluid flow and MPM was coupled to resolve the structural stresses and de-
formation. The combined method was implemented in the framework of finite
difference method (FDM). Flekkoy et al. [Flekkoy, Wagner, and Feder (2000)] in-
troduced a “hybrid model” that permits a continuum description in one region to be
coupled to an atomistic description in another region. The two regions were solved
by FDM and molecular dynamics (MD) respectively.

Coupling between meshless methods and FEM are also carried out to simulate the
problems with large deformation. Aktay et al. [Aktay and Johnson (2007)] devel-
oped a FEM/SPH coupling technique for high velocity impact (HVI) simulation of
composite panels. In the technique, contact interfaces were employed to couple the
discrete smoothed particles and finite elements which were employed to model the
parts undergoing large and small deformation, respectively. Zhang et al. [Zhang,
Sze, and Ma (2006)] developed an explicit material point finite element method
for HVI. In their method, the momentum equations were solved on a predefined
regular grid in the severely deformed region and on FE mesh elsewhere. Lian et
al. [Lian, Zhang, Zhou, and Ma (2011)] developed a coupled approach in which
the bodies with large and mild deformation were discretized by MPM and FEM,
respectively. The interaction between two bodies was handled by a contact method
and the FE nodes on the contact interface were treated as special particles. To fur-
ther improve the efficiency, Lian et al. [Lian, Zhang, and Liu (2012)] proposed an
adaptive material point finite element method in which material domains were ini-
tially discretized into finite elements (FE). Depending on severity of the distortion
or plastic strain being developed, some elements were adaptively converted into
MPM particles during the solution process.

Most of the coupling between Lagrangian methods and Euler methods divide the
computational domain by an interface between fluid and structure in solving FSI
problems. Individual materials occupy distinct regions in space, with interactions
occurring at the material interfaces. Because of the separated nature of the materi-
als, the interface requires additional treatment and often introduce numerical error.
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In this paper, a coupled finite difference material point (CFDMP) method is de-
veloped to model the 3D HE explosion and its interaction with the surrounding
structures. Taking the advantage of handling the shock wave propagation, FDM
is employed to simulate a large proportion of the fluid region, while MPM is em-
ployed in the FSI region which contains the structures and the fluid near the struc-
tures. Therefore, the interface between two computational regions is located in the
same material region (fluid) and the interface effect could be significantly reduced.
The material interface is located in the MPM region so that the fluid-structure in-
teraction is solved in MPM region to fully take its sound ability for simulating
history-dependent material and tracking the material interface. Hence, the region
involved shock wave dispersion problem is simulated by FDM and the region in-
volved history-dependent materials and FSI problems are simulated by MPM. The
interaction between FDM region and MPM region are implemented by a “bridge
region” which contains only one material. MPM provides the boundary condition
for FDM region by mapping the value from background grid nodes to the fictitious
points outside the boundary of FDM, while FDM provides the boundary condition
for MPM region by mapping value from cell-centre points to MPM interface grid n-
odes. The transportation between the two computational regions is implemented by
moving particles in the bridge region. The proposed scheme has been implemented
in our 3D explicit material point method code, MPM3D, to simulate HE explosion
problems. Several numerical examples are presented to validate the efficiency and
accuracy of the proposed method.

The remaining part of this paper is organized as follows. Section 2 presents the
governing equations and the numerical scheme in each computational region. A
description of CFDMP and the numerical implementations are presented in Sec-
tion 3. Then the material models employed are introduced in Section 4. Several
numerical tests are given in Section 5, and the conclusions are summarized in Sec-
tion 6.

2 Governing equations and schemes

The problem domain can be divided into two computational regions in space. FD-
M is employed to simulate the fluid region, while the FSI region is simulated by
MPM. Since the primary materials and their properties are different in two regions,
different governing equations and schemes are employed as follows.

2.1 Governing equations and scheme in FDM region

The dispersion process of detonation products to the surrounding air is a flow with
strong discontinuity. Owing to the extremely high detonation and dispersion speed-
s, the explosion process is adiabatic. The detonation products and the surrounding
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air can be assumed to be inviscid and compressible, which can be described by the
three-dimensional compressible Euler equations

∂U
∂ t

+
∂ f (U)

∂x
+

∂g(U)

∂y
+

∂h(U)

∂ z
= 0 t > 0, (x,y,z) ∈ R3 (1)

with suitable equation of state (EOS). In Eq. (1),
U = [ρ,ρ u̇1,ρ u̇2,ρ u̇3,E]T
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where u̇1, u̇2 and u̇3 are the velocity components along the x-, y- and z- directions,
respectively; E = 1

2 ρ(u̇2
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2+ u̇2
3)+ρe is the total energy per unit volume; e is the

specific internal energy and pressure p can be obtained from an EOS.

The explicit three-dimensional scheme of fractional step FDM is outlined in a time
step (from n to n+ 1) as below [Yanenko (1971)]. Take x direction as an exam-
ple, adaptive artificial viscosity [Zhang (2010)] is used to avoid the non-physical
oscillations near the shockwave which can be written as
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where η is a parameter to be adjusted empirically to meet the requirements for
different problems or determined according to the time step ∆t, spatial step ∆x and
sound speed c as

η =
c∆t
∆x

(1− c∆t
∆x

) (5)

The fractional steps method [Yanenko (1971)] is introduced to split the three-
dimensional problem into three one-dimensional flow problems. To reduce the
artificial affect introduced by the integration sequence, the splitting can be imple-
mented as
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where Lx(
1
2 ∆t) is the difference operator in x direction of Eq. (1), Ly(

1
2 ∆t) is the

difference operator in y direction of Eq. (1) and Lz(
1
2 ∆t) is the difference operator
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in z direction of Eq. (1), Un are the conservation variables Ūn
i defined in Eq.(3). In

this paper, a second order Lax-Wedroff [Lax and Wendroff (1964)] finite difference
scheme is employed for each direction so that
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2.2 Governing equations and scheme in MPM region

During fluid-structure interaction, the history variables are important to describe
the behavior of the structure. Therefore, the updated Lagrangian description is
employed for the continuum which is governed by the momentum equation

σi j, j +ρ fi = ρ üi ∀xi ∈V (10)

where V is the current material domain, σi j is the Cauchy stress, ρ is the current
density, fi is the body force density, üi is the acceleration. The weak form of gov-
erning equation (10) can be obtained from the weighted residual method as [Sulsky,
Chen, and Schreyer (1994)]

δΠ =
∫

V
ρ üiδuidV +

∫
V

σi jδui, jdV −
∫

V
ρ fiδuidV −

∫
At

t̄iδuidΓ = 0 (11)

where At is the portion of boundary prescribed with traction t̄i.

The mass conservation equation is

ρJ = ρ0 (12)

where J is the determinant of the deformation gradient matrix Fi j = ∂xi/∂X j and
ρ0 is the initial density. The energy equation is given by

Ė = Jσi jε̇i j = Jsi jε̇i j− Jpε̇kk (13)
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where E is the energy per unit initial volume, ε̇i j is the strain rate, si j = σi j− pδi j

is the deviatoric stress and p represents the pressure.

In CFDMP method, these governing equations will be solved by MPM as described
in existing literature [Ma, Hanan, Komanduri, and Lu (2012)]. MPM is an ex-
tension of the FLIP particle in cell (PIC) method [Brackbill and Ruppel (1986)]
in computational fluid dynamics to computational solid mechanics. As a pre-
processing step, we define the background grid in the FSI region, and discretize
the material region by a set of particles, see Fig.1. All the material variables in-
cluding mass, position, velocity, strain and stress are carried by the particles. In
each time step, the particles are rigidly attached to the background grid in which
the momentum equation is solved in the framework of the standard finite element
method. Then, the positions and velocities of all particles are updated based on the
grid nodal velocities and accelerations. Afterward, the deformed grid is discarded
and a new regular grid is used in next time step, and the initial grid nodal mass and
momentum can be obtained from the mass and momentum of particles. Thus, com-
plications associated with mesh distortion are avoided. In general, a fixed regular
grid can be used throughout the computation.

Figure 1: Material point discretization

Since the material domain is discretized with a set of particles, the density can be
approximated as

ρ(x) =
np

∑
p=1

mpδ (x− xp) (14)

where np denotes the number of particles; δ is the Dirac Delta function; mp is
the mass and xp is the position of particle p. Since the masses are carried by the
particles, the mass conservation is automatically satisfied in MPM.
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Since the particles are rigidly attached to the computational grid, the displacement
of particle p can be obtained by mapping from their grid node values uI using the
standard finite element interpolation functions of the grid as

up =
ng

∑
I=1

NI puI (15)

where NI p = NI(xp) is the interpolation function of grid node I evaluated at the
position of particle p. The 8-node hexahedron interpolation is used whose shape
function is given by

NI p =
1
8
(1+ξpξI)(1+ηpηI)(1+ζpζI) I = 1,2, ...,8 (16)

where (ξI,ηI,ζI) take their nodal value of ±1 on grid node I, and (ξp,ηp,ζp) de-
note the natural coordinates of particle p. If the particle p is outside the hexahedron,
NI p = 0.

Substituting (14) and (15) into the weak form (11) and using a lumped mass matrix
lead to

ṗiI = f int
iI + f ext

iI (17)

where

piI =
np

∑
p=1

mpNI pvip (18)

is the grid nodal momentum,

f int
iI =−

np

∑
p=1

NI p, jσi jp
mp

ρp
(19)

is the grid nodal internal force and

f ext
iI =

np

∑
p=1

mpNI p fip +
np

∑
p=1

NI ph−1tip
mp

ρp
(20)

is the grid nodal external force. In Eq.(20), h denotes the thickness of the boundary
layer used to calculate the surface integral. The grid nodal masses can be obtained
by

mI =
np

∑
p=1

NI pmp (21)
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From time step n to n+1, the momentum equation is integrated by

pn+1
iI = pn

iI + f n
iI∆tn (22)

where

f n
iI = f int,n

iI + f ext,n
iI (23)

The velocity and position of particles are updated by mapping the increments from
background grid nodes back to particles as
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∑
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f n
iI

mn
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Nn
I p∆tn (24)

xn+1
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ip +
8

∑
I=1

pn+1
iI
mn

I
Nn
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Before calculating the incremental strain and spin tensors, the updated velocities of
the particles are mapped back to the grid nodes to update their velocities, namely

vn+1
iI =

np

∑
p=1

mpNn
I pvn+1

ip

mn
I

(26)

The incremental strain and spin tensors are calculated by (take three-dimensional
problems for example)

∆ε
n
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Finally, the density and stress of particles are updated by

ρ
n+1
p = ρ

n
p/(1+∆ε

n
kkp) (29)

σ
n+1
i jp = σ

n
i jp +σ

n
ikp∆Ω

n
jkp +σ

n
jkp∆Ω

n
ikp +∆σ

n
i jp (30)

where ∆σn
i jp is calculated by a material constitutive model introduced in Section 4.

After all the history information has been updated and stored in particles, time step
n ends up and the deformed background grid is discarded. Time step n+ 1 starts
with a new regular grid being employed.
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3 Coupled finite difference material point method

Fig. 2 shows a typical HE air explosion problem. A HE charge is burned into
gaseous products which disperse to the surrounding air and then interact with the
structure. The whole region can be divided into a fluid region and a FSI region
separated by the dash line. The traditional FDM is employed to simulate the dis-
persion process in fluid region. When the pressure of cell-centres near the region
interface, i.e. the dash line in Fig. 2, attains a prescribed threshold, arrival of the
shock wave front is detected and the interaction region will be activated. The inter-
action process is simulated by MPM so that the history variables of structure can
be recorded to characterize the material damage. The detailed governing equations
and schemes for the two regions have been presented in Section 2. The interaction
between FDM region and MPM region is provided as follow.

TNT Structure AirAir

Fluid region

(FDM)
FSI region

(MPM)

Figure 2: A typical HE explosion problem

3.1 Bridge region

As shown in Fig. 3, the whole problem domain is discretized to m regular cells in
x direction (y, z directions are also applicable). The size of FDM cells and MPM
background cells are the same. The cells from 0 to k are FDM cells and the cells
from k−w to m are MPM background cells, where w denotes the number of cells
in the bridge region in direction x. Cells from k−w to k define the bridge region,
in which the FDM cells are coincident with the MPM background cells. As shown
in Fig. 3, two different materials in the MPM region are marked by circles and
triangles respectively. The material in the FDM region is the same as the fluid
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material in the MPM region, air is taken for example here, and the structures in the
MPM region could have complex geometry because it is discretized by particles.
The variables of fictitious points (hollow squares) outside the FDM region in cell
k+1 is obtained by interpolating the background grid nodes while the variables of
interface nodes (hollow circles) of the MPM region is adjusted by interpolating the
centers of cell k−w−1 after being initialized by Eqs. (18) to (21). The transport
between the two computational regions is implemented by moving the particles
through the cell interface between the cells k−w− 1 and k−w. The detailed
methods and equations will be described in the following subsections.

cell-centers

air particles

structure particles

particles in bridge region

k-w-1

FDM region

MPM region

fictitious points for FDM region

interface nodes for MPM region

... k-w k... k+1 ...0 m

Figure 3: The computational region for CFDMP

3.2 Interface boundary condition for FDM region

To solve Eq. (1) in FDM region, the variables of fictitious points (k+ 1) outside
FDM region as shown in Fig. 3 should be given. The mass mn

c and momentum
pn

ic of the FDM’s fictitious points in time step n can be obtained by mapping the
MPM grid nodal mass and momentum via the shape function, namely (take three-
dimensional problems for example)

mn
c =

8

∑
I=1

mn
I Nn

Ic (31)

pn
ic =

8

∑
I=1

pn
iIN

n
Ic (32)

The internal energy eint,n
c is calculated by adding all the particles’ internal energy in
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the cell as

eint,n
c =

np

∑
p=1

eint,n
p (33)

Finally, the variables of the cell-centre k+1 for FDM can be obtained by

ρ
n
c =

mn
c

Vc
(34)

(ρv)n
ic = ρ

n
c

pn
ic

mn
c

(35)

En
c =

eint,n
c + 1

2 mn
c(

pn
ic

mn
c
)2

Vc
(36)

3.3 Interface boundary condition for MPM region

To solve the governing equations in MPM region, the variables of grid interface
nodes between cell k−w−1 and cell k−w of MPM region (see Fig. 3) should be
adjusted to consider the effect from the FDM region. The FDM cell-centers with
cell number k−w−1 in direction x are considered as particles and take part in the
mapping process from particles to background nodes as in Eqs. (18), (19) and (21).
Therefore, the mass, momentum and internal force of the background grid interface
nodes of MPM are adjusted by

mn
I =

np

∑
p=1

Nn
I pmp +

nc

∑
c=1

ρ
n
c Nn

IcV
n
c (37)

pn
iI =

np

∑
p=1

mpNn
I pvn

ip +
nc

∑
c=1

ρ
n
c V n

c vn
icNn

Ic (38)

f int,n
iI =−

np

∑
p=1

Nn
I p, jσi jp

mp

ρp
+

nc

∑
c=1

Nn
Ic,i p

n
cV n

c (39)

where the first term is the same as those in Eqs. (18), (19) and (21) in the standard
MPM, while the second term is the contribution from the FDM region. The sub-
script “c” denotes the cells in the FDM region which are connected to the MPM
interface node being adjusted, nc is the number of the cells, and pn

c denotes the
pressure.
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3.4 Transportation between FDM and MPM regions

After integrating the governing equations in FDM region, the variables have been
updated for every cell, and the transportation between the two computational re-
gions is carried out by moving the particles through the boundary of the MPM
region. We take a pair of the interface cells as an example as shown in Fig. 4. Both
two cells are in the FDM region and the right cell, which is a bridge cell, is also
in the MPM region. The interface between these two cells are the boundary of the
MPM region.

k-w

MPM region

cell-centers

particles in MPM region

newly generated particles from

interface

k-w-1

FDM to MPM region

p

Figure 4: The transportation between FDM and MPM

Assume that the time step n has been solved and the transportation is needed. We
first get the density, velocity and pressure of the interface by interpolating the cell-
center values of these two cells

ρ
n
f =

1
2
(ρn

k−w−1 +ρ
n
k−w) (40)

vn
i f =

1
2
(vn

k−w−1 + vn
k−w), i = 1,2,3 (41)

pn
f =

1
2
(pn

k−w−1 + pn
k−w) (42)

The fluxes of mass and momentum transfered during this time step can be calculat-
ed as

f n
m = ρ

n
f vn

1 f ∆y∆z∆tn (43)

f n
ip = ρ

n
f vn

i f v
n
1 f ∆y∆z∆tn, i = 1,2,3 (44)

where vn
1 f is the normal velocity of the interface determined by Eq.(41).
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Referring to the work by Flekkoy [Flekkoy, Wagner, and Feder (2000)] on coupling
FDM and molecular dynamics(MD), particles are generated in cell k−w to guaran-
tee the conservation of mass and momentum. The newly generated particles have
the same density, velocities and pressure as they are in the “donor cell”. To make
sure the newly generated particles do not have extreme distinction with existing
particles in mass to improve the stability, we determine their number and mass by

s = ceiling(
f n
m

mn
e
) (45)

mp =
f n
m

s
(46)

where mn
e is the mass of the existing particles. We slightly adjust s to an integer

multiple of 4 to distribute particles uniformly. The furthest particles’ distance from
the center of the interface are calculated by their velocity in this step as

di = vn
i ∆tn, i = 1,2,3 (47)

Moreover, the internal energy of the newly generated particles are given by their
EOS as (air taking for example)

eint,n
p =

pn
pmn

p

(γ−1)ρn
p

(48)

where pn
p is the pressure of the newly generated particles. Since the equation is

linear about mass, the conservation of internal energy is protected here. The newly
generated particles in same cells have single velocity, and the mass conservation
is automatically protected, so kinetic energy flow into the MPM region is equal to
that carried by the newly generated particles. Together, the energy conservation is
protected in this process.

If the particles in cell k−w cross the boundary of MPM region in this step, the
transportation is from MPM to FDM. The crossing particles will not take part in
the computation of MPM any more, and their conservation variables are added to
the cell they move into. So the conservation is also protected in this process. For
example, the particle p moves from cell k−w into cell k−w− 1 in Fig. 4, so the
cell-center values of cell k−w−1 should be adjusted by

ρ
n′
c =

ρn
c ∆x∆y∆z+mn

p

∆x∆y∆z
(49)

ρun′
ic =

ρn
c un

ic∆x∆y∆z+mn
pun

ip

∆x∆y∆z
(50)

En′
c =

En
c ∆x∆y∆z+ en

p

∆x∆y∆z
(51)



580 Copyright © 2014 Tech Science Press CMES, vol.98, no.6, pp.565-599, 2014

3.5 Numerical implementation

One explicit step using CFDMP (from n to n+1) is summarized below.

(1) Calculate the time step for MPM and FDM by CFL criterion respectively, and
take the smallest one as the time step for CFDMP.

(2) Map the mass m and momentum p of all MPM particles to the background grid
except the interface nodes by Eqs. (21) and (18).

(3) Map the mass m and momentum p of corresponding MPM particles to the
interface nodes of background grid by Eqs. (37) and (38).

(4) Compute the grid nodal internal force f int and external force f ext except the
interface nodes by Eqs. (19) and (20).

(5) Compute the grid nodal internal force f int of interface nodes by Eq. (39).

(6) Integrate the momentum equation by Eq. (22).

(7) Update the fictitious points’ variables by Eqs. (34) to (36).

(8) Integrate the governing equations of FDM by Eq. (6), where the operators in
three directions are defined by Eqs. (7) to (9).

(9) Update the velocity and position of particles by mapping their increments back
to particles by Eqs. (24) and (25).

(10) Map the velocity back to the grid nodes by Eq. (26).

(11) Calculate the incremental strain and spin tensors by Eqs. (27) and (28).

(12) Update the density of particles by Eq. (29).

(13) Update the stress of particles σ
n+1
i jp by Eq. (30).

(14) Carry out the transportation process between FDM region and MPM region as
described in Section 3.4 and this completes the current time step .

4 Material models

Equations of state, constitutive models and reaction models complete the whole
governing equations. Brief descriptions of the models used in this paper are giv-
en below. Some of the parameters are taken from the references as well as the
commercial software such as AUTODYN and LS-DYNA.

4.1 High explosive EOS

In detonation process, the reactive wave propagates at very high speed inside the
HE [Zukas and Walters (1998)]. The exothermic reaction is completed within a
few microseconds with the HE completely converted to gaseous products. Most of
the earlier works use the “artificial detonation model” [Liu and Liu (2003)] which
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considers the explosive as a group of gaseous products with the same energy and
volume of the initial explosive charge. For most simulations in this paper, we use
the “real detonation model” [Liu and Liu (2003)] which lights the explosive ac-
cording to the reactive wave’s propagation, the pressure jump which occurs when
the shock front arrived at material interface is better captured [Cui, Zhang, Sze, and
Zhou (2013)]. For saving computational resources and accelerating the simulation,
we refer to the remap method in AUTODYN for air explosion problem, solving an
1D TNT explosion problem first and map the result to the 3D region as the initial
condition in FDM region. Finer grid can be allocated for the 1D simulation, which
is in favour of describing the strong discontinuity during the detonation process and
the initial stage of the dispersion process.

We simulate the 1D TNT explosion by MPM so as to conveniently model the det-
onation process by “real detonation model”. In the initialization phase, a lighting
time tL is calculated for each particle (MPM) by dividing the distance from the det-
onation point by the detonation speed. After the detonation, the gaseous products
are controlled by the EOS. The real pressure p of the gaseous products is deter-
mined by multiplying the pressure pE obtained from EOS with a burn fraction F
that controls the release of chemical energy [Hallquist (1998)], namely

p = F · pE (52)

F =

{
(t−tL)D

1.5h t > tL
0 t < tL

(53)

where h is the characteristic size of a particle and t denotes the current time. Several
time steps are often required for F to reach unity. Once it is done, F is kept at unity.
Using this method, the discontinuous detonation wave is smoothed and assumes a
continuous but rapidly changing wavefront.

After detonation, the gaseous products are described by Jones-Wilkins-Lee(JWL)
EOS

p = A(1− ω

R1V
)e−R1V +B(1− ω

R2V
)e−R2V +

ωE0

V
(54)

Moreover, TNT with a density of 1630kg/m3 and a detonation speed of 6930m/s
are used in the simulation. The parameters of JWL EOS are taken from [Liu, Liu,
Lam, and Zong (2003a)] as A = 3.712× 1011 N/m2, B = 3.21× 109 N/m2, R1 =
4.15, R2 = 0.95, ω = 0.3, energy per initial volume E0 = 6993×106 J/m3.
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4.2 Air model

Air is modeled as a null material model with the following ideal gas EOS

p = (γ−1)ρe = (γ−1)[E− 1
2

ρ(u2
1 +u2

2 +u2
3)] (55)

where ρ = 1.225kg/m3 and e = 2.0685×105 J/kg.

4.3 Concrete model with tensile damage

The concrete is modeled by Holmquist Johnson Cook (HJC) model with tensile
damage. The HJC model was originally presented for concrete damage problems
involving hydrostatic pressure, strain rate and compressive damage. The equivalent
strength is expressed as

σ
∗ = [A(1−D)+Bp∗N ][1+C ln ε̇

∗] (56)

where σ∗ = σ/ f ′c denotes the normalized equivalent stress, σ is the actual equiva-
lent stress, f ′c represents the quasi-static uniaxial compressive strength. p∗ = p/ f ′c
denotes the normalized pressure, p is the real pressure. ε̇∗ = ε̇/ε̇0 represents the
dimensionless strain rate, ε̇ is the real strain rate and ε̇0 is the reference strain rate.
A, B, N, C and Smax are normalized cohesive strength, normalized pressure harden-
ing coefficient, pressure hardening exponent, strain rate coefficient and normalized
maximum strength, respectively. D is an index describing the material damage in
the range of 0∼ 1. According to the original HJC model [Holmquist, Johnson, and
Cook (1993)], an accumulated damage failure model, also known as compression-
shear damage, is considered, which is written as

Dc = ∑
4εp +4µp

D1(p∗+T ∗)D2
(57)

where Dc denotes the compression-shear damage parameter,4εp and4µp denote
the equivalent plastic strain and plastic volumetric strain, respectively. D1 and D2
are the damage constants. In order to allow for a finite amount of plastic strain
to fracture, a third damage constant E f min is provided. T ∗ = T/ f

′
c denotes the

normalized maximum tensile hydrostatic pressure.

However, the tensile damage of concrete is not considered in the original HJC mod-
el. The tensile behavior of concrete is simply considered through maximum tensile
hydrostatic pressure. A new brittle tensile failure model based on micro cracking
growth of concrete was presented by Jiang similarly as the metal brittle tensile fail-
ure [Jiang (2010)]. According to this model, every crack can be viewed as a sphere
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cavity zones with the maximum diameter of crack which is called "equivalent micro
holes". This model can be formulized as

Ḋt = aDt(1−Dt)(
σs

σ0
−1)γ (58)

where a is damage factor of micro-crack growth, or frequency of micro-crack
growth, σ0 is threshold stress of damage development involving micro voids’ nu-
cleation and growth, γ is dependent coefficient of the ultra threshold stress. When
the tensile damage reaches the limit of damage, spall of material will occur. Con-
sidering high pressures and air voids, the equation of state (EOS) in HJC model
is divided into three response regions including linear elastic zone, transition zone
and full dense zone. More details can be found in papers [Lian, Zhang, Zhou, and
Ma (2011); Holmquist, Johnson, and Cook (1993)].

4.4 Soil model

The soil in this work is modeled by Drucker-Prager constitutive model [Itasca
(2005)]. It is made up by shear failure and tension failure. For judging the shear
failure region and tension failure region, function h(σm,τ) is defined as

h = τ− τ
p−α

p(σm−σ
t) (59)

where τ =
√

J2 is the effective shear stress and J2 denotes the second stress invari-
ant. σm = I1/3 is the spheric stress and I1 denotes the first stress invariant. τ p and
α p are constants and can be defined as

τ
p = kφ −qφ σ

t (60)

α
p =

√
1+q2

φ
−qφ (61)

where σ t is the tensile strength, kφ and qφ are material constants which can be
obtained from the cohesion and frictional angle. When h > 0, shear failure is em-
ployed and the yield function can be described as

f s = τ +qφ σm− kφ (62)

If h < 0, tension failure is employed and yield function can be described as

f t = σm−σ
t (63)

The parameters of soil are taken from [Luccioni and Luege (2006)] as ρ = 1200
kg/m3, E = 100MPa and ε = 0.3. The cohesion is 0.11MPa and the internal fric-
tion angle is 20◦.
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4.5 Steel model

The Johnson-Cook material model [Johnson and Cook (1983)] is employed in the
numerical example to describe the property of the steel plate. The model accounts
for the strain rate effect and has widely used to model the behavior of metal during
impact and explosion. The yield stress is given by

σy = (A+Bε
n)(1+C ln ε̇

∗)(1−T ∗m) (64)

where ε is the equivalent plastic strain, ε̇∗ = ε̇/ε̇0 is the dimensionless plastic strain
rate with ε̇0 = 1s−1. T ∗ = (T − Troom)/(Tmelt− Troom) ∈ [0,1] is the dimension-
less temperature. T is the material’s temperature, Troom is the room temperature,
and Tmelt is the material’s melting temperature. The material constants are tak-
en from the reference [Neuberger, Peles, and Rittel (2007)] to be A = 950MPa,
B = 560MPa, n = 0.26, C = 0.014 and m = 1.

The pressure of steel is updated by the Mie-GrÃ¼neisen EOS as

p = pH(1−
γµ

2
)+ γρE (65)

where

pH =

{
ρ0C2

0 [µ +(2S−1)µ2 +(S−1)(3S−1)µ3] µ > 0
ρ0C2

0 µ µ < 0
(66)

The subscript H refers to the Hugoniot curve and µ = ρ/ρ0−1 is used to represent
the compression of solid with ρ0 being the stress-free solid density. Moreover, γ ,
C0 and S are the material constants which are taken as γ = 2.17, C0 = 4569m/s and
S = 1.49 for the numerical example in this paper.

5 Numerical examples

The three dimensional CFDMP scheme has been implemented in our 3D explicit
material point method code, MPM3D [Ma, Zhang, and Huang (2010)], to solve HE
air explosion problems. Five numerical examples are presented in this section to
validate the scheme and demonstrate its capabilities.

5.1 One-dimensional Shock tube problem

Sod shock tube problem [Sod (1978)] is a benchmark for validating codes for
compressible fluid, so it is taken to demonstrate the FDM solver in CFDMP. As
shown in Fig. 5, this problem consists of a shock tube with a diaphragm sep-
arating two regions whose initial states are ρleft = 1.0g/mm3, pleft = 1.0MPa,
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ρright = 0.125g/mm3 and pright = 0.1MPa. The fluids in both regions are initial-
ly at rest. At time t = 0ms, the diaphragm is ruptured. Then, the shock and the
contact interface travel at different speeds. The results are usually examined at
t = 0.143ms when the shock has traveled a distance of about 0.25mm. This prob-
lem is employed to test the capability of the FDM solver in CFDMP on simulating
compressible fluid and does not involve coupling between FDM and MPM. The
profiles of density, velocity and pressure are plotted in Fig.6 for a grid with 1000
cells, which shows that the FDM solver’s results are in excellent agreement with
the analytical results. The simulation results obtained by MPM using the same cells
are also plotted in the figures in which obvious numerical oscillations can be noted.
Generalized interpolation material point method (GIMP) [Bardenhagen and Kober
(2004)] can effectively inhibit the numerical oscillations and get better results than
MPM, however, more computational resources are needed. Unlike the MPM and
GIMP in which both the particles and background grid are created, the FDM solver
in CFDMP method updates the variables only in the cell-center points. In this re-
gard, the CPU times consumed by GIMP and MPM are 78s and 52s, respectively,
while FDM only takes 46s. Furthermore, the convergence properties of FDM and
GIMP are studied by plotting the global error norms of the results against the back-
ground cell length (h), as shown in Fig. 7. The convergence rate of FDM is about
50% higher than that of GIMP. What’s more, the global errors of FDM using 500
cells are almost equal to that of GIMP using 1000 cells, which demonstrates the ra-
tionality of employing FDM to simulate the fluid region which contain shock wave
propagation in HE problems in CFDMP.

length=1mm

leftρ rightρ rightp
leftp

diaphragm (x = 0.5mm)

Figure 5: 1D shock tube problem

5.2 Two-dimensional HE explosion and interaction with a concrete slab

A two-dimensional HE explosion problem is simulated as shown in Fig. 8. A
HE charge with a radius of 50mm detonates and drives the surrounding air to
interact with a concrete slab. The HE and surrounding air are simulated by the
high explosive model and air model presented in Section 4 and the boundary con-
ditions of the fluid region are all “flow out”. The concrete is simulated by the
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Figure 7: Pressure convergence curves

concrete model with tensile damage presented in Section 4. The computational
domain (−180,160mm)× (0,500mm) is divided into FDM region (Fluid region)
of (−180,120mm)× (0,500mm) and MPM region (Interaction region) of (110,
160mm)× (0,500mm), as shown in Fig. 8. All regions are discretized by square
cells of side length 2 mm. The bridge region is (110,120mm)× (0,500mm) and
w = 5, i.e., the width of the bridge region is equal to 5 times of the cell’s side length.
The center of the HE charge is located at (0,250).

Fig.9 shows the colored contours of the pressure at 20µs in FDM and MPM region
respectively. It can be recognized that the wave propagation transport through the
bridge region correctly. To quantitatively demonstrate that CFDMP does not in-
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Figure 8: Computational regions of 2D HE explosion

troduce obvious interface effect, the pressure time history of two symmetric gauge
points in the air, which have the same distance from the center of the HE charge
(see Fig. 8), are shown in Fig.10. The gauge 1 (−125,250) is in the FDM region
while the gauge 2 (125,250) is in MPM region. The pressure time histories of
the two gauge points are in good agreement, which demonstrates that the proposed
coupling method between FDM and MPM works very well.

To further study the effects of the width of the bridge region, Fig.11 plots the pres-
sure time histories for w equals to 2 and 8, respectively, which shows that the bridge
region would smooth the shock wave excessively when w is too large. Therefore,
the width of the bridge region should not be too large, and w = 5 performs very
well as shown in Fig.10.

The pressures in the interaction region obtained by MPM and CFDMP are com-
pared in Fig. 12. Not only the time step used in MPM simulation is much smaller
than that of CFDMP due to some particles with extraordinary high speed near the
contact discontinuity, but also the MPM result suffers more numerical oscillations.
Besides, MPM requires more memory because it places particles in the whole re-
gion. As a result, the total computational time of MPM is 181 minutes 9 seconds,
while the total computational time for CFDMP is only 50 minutes 30 seconds.
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Figure 9: Contours of pressure at t = 20µs. (a). FDM region; (b). MPM region
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5.3 Three-dimensional HE explosion and interaction with a concrete slab

To validate the capability of CFDMP in simulating HE explosion problem and the
damage effect to the structure nearby, a concrete slab under blast loads experimen-
t [Luccioni and Luege (2006)] is studied. The geometrical configuration of the
experiment and the load locations are shown in Fig.13. Spherical HE charges of
5Kg (TNT equivalent mass of 4Kg) and 12.5Kg (TNT equivalent mass of 10Kg) of
Gelamon VF80 were employed placed at 0.5m height above the top surface of the
slab as shown in Fig.13(a). There were three tests on the same slab successively,
the first produced a fracture parallel to the short side, so for the following deto-
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Figure 12: Contours of pressure in interaction region at t = 32.5µs. (a). MPM; (b).
CFDMP

nations, the original slab behaved as two square independent slabs so we simulate
two tests independently. The average compressive strength of the concrete (25M-
Pa) was obtained from compression tests with the same concrete as the slab. In
[Luccioni and Luege (2006)], AUTODYN was used to simulate the experiments,
and their material parameters are used in our simulations. In both AUTODYN and
our simulations, a remap method is used to map the 1D simulation results of the
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detonation process to 3D region as the initial condition in the FDM region and then
simulate the propagation of blast wave in air by 3D code.

(a) (b)

Figure 13: (a). Concrete slab dimensions and charge positions; (b). Placement of
the explosive charge suspended above slab [Luccioni and Luege (2006)]

In the experiment, the charges of 5Kg and 12.5Kg Gelamon produced the crushing
of concrete in a circular zone of about 250mm and 300mm diameter, respectively.
Hereby, Luccioni et al. [Luccioni and Luege (2006)] overfitted an empirical for-
mula for the estimation of explosive charges from crushing diameters or crushing
dimensions from explosive charges as

ln(3.63D/h) = 0.1838(W 1/3/h) (67)

where D is the diameter of the crushing zone and h is the height of the charge from
the concrete slab. W denotes the TNT equivalent mass of the charge.

In order to reproduce the crushing or disintegration of the concrete and counteract
the great distortion that can cause excessive deformation of the mesh, erosion was
used in [Luccioni and Luege (2006)]. Profit from MPM’s ability to deal with the
large deformation problems, we use CFDMP to simulate this test without use of
the erosion model. The particles fail when their damage value reaches unit. Fig.
14 shows the numerical results for the test of 5Kg charge obtained by CFDMP, in
which (a) is the failure area on the front of the slab and (b) is the tensile damage
on the back of the slab. The diameter of the crushing area is about 261mm and the
damage on the back of the slab expands from the center to the surrounding radially
which conforms to the analysis in [Luccioni and Luege (2006)].
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Figure 14: Numerical results for 5Kg charge test. (a). Concrete crushing area on
the front of the slab; (b). Tensile damage on the back of the slab

To compare the CFDMP results with those obtained from the experiment and the
empirical formula (67), we conducted a series of numerical tests with TNT equiv-
alent mass of 2Kg, 4Kg, 10Kg and 20Kg. The results are plotted in Fig.15. For the
cases of 4Kg and 10Kg, the numerical results are in good agreement with those ob-
tained by the experiment and the empirical formula. For the case of 2Kg and 20Kg,
the crushing regions also agree well with the prediction of the empirical formula.
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Empirical formula

Experimental results
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Figure 15: Relative diameter of the crushing zone D/h as a function of the inverse
of the scaled distance W 1/3/h
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5.4 Response of steel plates subjected to air-blast loading

Understanding the dynamic behavior of blast loaded armor steel plates is a key to
design a protection structure successfully. A series of experiments and numerical
calculations were carried out by Neuberger et. al. [Neuberger, Peles, and Rittel
(2007)] to study the scaling characteristics of the dynamic response of circular RHA
steel plates to large bare spherical air blast. As shown in Fig.16(a), the target plate
was supported by two thick armor steel plates with circular holes. The spherical
TNT charges were hanged in air using fisherman’s net and were ignited from the
center of the charge. The numerical model is shown in Fig.16(b), in which the
charge’s weight is W , distance from the plate’s surface to the center of the charge is
R, plate thickness is t and diameter is D, all of them are variables in the tests. The
maximum deflection of the plate δ is measured during the experiments. Steel, TNT
and air are simulated by the material models presented in Section 4. Two series of
cases are simulated, and the experimental and numerical parameters are listed in
Tab. 1. The normalized peak deflection, δ/t, obtained by CFDMP are compared
with those obtained by the experiments and LS-DYNA in Tab. 2.

(a) (b)

W

tR

D

Figure 16: (a). Experimental setup [Neuberger, Peles, and Rittel (2007)]; (b). The
numerical model

For series 1 (cases 1, 2 and 3), which represents a charge of 30Kg TNT for the
full scale prototype, the structural response is mostly dynamic elastic. The first two
cases show that the experimental and numerical results are in excellent agreement
and the scaling are hardly affected by the varying the geometry scale as stated in
[Neuberger, Peles, and Rittel (2007)]. The third case is the numerical result of the
full scale problem given by CFDMP, it proves the conclusion again.

For series 2 (cases 4, 5 and 6), which represents a charge of 70Kg TNT for the
full scale prototype, the increasing plastic strains arise in the structural dynamic
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Table 1: Experimental and numerical cases

case scaling factor t(m) D(m) W (Kg TNT) R(m)
1 4 0.01 0.5 0.468 0.1
2 2 0.02 1 3.75 0.2
3 1(full scale) 0.04 2 30 0.4
4 4 0.01 0.5 1.094 0.1
5 2 0.02 1 8.75 0.2
6 1(full scale) 0.04 2 70 0.4

Table 2: Normalized peak deflection δ/t

case scaling factor Experiment CFDMP LS-DYNA
1 4 2.60 2.69 2.59
2 2 2.70 2.71 2.62
3 1(full scale) 2.68
4 4 4.85 5.2 4.98
5 2 5.35 5.45 5.24
6 1(full scale) 5.625

response. Thus the scaling is affected, as discussed in [Neuberger, Peles, and Rittel
(2007)]. Case 4 and case 5 show that the experimental and numerical results are in
good agreement, and the effect on the scaling are also represented. As the scaling
factor vary approaching to 1, the normalized peak deflection δ/t increase, which
tells the effect on the scaling. The last case is the numerical result of the full scale
problem obtained by CFDMP, whose normalized peak deflection δ/t is the largest
which conform to the conclusion.

Fig.17 shows the final configuration of case 5. The figure obtained by CFDMP is
similar to the shape of experimental photograph. Fig.18 shows the colored contours
of the Mises stress at time of 0.3ms, 0.5ms and 1.0ms respectively for case 2 and
case 5 (the scaling factor are both 2). For case 2, most of the region are in elastic
period, while a large portion has entered into plastic period for case 5. So the
scaling of case 5 are affected as discussed in [Neuberger, Peles, and Rittel (2007)].

5.5 Damage of concrete slab with defect subjected to air-blast loading

Based on the examples shown in Section 5.3, we bring a little modification to the
slab to illustrate the ability of CFDMP to solve the strong FSI problem for more
complex geometry structure. As shown in Fig. 19(a), in a block region right against
the center of the HE charge (the red region), the concrete slab is weakened by
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(a) (b)

Figure 17: Final configuration of case 5. (a). Experimental photograph; (b).
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Figure 18: Mises stress. (a). case 2; (b). case 5

reducing its thickness from 0.15m to 0.02m so as to simulate the effect of the defect
in the slab, other conditions are the same as those in Section 5.3 (5Kg charge). The
tensile damage in the back of the slab is presented in Fig. 19(b). All the defect
region is crushed and the damage region of the slab is larger than that of the slab
without defect shown in Fig. 14. Besides, the damage shape of the two case are
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also different. The damage shape of the slab without defect is expanded from the
center to the surrounding radially while the damage shape of the slab with defect is
annular around the center.
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Figure 19: (a). Initial condition; (b). The tensile damage in the back of the slab

6 Conclusion

A coupled finite difference material point (CFDMP) method is proposed through
the bridge region to combine the advantages of FDM and MPM in this paper. It
uses an Eulerian frame in the fluid region and a Lagrangian frame in the FSI re-
gion. FDM is employed in the Eulerian frame, while MPM is employed in the
Lagrangian frame. So the region involving shock wave dispersion problem is sim-
ulated by FDM whereas the region involving history dependent materials and FSI is
simulated by MPM. In this way, the advantages of FDM and MPM are fully utilized
in different regions of the problem. Both shock tube problem and 2D HE explosion
simulation have verified the accuracy and efficiency of this algorithm. CFDMP is
applied to simulate the dynamic responses of concrete slab and steel slab under
air blast loading, whose numerical results coincide to the available experimental
results and the conclusion reported in literature. Therefore the proposed CFDM-
P method provides a powerful numerical tool for the study of explosion problems.
What’s more, the methodology can be generalized to combine other methods which
are based on different frames of reference.
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